Final Performance Report for NAG5-8511

Date: July 26, 2004
PI: Dr. Brian McLean, Space Science Telescope Institute
NASA Grant No: NAG5-8511
Title: Standardized Sky Partitioning for the Next Generation Astronomy and Space Science Archives
STScI Project No: J0187
Grant Performance Pd: 06/01/99 – 05/31/04
Grant Administrator: Paula K. Sessa
Lead Sponsored Programs Administrator
Contracts and Sponsored Programs
Space Telescope Science Institute
3700 San Martin Drive
Baltimore, MD 21218
Phone: (410) 338-4816
Email: sessa@stsci.edu

Submitted to:
1) Technical Officer:
 Dr. Nand Lal
 Code 933
 NASA/GSFC
 Greenbelt Rd.
 Greenbelt, MD 20755
 (301) 286-7350

CC:
2) Administrative Grant Officer:
 Office of Naval Research
 100 Alabama Street
 Suite 4R15
 Atlanta, Georgia 30303-3104
 Attn: Deborah White, Closeout Team
 (404) 562-1600

3) NASA Grant Officer:
 Ms. Carolyn Gonser
 Grants Officer, Code 210G
 NASA Goddard Space Flight Center
 Greenbelt Rd.
 Greenbelt, MD 20755
 (301) 286-4589

4) Center for Aerospace Information (CASI):
 Attn: Document Processing Section
 7121 Standard Drive
 Hanover, MD 21076
Introduction

The Johns Hopkins University and Space Telescope Science Institute are working together on this project to develop a library of standard software for data archives that will benefit the wider astronomical community. The ultimate goal was to develop and distribute a software library aimed at providing a common system for partitioning and indexing the sky in manageable sized regions and provide complex queries on the objects stored in this system. Whilst ongoing maintenance work will continue the primary goal has been completed. Most of the next generation sky surveys in the different wavelengths like 2MASS, GALEX, SDSS, GSC-II, DPOSS and FIRST have agreed on this common set of utilities. In this final report, we summarize work on the work elements assigned to the STScI project team.

Activities completed during the project

Following extensive discussions with software developers from all major institutions involved (including STScI, JHU, NOAO, NRAO, SAO, GSFC, 2MASS, CADC, CDS and ESO), the design requirements for this software library were derived.

A set of JAVA classes for the HTM (Hierarchical Triangulated Mesh) algorithm was developed and published to the community. This has been actively maintained and tested on the major platforms used by the astronomical community. (The JHU activities have included ports of this library to C++ and C# languages). These classes were enhanced to allow use as a web-service and we were successful in providing VO compliant queries to our datasets as soon as the initial VO interchange standards were defined.

In addition, a prototype JAVA based GUI interface to a number of publicly accessible data sources including the DSS (Digitized Sky Survey), GSC-II (Guide Star Catalog) and SDSS was developed. The GSC-II is an operational database that is partitioned using the HTM technology and was our primary resource for testing.

These software tools are available and the HTM library has become an integral part of the major astronomical databases and the VO (Virtual Observatory) initiative.

The grant funding was used for the following purposes:

- Consultants to derive and implement the software library
- Software licenses required to develop and maintain the library
- Travel to ADASS meetings for consultant to meet with software developers
- Laptop to demo software at developer meetings