
An Expert Assistant 
for Computer Aided Parallelization 

Gabriele Jostl*, Robert Chun2, Haoqiang Tin1, 
Jesus Labarta3 and Judit Gimenez3 

NAS Division, NASA Ames Research Center, 
Moffett Field, CA 94035-1000, USA 

igjost,f?iinj Bnas.nasa.gov 

San Jose. CA 95192, USA 
Robert.Chun @sjsu.edu 

Computer Science Department San Jose State University. 

European Center for Parallelism in Barcelona-Technical University of Catalonia 
(CEPBA-LPC), 

cr. JGi& Girona 1-3, Modul D6,08034 Barcelona, Spain 
Cjesusjudit} @ cepba.upc.es 

Abstract. The prototype implementation of an expert system was developed to 
assist the user in the computer aided parallelization process. The system inter- 
faces to tools for automatic parallelization and performance analysis. By fusing 
static program structure information and dynamic performance analysis data the 
expert system can help the user to filter, correlate, and interpret the data gath- 
ered by the existing tools. Sections of the code that show poor performance and 
require further attention are rapidly identified and suggestions for improvements 
are presented to the user. In this paper we describe the components of the expert 
system and discuss its interface to the existing tools. We present a case study to 
demonstrate the successful use in full scale scientific applications. 

1 Introduction 

When porting an application to a parallel computer architecture, the program devel- 
oper usually goes through several cycles of code transformations followed by perfor- 
mance analysis to check the efficiency of parallelization. A variety of software tools 
have been developed to aid the programmer in this challenging task. A paralIeIization 
tool will usually provide static source code analysis information to determine if and 
how parallelization is possible. A performance analysis tool provides dynamic runtime 
information in order to determine the efficiency of time consuming code fragments. The 
progammer must take an active role in driving the analysis tools and in interpreting and 
correlatin,a their results to make the proper code transformations to improve parallelism. 
For large scientific applications, the static and dynamic analysis results are typically 
veiy complex and their examination can pose a daunting task for the user. In this paper 
we describe the coupling of two mature analysis tools by an expert system. The tools 

* The author is an employee of Computer Sciences Corporation 



2 G. Jost. R. Chun, H. Jin. J. Labarta and J. Gimenez 

under consideration are the CAPO [3] parallelization tool and the Paraver [ 121 perfor- 
mance analysis system. The techniques described in this paper are applicable to many 
parallel programming paradigms, but we will restrict our discussion on OpenMP [ 101 
parallelization for shared memory computer architectures. OpenMP supports loop level 
parailelization in the form of compiler directives. The program developer has io insert 
the directives and specify the scope of the variables. The CAPO parallelization tool 
was developed to aid the programmer in this task. CAPO automates OpenMP directive 
insertion into existing Fortran codes and allows user interaction for an efficient place- 
ment of the directives. This is achieved by use of extensive interprocedural analysis 
fIOiii CAf-' iiii;.".cisitj: 
of Greenwich. Dependence analysis results and other static program structure informa- 
tion are stored in an application database. The Paraver performance analysis system is 
being developed and maintained at the European Center for Parallelism in Barcelona 
(CEPBA). Its major components are the tracing package OMPItrace [9],. a graphical 
user interface to examine the traces, and an analysis module for the computation per- 
formance statistics. 

Therest of the paper is structured as follows: In Section 2 we describe the prototype 
implementation of our expert system. In Section 3 we present a case study to show 
the usefulness of the system. In Section 4 we discuss some related work and draw our 
conclusions in Section 5. 

~ . . . ._ - __ _. . . . - _ _  . __. 
L2j jiio.w knowii as y&-a."-",isej .*nicn .*as Geveiopia at 

2 The Expert System Prototype Implementation 

An intelligent computerized parallelization advisor was developed using an expert sys- 
tem implemented in CLIPS ("C" Language Integrated Production System) [ 11. By per- 
forming data fusion on the static and dynamic analysis, the expert system can help the 
user to filter, correlate, and interpret the data. Relevant performance indices are au- 
tomatically calculated and correlated with program structure information. The overall 
architecture of our program environment is depicted in Figure 1. In the following we 
describe its various components. 

Selective Soui-ce Code Instiumeiztatiorz: We use the Paraver OMPItrace package for 
instrumentation and tracing of the application. Compiler generated routines for paral- 
lelized code segments are dynamically traced. User level subroutines have to be manu- 
ally instrumented in the source code. Instrumentation of all subroutines may introduce 
at lot of overhead. For critical code segments, on the other hand, it is often desirable to 
obtain information on a finer granularity than a subroutine call. We use the CAPO code 
transformation capability to automatically insert tracing library calls into the code. The 
program structure information from the application database is used to decide where 
to insert these calls. In our prototype system we only instrument routines that are not 
contained within a parallel region or a parallel loop and that contain at least one DO- 
loop. Furthermore we instrument outermost serial loops. More details on the automatic 
selective instrumentation can be found in [4]. 

Automatic Retrieval of Perfonnurice lizdices: We have extended the Paraver SYS- 

tem by Paramedir, a non-graphical command line interface to the analysis module. The 
specification of Paraver trace file views and metric calculations can be saved to reusable 



Fig. 1. Axhitecture of t!x expen system p r o - M n g  envircnrnent. The Pard:eLizztion Assis- 
tant Expert System fuses progam structure knowledge and performance trace informarion to 
aid the user narrowing down performance problems. The user can SUU interact directly with the 
parallelization and performance analysis tools for fine tuning of the applications performance. 

configuration files. Parsmedir accepts the same trace and configuration files as Paraver. 
This way the same information can be captured in both systems. Paramedir supports 
the programmability of performance analysis in  the sense that complex performance 
metric,. determined by an expert user. can be automatically computed and processed. 
The detailed human driven analysis can thus be translated into rules suitable for pro- 
cessing by an expert system. Details on Parainedir can be found in [SI. Examples for 
memcs that are automatically calculated for the instiumented code sections are parallel 

instructions. and L2 cache misses beti3,ern the different threads. The automatically cal- 
culated performance metrics are then stored in a table. 

Inforrizarion Fusion: After calculating the perfomance indices. the expert system 
extracts program structure information from the application database. At this point the 
main interest is the optimal placement of OpenMP directil.es. The pro to tqe  implemen- 
tarion retrieves the type of tLe instrumented code segment. such as loop or subroutine. 
the loop identifier, and the type of the loop, such as being parallel or sequential. 

Rule Based Anal~sis: The expert system iises observations to infer reasons for poor 
performance. The obser\.ations are a list of facts about the calculated performance met- 
rics for the calculated code segments. Examples of fact are: "the subroutine takes 50% 
of the execution time" or "the \,ariatior! of executed instructions among the threads is 
high". The metrics are compared to ernpincal!y determined threshold values in order IO 

determine what is hish and what is IOU-. Conclusions are inferred through a set of rules 
that interpret certain pat:erns as reasons for poor performance. A n  exaiiipk aouid be a 
ruie of the farm: 
- If: The code segment takes a large amount of time and the parallel efficiency is low 

and t h e x  are larze sequsnrial sections and the granularity of the para!le!izatior! is 
fine 

~ l l ~ J e l I ~ y .  -^-. sequential I'i-iictiofis. granularity- of the paraiielization. and \'xiation of time. 

3 



4 G. Jost. R. Chun. €3. fin, J. Labarta and J. Gimenez 

- Then: Try to move the parallelization to an outer level 
An illustration of tlle reasoning is given in Figure 2. The conclusions are presented 

to the user either as ASCII text or via the CAPO user interface. This will be discussed 
in the case study presented in Section 3. 

Fig.2. Example of facts and conclusions within the expert system. A set o f  rules is applied to 
observed facts to determine patterns of causes for poor performance. 

3 A CaseStudy 

The parallelization assistant expert system was tested on several full scale scientific 
applications. In order to give a flavor of its usability we present the analysis of the 
PSAS Conjugate Gradient Solver. The code is a component of the Goddard EOS (Earth 
Observing Systems) Data Assimilation System. It contains a nested conjugate gradient 
solver implemented in Fortran 90. Figure 3 shows a Paraver timeline view of one of 
the time consuming portions of the code. The shaded areas display computation time 
spent in parallel loops. Visual inspection immediately shows an imbalance between the 
threads, with thread number 1 spending a lot more time in parallel computations. The 
reason for the imbalance is, that the amount of calculations per iteration differs greatly. 
By default. the iterations of a parallel loop are distributed block-wise among the threads, 
which is a good strategy if the amount of work per iteration is approximately the same. 
In the current case thread number 1 ended up with up with all of the computational in- 
tensive iterations, leaving the other threads idle for a large amount of time. The OpenMP 
directives provide clauses to schedule work dynamically. so that whenever a thread fin- 
ished its chunk of work, it is assigned the next chunk. This strategy should only be used 



An Expert Assistant for Computer Aided Parallelization 5 

if the granu!arity of ttie work chunks is sufficiently coarse. The expeit system was able 
to detect the imbalance and its possible cause. The rule which fired for this particular 
case was: 

Fig.3. Paraver umeime view of ome spent UI useful computauons witnin parue1 ~oops ay 4 

threads. Useful computation time is shaded, non-useful time is white. The view shows an obvious 
imbalance, with the master thread spending more time in parallel computations. 

- If: The code segment takes a large amount of time and the para!lel efficiency is low 
and there is a large variation in the amount of useful computation time and there 
is a large variation in the number of instructions within the parallelized loops and 
the granularity of the parallelization is sufficiently large 

The expert system analysis output is generated as an ASCII file. The user has the 
possibility to display the analysis results using the CAPO directives browser. This way 
the dynamic performance analysis data is integrated with program structure informa- 
tion. An example is shown in Figure 3. The user is presented with a list of time consum- 
ing loops and subroutines. Selecting an item from the list displays the corresponding 
expert system analysis and highlights the corresponding source in the directive browser 
window. For the current case it helps the user to identify loops which suffer from work- 
load imbalance. The expert system analysis provides guidance through the extensive set 
of CAPO browsers. 

- Then: Try dynamic scheduling in order to achieve a better work load balance. 

4 Related Work 

There are several research efforts on the way with the goal to automate performance 
analysis to integrate performance analysis and parallelization. We can only name a few 
of these projects. KOJAK [6] is a collaborative project of the University of Tennessee 
and the Research Centre Juelich foi the development of a generic automatic perfor- 
mance analysis environment for parallel progams aiming at t5e automatic detection 
of performance bottlenecks. The Paradyn Performance Consultant [8] automatically 
searches for a set of performance bottlenecks. The system dynamically instruments the 
application in order to collect performance traces. The URSA -MINOR project [ 111 at 
Purdue University uses program analysis information as well as performance trace data 
in order to guide the user through the program optimization process. The SUlF Ex- 
plorer [7,13] Parallelization Guru developed at Stanford University uses profiling data 
to bring the user's attention to the most time consuming sections of the code. Our ap- 
proach differs from the previous work in that we are integrating two mature tools. Our 
rule based approach takes advantaze of the high degree of flexibility in collecting and 
analyzing information provided by the underiring tools. 



6 G. Jost, R. Chun, H. An, J. Labarta and J. Gimenez 

Fig. 4. The expert system analysis can be displayed in CAPO’S Dynamic Analysis Window. Se- 
lecting a particular routine or loop, the corresponding source code is highlighted in the Directives 
Browser window. The Why Window displays information about the status of the parallelization 
of the code, such as the scope of variables or dependences that prevent parallelization. 

5 Conclusions 

We have built the prototype of an expert assistant to integrate two mature tools for 
compurer aided paralIelization and performance analysis. The systez helps the riser 
in navigating and interpreting the static program structure information, as well as the 
accompanying dynamic run-time performance information so that more efficient opti- 
mization decisions can be made. It enables the user to focus his tuning efforts on the 
sections of code that will yield the largest performance gains with the least amount of 
recoding. 

Using the expert system approach in a case study has demonstrated how to fuse data 
from the static and dynamic analysis to provide automated correlation and filtering of 
this information before conveying it to the user. The &st conclusion we draw is that a 
number of relatively simple rules can capture the essence of the human expert’s heuris- 
tics needed to narrow down a parallelization related performance problem. Secondly, 
we found it to be very important to be able to switch to the direct-usage of the tools 
at any point during the analysis process. The expert system analysis rapidly guides the 
user to code se,gnents, views, and effects that require futher detailed analysis with ei- 
ther CAPO or Paraver. This detailed analysis will in turn often lead to the design of new 
rules which can then be included in the automated process. 



An Expert Assistant for Computer Aided Parallelization 7 

A4cknowIedpents 

This work was supported by NASA contract DTTS59-99-D-O0437/A618 12D with Com- 
puter Sciences CorporatiodAMTI, by the NASA Faculty Fellowship Program, and by 
the Spanish Ministry of Science and Technology, by the European Union FEDER pro- 
gam under contract TIC2001-0995-CO2-01, and by the European Center for Paral- 
lelism of Barcelona (CEPBA). We thank the CAPTools development team for many 
helpful discussions and the continued support of our work. 

References 

1. CLIPS: A Tool for Building Expert Systems, hnp:l/vrww.ghg.net/clips/CLIPS.hrml. 
2. C.S. Ierotheou, S.P. Johnson, M. Cross and P. Leggett, ‘‘Computer Aided Par- 

allelisation Tools (CAPTools), Conceptual Overview and Performance on the Par- 
dlelisation of Structured Mesh Codes,” Parallel Computing, 22 (1996) 163-195. 
http://wuw.parallelsp.comlparawise. htm. 

3. H. Jin, M. Fruml;in and J. Yan, ”Automatic Generation of OpenMP Directives and Its Appli- 
cation to Computational Fluid Dynamics Codes,” Proceedings of Third International Sym- 
posium on High Performance Computing (ISHPC2000), Tohyo, Japan, October 16-18,2000. 

4. G. lost, H. Jin, J. Labarta and J. Gimenez, “Interfacing Computer Aided Parallelization 
and Performance Analysis,” Proceedings of the International Conference of Computational 
Science - ICCSO3, Melbourne, AustraIia, June 2003. 

5. G. lost, J. Labarta and J. Gimenez, “Paramedir: A tool for programmable Performance 
Analysis”, Proceedings of the International Conference of Computational Science - ICCSO4. 
Krakow, Poland, June 2004. 

6. Kit for Objective Judgment and Knowledge based Detection of Performance Bottlenecks, 
http://www. fz-jueIich.de/zam/kojak/. 

7. S. Liao, A. Diwan, R.P. Bosch, A. Ghuloum and M. Lam. “SULF Explorer: An interactive 
and Interprocedural Parallelizer,” 7th ACM SIGPLA!! Symposium on Principles & Practice 
of Parallel Programming, Atlanta, Georgia. (1999). 37-48. 

2. 2.Y. Xiiicr, ;Vim. Laflaghan. J. M. Car@e, J. K. Hollingsworth, R. B. Inin, K.L. Kara- 
vanic, K. Kunchithhapdam and T. Newhall, ”The Paradyn Parallel Performance Measure- 
ment Tools,” IEEE Computer 28, 11, pp.3747 (1995). 

9. OMPItrace User’s Guide, http://www.cepba.upc.es/paraver/manuali.htm. 
I 0. O p e M  FortranlC Application Program Interface, http://www.openmp.org/. 
11. I. Park, M. J. Voss. B. Armstrong and R. Eigenmann, “Supporting Users’ Reasoning in 

Performance Evaluation and Tuning of Parallel Applications,” Proceedings of PDCS’2000, 
Las Vegas, hV, 2000. 

1 2 .  Paraver. http://www.cepba.upc.es/paraver/. 
13. SLJIF Compiler System http://suif.stanford.edu/. 


