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PARAMETER TRANSIENT BEHAVIOR ANALYSIS ON
FAULT TOLERANT CONTROL SYSTEM∗

Jong-Yeob Shin†

ABSTRACT

In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured
based on fault parameters estimated by fault detection and isolation (FDI) modules.
FDI modules require some time to detect fault occurrences in aero-vehicle dynamics.
This paper illustrates analysis of a FTC system based on estimated fault parameter
transient behavior which may include false fault detections during a short time interval.
Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the
FTC system performance is calculated as a function of a fault detection time and the
exponential decay rate of the Lyapunov function.

1 INTRODUCTION

In the past decades, there has been interest in a FTC system which has ability to detect ac-
tuator/sensor faults automatically, and to prevent faults from developing into system failure.
Especially, in designing a flight control system, it has been researched for achieving single
aircraft accident prevention [1, 2, 3, 4, 5]. An active FTC system requires its control law
to react to actuator/sensor faults through reconfiguration and fault detection and isolation
(FDI) modules to detect actuator/sensor fault occurrences. FTC law synthesis for aerospace
vehicles has been studied since 1980’s based on possible faults on actuators and sensors [2].
Recently, using linear matrix inequality (LMI) optimization solutions [3, 4, 5], linear pa-
rameter varying (LPV) FTC laws are designed, based on an open-loop system modeled as
a function of fault parameters. In the LPV-FTC synthesis procedure, it is assumed to be
imminently identified by separate fault detection and isolation (FDI) modules. FDI modules
are designed, based on only an open-loop system and applied in a closed-loop system [5, 6, 7].
In general, FDI modules and FTC laws are individually designed, without considering the
other dynamics [4, 5].

After individually designing an LPV-FTC law and FDI modules, analysis of a FTC system
is required to validate the FTC laws and FDI modules together. A typical way of analyzing
a FTC system is nonlinear simulation with the pre-defined command inputs (not all possible
command inputs), for possible fault scenario. It is hard to provide a generic criteria of a
FTC system via nonlinear simulations. A FTC system analysis frame work is required to
provide a certain criteria of a FTC system related with characteristics of FDI modules.

∗This work was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-02117.

†Staff Scientist, National Institute of Aerospace (NIA), Hampton, VA 23666. Email: shinjy@nianet.org
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Usually, FDI modules can not detect faults at the moment a fault occurs. There is always
some level of time delay to detect faults regardless of FDI algorithms such as an LPV-FDI
filter [7] and an extended Kalman FDI filter [5]. During the delay time interval, the dynamics
of the closed-loop system may not be in the pre-defined set of systems used in the LPV-FTC
law synthesis procedure [5]. It is also possible that during the time interval, FDI modules
may detect false faults which represent faults on healthy actuator/sensors. In this paper,
the signal provided by FDI modules is parameterized and dynamics changes due to signal
changes during the time interval are modeled as parameter transient behavior of an LPV
system. It is possible that the parameter transient behavior includes that the system is
locally unstable for a short time interval.

For that case, conventional LPV performance analysis methodologies can not be used since
all systems are required to be locally stable for any fixed scheduling parameters. One of the
LPV performance analysis methodologies with brief instabilities is developed in Ref. [8],
using the main concept of switching system analysis. Modifying the analysis, in this paper,
the upper bound of the induced-L2 norm of the closed-loop system is calculated in terms of
possible delay time interval (a characteristic of FDI modules) and exponential decay rates
of the Lyapunov function. A generic analysis framework of a FTC system is presented,
including false fault parameter estimation effects on closed-loop system dynamics.

The analysis result of the proposed FTC system in this paper is one of indicators to find
out which LPV-FTC law generates less performance degradation due to parameter transient
behavior. In this paper, it is demonstrated by applying this FTC analysis frame work to a
HiMAT FTC system designed in Ref. [5].

This paper contains the following sections. In section 2, a FTC system analysis problem
is stated and an analysis methodology is described in section 3. In section 4, a HiMAT FTC
system analysis is demonstrated. In section 5, this paper is concluded with a brief summary.

2 PROBLEM STATEMENT

In this section, analysis problems on a FTC system are described. The structure of a FTC
system shown in Figure 1 is briefly described to carry out analysis problem objectives. A
FTC system includes a FTC law, FDI modules and supervisory systems (logics). When a
fault occurs, FDI modules and a supervisory system (logics) detect it and generate signals for
evaluating/reconfiguring a FTC law. Assume that the designed FTC law can be represented
as an LPV system or is designed using LPV synthesis methodologies in Ref. [9, 10, 5]. In
this paper, FDI modules estimate fault parameters which can be converted into scheduling
parameters of the designed FTC law via simple logics (see Fig. 1).

Fault parameters ρ(t) represent actual fault occurrences on aero-vehicle dynamics P (ρ(t)).
Assume that fault parameters ρ(t) are in a piecewise continuous compact set Fρ ⊂ Rns

to capture dynamics of abrupt fault occurrence. Since fault parameters are not directly
measurable in real time via physical sensors, the parameters are estimated by FDI modules
with estimation error bounds (δρ). In practical terms, the size of δρ is decided based on
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characteristics of FDI modules and possible fault scenarios. The designed LPV controller
K(ρ̄(t)) is evaluated based on the estimated fault parameters ρ̄(t) in a piecewise continuous
compact set Fρ̄ ⊂ Rns . Based on the LPV synthesis methodology [5], the designed LPV
controller K(ρ̄(t)) can robustly stabilize an aero-vehicle P (ρ) under fault occurrences, when

ρ(t) ∈ S(ρ̄, δρ) :=

{
ρ(t) | ||ρ(t) − ρ̄(t)|| ≤ δρ,

ρ ∈ Fρ, ρ̄ ∈ Fρ̄, 0 ≤ δρ

}
. (1)

When a fault occurs, FDI modules require some time for estimated fault parameters to
satisfy the condition: ρ(t) ∈ S(ρ̄(t), δρ). The required time is called as detection time for FDI
modules, hereafter. During the detection time interval, it is possible that fault parameters
ρ(t) are not in a set S(ρ̄(t), δρ) since δρ is generally chosen as smaller values than the entire
range of ρ(t) variation. The performance and stability for the closed-loop system is not
guaranteed for the case: ρ(t) /∈ S(ρ̄(t), δρ) since the LPV control law is designed only for
the case: ρ(t) ∈ S(ρ̄(t), δρ). During the interval, parameter transient behavior[5] of the
closed-loop system is observed for the case: ρ(t) /∈ S(ρ̄(t), δρ). When the time interval is
long, the performance of the closed-loop system can be noticeably degraded and stability of
the system can be also changed.

In order to analyze performance degradation and stability of the system, the closed-loop
FTC system G(ρ, ρ̄) is modeled as

ẋ = A(ρ, ρ̄)x + B(ρ, ρ̄)d,

e = C(ρ, ρ̄)x + D(ρ, ρ̄)d,
(2)

where x ∈ Rnx , d ∈ Rnd and e ∈ Rne . All the matrices have compatible dimensions. Note
that the fault parameters ρ and estimated fault parameters ρ̄ are treated as independent
parameters in an analysis frame work.

The entire parameter space is defined as

P := {(ρ(t), ρ̄(t)) | ρ(t) ∈ Fρ, ρ̄(t) ∈ Fρ̄} (3)

and is divided into m subspaces Pi such that

P =
m⋃

i=1

Pi := P1 ∪ P2 · · · ∪ Pm,

∅ = Pi ∩ Pj, i �= j, i ∈ I, j ∈ I,

I := {1, 2, · · · , m}.

(4)

Local and global stability of the closed-loop system G(ρ, ρ̄) in Eq. (2) are defined over
parameter subspaces as follows:
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Definition 1 Local and global stability:
Suppose there exists a positive definite matrix P such that

AT (ρ, ρ̄)P + PA(ρ, ρ̄) < 0, (ρ, ρ̄) ∈ P (5)

then the system is globally stable over the entire parameter set. When the condition in Eq. (5)
is satisfied over only subsets Pi, the system is locally stable.

To analyze system dynamics changes due to parameter transient behavior, it is necessary
to introduce duration time of the system over each subspace.

Definition 2 Duration time Tpi
over each subspace:

Tpi
(to, t) =

∫ t

to

σi(ρ(s), ρ̄(s))ds, ∀t > to > 0, (6)

σi(ρ(s), ρ̄(s)) =

⎧⎪⎪⎨
⎪⎪⎩

0, (ρ(s), ρ̄(s)) /∈ Pi,

1, (ρ(s), ρ̄(s)) ∈ Pi,

i ∈ I.

(7)

A duration time is bounded as

Toi
+ βi(t − to) ≤ Tpi

≤ Toi
+ αi(t − to) (8)

where 0 ≤ βi ≤ αi ≤ 1 and 0 ≤ Toi
. The constant αi represents a ratio of total time of

interest to duration time over the i-th subspace. For example, when the system stays in the
i-th subspace for all time, the constant αi should be one. When the system never stays in
the i-th subspace for all time, the constant αi should be zero.

In this paper, we consider possible local instability over a subspace because FDI modules
can generate false fault detection signals during the detection time interval. Without loss
of generality, consider the case that the system is locally unstable in the m-th subspace.
The constant αm < 1 takes an important role in stability analysis to represent asymptotic
stability ratio [8], which is related with stability margin of the system. In this paper, the
constant αm is interpreted as tolerance of the false detection of FDI modules for the closed-
loop system [11]. For example, if the system is stable with the larger number of αm, it
implies that the system can stay in the m-th subspace longer.

In this paper, the subspace P1 is defined when ρ(t) ∈ S(ρ̄(t), δρ). For practicality, assume
that the closed-loop system stays in the subspace P1 for the most of the time of interest,
since the FTC law is designed for it [5]. During the detection time interval, the closed-loop
system stays in the parameter subspaces Pi, i ∈ I −{1}. The stability margin of the system
over the entire parameter space can be described as a function of the constants αi, i ∈ I.
Also, the performance degradation level can be represented as an induced-L2 norm of the
closed-loop system over the entire parameter space.
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3 ANALYSIS METHOD

In this section, the analysis problems described in the previous section are formulated into
LMI forms.

3.1 Stability Analysis

Recall that the closed-loop system G(ρ, ρ̄) in Eq. (2) is locally stable in the set of
m−1⋃
i=1

Pi and

locally unstable in the parameter subset Pm.
Proposition 1: Suppose there exists a positive definite matrix P (ρ̄) such that

AT (ρ, ρ̄)P + PA(ρ, ρ̄) + Ṗ ≤ −λiP, (ρ, ρ̄) ∈ Pi, i ∈ I − {m},
AT (ρ, ρ̄)P + PA(ρ, ρ̄) + Ṗ ≤ κP, (ρ, ρ̄) ∈ Pm,

(9)

where
0 ≤ κ, 0 ≤ λi ≤ λ1, i ∈ I − {1, m}. (10)

The system is exponentially stable with a decay rate:

λ = λ1 −
m−1∑
i=2

(λ1 − λi)αi − (λ1 + κ)αm (11)

under the condition:

αm < αt :=
λmin

λmin + κ
, (12)

where λmin = min{λi}, i ∈ I − {m}.
The proof is follows. Set a Lyapunov function as V = xT (t)P (ρ̄)x(t), P ∈ Rnx×nx . Using
Eq. (9), the time derivative of the Lyapunov function is

V̇ ≤ −λiV, (ρ, ρ̄) ∈ Pi, i ∈ I − {m}, (13)

V̇ ≤ κV, (ρ, ρ̄) ∈ Pm. (14)

From Eqs. (13) and (14),

V ≤ e−λ1(t−to−
∑m−1

i=2 Tpi )−
∑m−1

i=2 λiTpi+κTpmV (to), ∀t ≥ to ≥ 0. (15)

Taking the upper bound of the duration time over each parameter subspace, Eq. (15) is
rewritten as:

V ≤ e−λ(t−to)+
∑m−1

i=2 (λ1−λi)Toi+(λ1+κ)TomV (to), (16)

where

λ := λ1 −
m−1∑
i=2

(λ1 − λi)αi − (λ1 + κ)αm. (17)
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Without loss of generality, the constant λ1 can be set as max{λi}, i ∈ I − {m}. Thus, the
term λ1 − λi is always positive over the parameter subspaces Pi, i ∈ I − {1, m}. The lower
bound of the constant λ is

λ ≥ λt := λ1 −
m−1∑
i=2

(λ1 − λmin)αi − (λ1 + κ)αm. (18)

When the condition Eq. (12) is satisfied, it is easily noticed that the system is exponential
stable such that λt ≥ 0.

In this paper, the exponential decay rate is of interest to analyze a closed-loop system
which may have local instability over a parameter subspace. The constant αt represents
the upper bound of asymptotic instability ratio [8]. In the analysis of a FTC system, the
constant αt can be interpreted as tolerance of instability during the detection time interval.
For example, αt = 0.1 implies that the closed-loop system can stay in the parameter subspace
Pm for 10 % of the total interest time without loss of exponential stability.

Given fault tolerant controllers, we can analyze the closed-loop system in terms of a
constant αt value. The stability analysis problem can be formulated into an optimization
problem as:

max
κ>0,λmin>0

αt,

s.t Eq.(9)

(19)

In this paper, the optimization is solved by checking feasibility of the LMI constraints in
Eq. (9) with a line searching method over the constant λi and κ values.

3.2 Performance analysis

For the closed-loop system in Eq. (2), the induced-L2 norm is defined as:

sup
(ρ,ρ̄)∈P,d∈L2,||d||2 �=0

||e||2
||d||2 . (20)

It is interesting to determine the induced-L2 norm from disturbance d to error e with pa-
rameter transient behavior during a detection time interval.

Proposition 2: Suppose there exists a positive definite matrix P (ρ̄) ∈ Rnx×nx such that

(ρ, ρ̄) ∈ Pi, i ∈ I − {m},⎡
⎢⎢⎣

AT (ρ, ρ̄)P (ρ̄) + P (ρ̄)A(ρ, ρ̄) + Ṗ (ρ̄) + λiP (ρ̄) P (ρ̄)B(ρ, ρ̄) γ−1CT (ρ, ρ̄)

BT (ρ, ρ̄)P (ρ̄) −I γ−1DT (ρ̄)

γ−1C(ρ̄) γ−1D(ρ̄) −I

⎤
⎥⎥⎦ < 0,

(21)
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(ρ, ρ̄) ∈ Pm,⎡
⎢⎢⎣

AT (ρ, ρ̄)P (ρ̄) + P (ρ̄)A(ρ, ρ̄) + Ṗ (ρ̄) − κP (ρ̄) P (ρ̄)B(ρ, ρ̄) γ−1CT (ρ, ρ̄)

BT (ρ, ρ̄)P (ρ̄) −I γ−1DT (ρ, ρ̄)

γ−1C(ρ, ρ̄) γ−1D(ρ, ρ̄) −I

⎤
⎥⎥⎦ < 0.

(22)

The induced-L2 norm from d to e of the closed-loop system is no larger than Mγ where

Mγ = γ

√
e

∑m−1
i=2 (λ1−λi)Toi+(λ1+κ)Tomλb

λ
,

λb = λ1 −
m−1∑
i=2

(λ1 − λi)βi − (λ1 + κ)βm,

λ = λ1 −
m−1∑
i=2

(λ1 − λi)αi − (λ1 + κ)αm.

(23)

Under the condition αm < αt :=
λmin

(λmin + κ)
, the constant λ is always positive such that

λ ≥ λb > 0.

The proof is follows. Set V = xT (t)P (ρ̄)x(t), then the time derivative of a Lyapunov
function V is

V̇ ≤ −λiV + ||d||2 − γ−2||e||2, (ρ, ρ̄) ∈ Pi, i ∈ I − {m},
V̇ ≤ κV + ||d||2 − γ−2||e||2, (ρ, ρ̄) ∈ Pm.

(24)

Eqs. (21) and (22) describe the condition Eq. (24). The Lyapunov function is rewritten as:

V (t) ≤ ef(t0,t)V (to) +

∫ t

to

ef(s,t)(||d(s)||2 − γ−2||e(s)||2)ds, (25)

where

f(s, t) = −λ1(t − s −
m∑

i=2

Tpi
(s, t)) −

m−1∑
i=2

λiTpi
(s, t) + κTpm(s, t). (26)

Since V (t) > 0, ∀t ≥ to ≥ 0, the following inequality equation is extracted from Eq. (25).

γ−2

∫ t

to

ef(s,t)||e(s)||2ds ≤ ef(to,t)V (to) +

∫ t

to

ef(s,t)||d(s)||2ds, ∀t ≥ to ≥ 0. (27)

Using Eq. (8) and the definition of λ and λb in Eq. (23), it is easily derived that

γ−2
∫ t

to
e−λb(t−s)||e(s)||2ds ≤ e

∑m−1
i=2 (λ1−λi)Toi+(λ1+κ)Tom−λ(t−to)V (to)

+
∫ t

to
e

∑m−1
i=2 (λ1−λi)Toi+(λ1+κ)Tom−λ(t−s)||d(s)||2ds.

(28)
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Integrating both sides of Eq. (28) over the interval (to,∞) leads to

γ−2

λb

∫ ∞

to

||e(s)||2ds ≤ V (to)

λ
e

∑m−1
i=2 (λ1−λi)Toi+(λ1+κ)To+

1

λ
e

∑m−1
i=2 (λ1−λi)Toi+(λo+κ)To

∫ ∞

to

||d(s)||2ds.

(29)
Thus, the upper bound of the induced-L2 norm Mγ is

Mγ = γ

√
e

∑m−1
i=2 (λ1−λi)Toi+(λ1+κ)Tomλb

λ
. (30)

The constant Mγ represents the upper bounds of the worst-case performance level under
parameter transient behavior which includes possible local instability. Thus, the performance
analysis problem is formulated into an optimization problem:

min
λi>0,κ≥0

Mγ( min
P∈Rnx×nx

γ),

s.t. Eq.(21), (22).

(31)

The minimization γ problem at fixed λi and κ is an LMI problem. However, the optimization
problem in Eq. (31) is not an LMI problem in terms of λi, κ and γ with P . Also, the solution
γ is highly related with λi and κ values. In this paper, line searching over possible λi and κ
ranges is used to find a solution of the optimization problem.

Note that this analysis does not require that the positive matrix P is a function of the
estimated parameters ρ̄. Based on behaviour of estimated parameters by the FDI modules,
the matrix P can be set as a constant positive matrix or a function of parameter over the ρ̄
variations. The constant positive matrix can allow abrupt change of the estimated parameter
but leads to conservative analysis results. It will be demonstrated via the following example.

4 EXAMPLE

In this section, the proposed analysis methodology is demonstrated by application to a FTC
system. Using the analysis, it is possible to indicate which FTC law is tolerant of possible
false detection signal and generates less performance degradation for parameter transient
behaviors during the detection time interval.

4.1 FTC HiMAT System

The FTC HiMAT system [5] consists of an on-line FDI system with simple logics, the dy-
namics of a HiMAT vehicle shown in Figure 2, and a designed LPV-FTC law. The HiMAT
vehicle dynamics is taken from the µ-synthesis Toolbox [12] and is modeled as an LPV sys-
tem. The LPV model has two inputs: elevons δe and canards δc; two outputs: angle of
attack α in radians and pitch angle θ in radians; and four states: velocity V in ft/sec, angle
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of attack α, pitch rate q in rad/sec, and pitch angle θ. The LFT-LPV model of the HiMAT
vehicle is

ẋ = Ax + B

[
τ̄1 0

0 τ̄2

]
u + B

[
0.1 0

0 0.1

]
w, (32)

z = u, y = Cx, (33)

w = ∆z, ∆ =

[
δ1 0

0 δ2

]
(34)

where the detailed elements of the system matrices A, B, and C are in Ref. [5]. The estimated
scheduling parameter ρ̄ is defined using simple logics as

0 ≤ ρ̄ < 1 : 0 ≤ τ̄1 < 1, τ̄2 = 1 Elevon failure

ρ̄ = 1 : τ̄1 = 1, τ̄2 = 1

1 < ρ̄ ≤ 2 : τ̄1 = 1, 0 ≤ τ̄2 < 1 Canard failure.

The on-line FDI model [5] estimates fault parameters τ̄1 and τ̄2 using the two-stage optimal
Kalman filter [5, 13]. Based on the estimated fault parameters, the estimated scheduling
parameter ρ̄ is defined via the simple logics.

LPV-FTC laws KA(ρ̄) and KB(ρ̄) are designed without a scaling factor using conventional
LPV control synthesis methodology in Ref. [10] and with a scaling factor using a robust LPV
synthesis methodology [5], based on the LPV-HiMAT model with estimated error bound 0.1.
The closed-loop responses with the controllers KA and KB are simulated for the possible
fault scenario of the canards failing at 1 sec and are shown in Figure 3, respectively. The
right plots in Figure 3 are magnifications of the left plots. Based on Figure 3, there is very
little difference between KA and KB responses with steady state parameter estimates and
pitch angle time responses. The simulation results in Figure 3 show that the detection time
interval is about 0.5 sec from t = 1 sec to t = 1.5 sec. During the interval, a scheduling
parameter ρ is 2, which indicates canard failure. The estimated parameter ρ̄, however, is not
2 during the interval. It is easily observed that the condition ρ(t) ∈ S := {ρ||ρ − ρ̄| ≤ 0.1}
is not satisfied during the interval. However, overall simulation results show that the closed-
loop system is stable and achieves the desired performance objective defined in Ref. [5] since
the detection time interval is short in the simulation (less than 0.5 sec).

It is noticed, using linear analysis at fixed parameters, that the eigenvalues of the closed-
loop system with KA or KB are positive at fixed parameters ρ̄ = 0 and ρ = 2. When ρ̄ > 0.1,
the closed-loop system is stable at fixed parameters. This leads to the FTC HiMAT system
being locally unstable for the short interval.
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constant matrix P

Controller λ1 λ2 κ αt

KA 0.042 0.041 7.65 5.3×10−3

KB 0.042 0.038 4.96 7.6×10−3

parameter dependent P (ρ̄)

KA 0.041 0.039 7.6 5.1×10−3

KB 0.034 0.032 3.7 8.6×10−3

Table 1: Stability analysis results

4.2 Stability Analysis

To apply the stability analysis methodology described in section 3, the parameter set P is
divided into three subspaces for this example. Set the subspaces as

P1 = {(ρ, ρ̄) | ρ = 2, 0.9 ≤ ρ̄ ≤ 2},
P2 = {(ρ, ρ̄) | ρ = 2, 0.1 ≤ ρ̄ ≤ 0.9},
P3 = {(ρ, ρ̄) | ρ = 2, 0.0 ≤ ρ̄ ≤ 0.1}.

(35)

Note that when ρ̄ ∈ P1, the condition ρ(t) ∈ S(ρ̄, 0.1) is satisfied. Recall that the condition
is used in designing an LPV-FTC law. When ρ̄ ∈ P2, the closed-loop system is locally stable
but the condition is not satisfied. When ρ̄ ∈ P3, the closed-loop system is locally unstable.

The LMI constraints in Eq. (9) are evaluated at grid points ρ̄ ∈ {0, 0.1, 0.2, · · · , 2} over
the parameter subspaces. In order to solve the optimization problem in Eq. (19) with
LMI constraints in Eq. (9), the ranges of λ1, λ2, and κ are defined as 0.01 ≤ λ1 ≤ 0.1,
0.01 ≤ λ2 ≤ 0.1, and 5 ≤ κ ≤ 10, respectively. With fixed λ1, λ2, and κ values in each range,
the feasibility of the LMI constraints is checked with a constant matrix P and a parameter
dependent matrix P (ρ̄), respectively. Using a parameter dependent matrix P (ρ̄), the time

derivative ˙̄ρ is required to determine Ṗ = ˙̄ρ∂P (ρ̄)
∂ρ̄

. In this example, it is assumed that | ˙̄ρ| ≤ 1,

based on the FDI module characteristics. The parameter dependent matrix P (ρ̄) is described
using basis functions.

P (ρ̄) = Po + ρ̄P1 +
1

ρ̄
P2, constant Po,1,2 ∈ Rn×n, (36)

where n is the closed-loop state order. The optimization results are in Table 1. Recall that the
constant αt represents the ratio of possible duration time over the unstable parameter space
to total time. Based on the calculated αt values, both FTC laws have similar tolerance to
possible false fault detection in the stability of the closed-loop system. When two controllers
are compared, the controller KB has slightly better tolerance. It is also shown in Table 1 that

10



constant matrix P

Controller λ1 λ2 κ γ

KA 3 × 10−3 1 × 10−3 9.4 0.42

KB 6 × 10−4 1 × 10−4 5.85 2.14

parameter dependent P (ρ̄)

KA 6 × 10−4 1 × 10−4 9.4 0.34

KB 6 × 10−4 1 × 10−4 3.7 0.63

Table 2: Performance analysis results

the analysis with parameter dependent P leads to less conservative results on the controller
KB.

4.3 Performance Analysis

It is of interest to know how much performance of the closed-loop system degrades due to
parameter transient behaviors. To analyze the closed-loop performance, the desired response
function Ti and the performance weighting function Wp in Figure 4 are defined as

Ti =
1

s/0.8 + 1
, Wp = 40

s/50 + 1

s/0.05 + 1
. (37)

Note that the weight functions are, also, used in an LPV control synthesis in Ref. [5]. Recall
that minimizing the upper bound Mγ of the induced-L2 norm from d to e is not in convex
optimization, since λ1, λ2, and κ are highly related with γ in Eq. (23). Using line searching
over the λ1, λ2, and κ ranges, the analysis results are calculated in Table 2. When To3 is fixed
as 0.2 sec, the upper bound of the induced-L2 norm is calculated as 0.68 for KA and 2.87
for KB with constant matrix P and 0.54 for KA and 0.84 for KB with parameter dependent
matrix P (ρ̄).

It is noticed from Eq. (31) that the time constants Toi
are not related with optimized

λ1, λ2, κ, and γ. Thus, with fixed κ, λ1, λ2, and γ values for each controller, the Mγ

variations are calculated due to To3 changes and are shown in Figure 5. It is observed from
Figure 5, that performance analysis results are significantly different using constant matrix
P and a parameter dependent matrix P (ρ̄). Based on performance analysis result with a
parameter dependent matrix P (ρ̄), it is easily noticed that when a false fault detection time
is short (To3 < 0.22 sec), the Mγ with the KA controller is less than that with the KB

controller. When a false fault detection time is long (To3 > 0.22 sec), the Mγ values are vise
versa. The analysis results imply that KA controller leads to less performance degradation
for the To3 < 0.22 sec case and KB controller leads to less performance degradation for the
To3 > 0.22 sec case.
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Recall that Mγ in this FTC system analysis represents the upper bound of the induced
norm of ||θ − θideal||2 from a given command ||d||2. In order to validate the FTC system
performance analysis results, the closed-loop system is simulated with assumption of false
fault detection To3 = 0.1, 0.2, 0.4 and 0.8 sec for each controller, respectively.

In Figure 6, the error between pitch angle responses and ideal responses θideal are plotted
for each case. It is obviously noticed that the error norm of ||θ−θideal||2 with the KA controller
is larger than that with the KB controller at the T3 = 0.4 and 0.8 sec cases. Also, the error
norm with the KB controller is larger than that with the KA controller at the To3 = 0.1
and 0.2 sec cases. The parameter dependent analysis results in Figure 5 correspond to the
simulation results in Figure 6. Note that using this analysis tool, we can calculate the upper
bound variation of the induced-L2 norm due to T02 variation which represents parameter
transient time. In this example, λ1 and λ2 are too small to see effects of T02 variations.

5 CONCLUSION

In this paper, the FTC system analysis problem is formulated into the optimization problem
subject to LMI constraints which are evaluated at grid points over the stable/unstable pa-
rameter subspaces. From the stability analysis, the tolerance of false fault detection which
causes local instability can be calculated for a FTC system to achieve exponential stability.
From the performance analysis, the upper bound of the induced-L2 norm of the FTC system
represents worst-case performance during the detection time intervals of FDI modules. The
norm bound is calculated as a function of detection time interval and exponential decay
rates over each parameter subspace. It indicates performance degradation due to parameter
transients during the interval in which the closed-loop system may be locally unstable. In
this paper, the usage of the FTC system analysis is demonstrated via the analysis of the
FTC HiMAT system.
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Figure 2: HiMAT vehicle.
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