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ABSTRACT 

The great cost of added radiation shielding is a potential limiting factor in many deep space missions.  For this enabling technology, 
we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the 
transport and duty phase of various space missions.  The total shield mass over all pieces of equipment and habitats is optimized 
subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space 
missions, improved shield materials will be required. The details of this new method and its impact on space missions and other 
technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context.  Providing 
protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the 
mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate 
shielding materials on Gateway infrastructure designs.  This study will provide a guide to the effectiveness of multifunctional 
materials in preparation to more detailed geometry studies in progress. 

INTRODUCTION 

Shield mass can be a high-cost factor in system designs for the long-term operations required in deep space operations, and 
optimization methods in the design process will be critical to cost-effective progress in space development [1].  Limiting the time of 
transfer to duty station or the mission time within the solar cycle as well as the choice of materials used in construction can reduce the 
shield mass required on specific missions [2]. Such a procedure is adequate for shield design for a space exploratory mission or a 
space tourist.  Unfortunately, requirements for the crew operating a transportation infrastructure are quite different since an astronaut 
will enter service and have missions once or twice a year over a ten-year career.  In this case, the shield design process is very 
different.  

Much of the protection within a space structure is provided by the structural elements, onboard materials, and equipment required for 
other purposes and the means of making the best choice of materials among various options is critical to the protective qualities of the 
overall design.  Multifunctional materials (for example, structural elements that have good shielding properties) will be common in 
the optimization process.  Furthermore, the design decisions cannot be made in a vacuum and multidisciplinary design methods need 
to be developed.  The need for multifunctional/multidisciplinary design techniques was identified as critical to the cost-effective 
development of space several years ago [1] and expanded on recently [2]. 

 In the past, an amount of exposure was assigned to each mission segment and developed as a subjective strategy with relative 
improvements of costs through material trades dependent on off-optimum design solutions.  In this study, the optimization method for 
minimum mass determination is used in performing trade studies to enable objective trade reduction costs since strategies for meeting 
exposure constraints are optimized over the entire mission architecture for each trade.  In addition to optimized design trades, we will 
also consider the implementation of the principle of as low as reasonably achievable (ALARA) required by federal regulation and 
normally ignored in mission design studies.  The ALARA principle will be met by added protection of the crew quarters where 
members will spend a significant fraction of each day sleeping.  The main crew quarter design will also be used as the shelter from 
potential solar particle events during the mission.  In this respect, we assume an adequate strategy for exposure limitation during EVA 
activity is available, and the design is mainly the habitable volume and crew quarter/SPE shelter.  Emergency planning in the case of 
an accidental SPE exposure will have to be part of the overall mission plan and is not considered in the present study. 

In the present study, we will consider two singular baseline missions, a 47 day Lunar mission, a baseline 62 day L1 mission to a deep 
space platform assuming Al 2219 as the reference construction material.  Two multiuse infrastructure operation missions are 
considered, 30-day lunar missions and 37-day L1 missions (e.g., telescope).  Trades on materials for construction of the 
living/working space and crew quarter shielding and impact on costs through a change in launch mass will be used to quantify the 
savings.  In addition to the material trade studies, propulsion engine trade studies can be performed by change in mission scenario 
time lines. 



 

EXPOSURE AND OTHER CONSTRAINTS 

The present exposure constraints used in the space program are recommended for low Earth orbit (LEO) operations by the National 
Council on Radiation Protection [3] and approved by the NASA Administrator and OSHA.  There are no limits for deep space 
operations due to the unusual composition of the GCR and the resultant uncertainties in associated health risks.  The NCRP did 
recommend that the limits for low earth orbit (LEO) operations could be used as a guide in deep space operational studies [3].  New 
exposure recommendations are now approved by the NCRP [4] and the new LEO limits are given the three critical organs of skin, 
ocular lens, and blood forming organ (BFO) in tables 1 and 2 and will be used herein recognizing the associated uncertainties.  We 
use dose equivalent for the Gy-Eq since insufficient data will not allow Gy-Eq evaluation at this time. 

Table 1—Recommended organ dose 
 equivalent limits for all ages. 

 
 BFO, Sv Eye, Sv Skin, Sv 

Career See Table 2 4.0 6.0 
Annual 0.50 2.0 3.0 
30 Days 0.25 1.0 1.5 

Table  2—Career whole body-dose equivalent limit (Sv) for 
lifetime excess  risk of fatal cancer of three percent as a 

function of age at exposure. 
 

Age 25 35 45 55 
Male 0.7 1.0 1.5 2.9 
Female 0.4 0.6 0.9 1.6 

 

In the present work, the optimized mission will be taken as the minimum mass to meet mission requirements and not exceed the 
exposure constraints in tables 1 and 2. The present design considerations are for the main habitable areas.  The volume limited crew 
quarters where a large fraction of personal time is spent will have added protection to further reduce exposures (ALARA) and will 
also be designed to provide the shelter from a solar particle event. 

Aside from the radiation health risks, the psychological well being and its impact on crew performance also affects the shield design 
[5].  Crew performance level is related in part to the length of the mission and the volume of the work/living areas of the spacecraft.  
The design performance levels of Optimal, Performance Limit, and Tolerable are shown in figure 1 as a function of duration of the 
stay.  Rather small volumes are useful over short time periods but long missions require sufficient space for a crew to perform at 
reasonable levels.  We will use the Optimal design for the habitable volume and the Tolerable design for the crew quarters which will 
also serve as the SPE shelter. 

Table 3 -- Performance levels descriptions 
 

Performance index Performance level description 
1 Optimal performance limit 

best suited for long duration 
with minimal impact on crew 
performance 

2 Performance limit allows crew 
demands to be met but not 
well suited for long duration 

3 Tolerable limit provides space 
for astronaut to survive but not 
well suited for other than 
emergencies 

 
Fig. 1.  Habitable volume for given mission duration. 

 

SPACE ENVIRONMENT AND SHIELDING MATERIALS 

In order to quantify radiation exposure in space, it is required that the external ambient ionizing radiation environment be specified in 
terms of individual constituents and their respective energy fluxes.  A great quantity of observational space environmental data from 
instrumented space platforms has been amassed in recent decades and used in developing computer models serving to define, as well 
as possible, the composition and temporal behavior of the space environment [6].  From the standpoint of radiation protection for 
 2



humans in interplanetary space, the heavy ions (atomic nuclei with all electrons removed) of the galactic cosmic rays (GCR) and the 
sporadic production of energetic protons from large solar particle events (SPE) must be dealt with.  The GCR environmental model 
used herein is based on a current version in which ion spectra are modulated between solar maxima and minima according to 
terrestrial neutron monitor data assuming the radial dependent diffusion model of Badhwar et al. [7], as described in reference [8] by 
Wilson et al.  The modeled spectra for solar minimum in 1977 and Solar Maximum in 1990 as given by Badhwar are shown in figure 
2.  The required historic and projected Sunspot numbers along with the corresponding Deep River Neutron Monitor count rates are 
shown in figure 3.   There is only a few percent difference between the environment measured near Earth and what is observed at 
other locations near the Earth’s orbit about the sun.  These anticipated differences are less than the model uncertainty and will be 
ignored in the present study. 

 
Fig. 2.  Galactic cosmic ray spectra at the 1977 Solar Minimum (full lines) and 1990 Solar Maximum (dashed lines) according to 

Badhwar et al. 

The environment near a large celestial body is modified by interaction with local materials producing an induced environment and 
shielding within the subtended angle of such a large body.  The surface exposure on a lunar plain is shielded below the horizon but 
experiences an induced environment (mainly but not exclusively neutrons) produced in the local surface.  The lunar surface GCR 
environment is shown in figure 4 at the 1977 Solar Minimum and the 1990 Solar Maximum.  In addition to the GCR ions streaming 
from overhead, large numbers of neutrons are produced in the lunar surface materials and diffuse from below the surface as shown in  
the figure.

 
Fig. 3. Sunspot number (blue) and Deep River Neutron 

Monitor (pink) count rate for 1960 to 2022. 

 
Fig. 4.  GCR environment during the 1977 Solar Minimum 

(full lines) and the 1990 Solar Maximum (dashed lines) on the 
lunar surface. 
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Large SPE have only been observed to occur during times of increased solar activity conditions, and very large energetic events of 
grave important to human protection occur only infrequently (avg. 1 or 2 per cycle) and only outside of two years of solar minimum.  



Among the large events, the largest observed ground level event of the last 60 years of observation is that of February 23, 1956 which 
produced a 3600 percent increase in neutron monitor levels on the terrestrial surface.  The next largest event observed is the 
September 29, 1989 event with ground level increases of 400 percent or an order of magnitude smaller than that of the Feb. 1956 
event.  Numerous other ground level events of smaller magnitude have occurred but are a factor of four and more lower in magnitude 
than the Sept. 1989 event.  It is known that large SPEs are potentially mission threatening, and astronauts in deep space must have 
access to adequate shelter from such an occurrence.  The SPE particle energy spectrum used here has been derived from the event, 
which took place on September 29, 1989.  To provide a baseline worst-case scenario we assume an event of the order of four times 
larger than the September 29, 1989 event as an event comparable to the August 4, 1972 event from the point of view of space 
exposure.  The September 1989 SPE spectrum is shown in figure 5.  If we meet 30-day dose rate constraints on an event four times 
larger than the September 1989 event then it is unlikely that an added factor of two or so larger events (like that of Feb. 23, 1956) 
would have serious medical consequences.  The rationale and plausibility for this model is described by Kim et al. [9].   

 
Fig. 5. SPE spectrum during September 1989 as observed near 
Earth. 
  

 
Fig. 6. The lunar surface environment during the September 
1989 SPE.   
 

The SPE are likewise altered by the presence of a large body similar to the GCR.  The corresponding lunar surface environment is 
shown in figures 6.  The role of the neutrons on the lunar surface is less effective in causing exposure relative to the protons streaming 
from overhead.  Note that is in contrast to the more energetic GCR wherein large numbers of neutrons are produced in the lunar 
surface materials (see figure 4).   

The effectiveness of a given shield material is characterized by the transport of energetic particles within the shield, which is in turn 
defined by the interactions of the local environmental particles (and in most cases, their secondaries) with the constituent atoms and 
nuclei of the shield material. These interactions vary greatly with different material types.  Materials in the present study are given in 
table 4. For space radiation shields, materials with high hydrogen content generally have greater shielding effectiveness, but often do 
not possess qualities that lend themselves to the required structural integrity of the space vehicle or habitat.  Organic polymers are the 
exception.  The design of properly-shielded spacecraft and habitats for long-duration human presence in interplanetary space will thus 
require an approach tending toward optimization of a compromise between protective shielding and various other functional aspects 
of the onboard materials.  Candidate multifunctional materials for such an optimization approach have been chosen here to represent 
various contributing elements in a vehicle shield design.  Liquid hydrogen and methane are possible fuels that in large quantities may 
contribute substantially to overall protection.  Aluminum has long been a spacecraft material of choice although various forms of 
polymeric materials show enhanced protection properties such as polyethylene. The polysulfone and polyetherimide are high 
performance structural polymers.  Lithium hydride is a popular shield material for nuclear power reactors, but is generally not useful 
for other functions.  The graphite nanofiber materials heavily impregnated with hydrogen may well represent a viable multifunctional 
component in future space structures, and its inclusion here should presently be considered as not yet state-of-the-art. 
The results of detailed transport calculations for these materials have been incorporated into a shield design database.  Important in 
this respect is their chemical composition and mass density given in table 4.  The shield effectiveness for the above-discussed environ-
ments were evaluated using the HZETRN code with improved nron transport procedures [10].  The exposures to critical organ tissues 
were evaluated for each environment within spherical shells of each material. The time dependent dose rates are evaluated within the 
shielding materials assuming exposure in the center of a large volume with varying wall thickness. 
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Table 4.  Chemical composition of materials used in the present study 
Material ID Atom Z A atoms/g Density 

g/cm2 
  

Aluminum 
2219 

ALM Al 13 27 2.08E+22 2.83 

  Ti 22 48 7.53E+18  

  V 23 51 1.18E+19  

  Mn 25 55 3.31E+19  

  Cu 29 64 5.90E+20  

  Zr 40 91 1.19E+19  

  

Poly-
etherimide 

PEI H 1 1 2.44E+22 1.27 

  C 6 12 3.76E+22  

  N 7 14 2.03E+21  

  O 8 16 6.10E+21  

  

Polysulfone PSF H 1 1 3.00E+22 1.24 

  C 6 12 3.68E+22  

  O 8 16 5.45E+21  

  S 16 32 1.36E+21  

  

Poly-ethylene PET H 1 1 8.60E+22 0.92 

  C 6 12 4.30E+22  

  

Lithium 
Hydride 

LIH H 1 1 7.53E+22 0.82 

  Li 3 7 7.53E+22  

  

Liquid 
Methane 

LME H 1 1 1.51E+23 0.466 

  C 6 12 3.76E+22  

  

Graphite 
Nanofibers 

GNF H 1 1 4.07E+23 2.25 

  C 6 12 1.63E+22  
  

Liquid 
Hydrogen 

LH2 H 1 1 6.03E+23 0.07 

 
The annual dose rates within the Al 2219 alloy shield are shown for ocular lens and BFO in figures 7 and 8.  Large variations in 
exposure of critical organs are seen to occur over time and with increasing shielding. 



  
Fig. 7.  Annual dose equivalent to ocular lens within an Al 2219 shielded region. 

  
Fig. 8. Annual dose equivalent to BFO within an Al 2219 shielded region. 

 

CONSTRAINTS AND OPTIMIZATION 

The general principles required to optimize a mission is implemented in this section.  In the absence of a specific design, we start with 
assumptions to be used in estimating exposures and shield mass.  A baseline vehicle design will include Al 2219 alloy construction 
and evaluate shield mass assuming 40% of the solid angle is shielded by vehicle components constructed of Al alloy (assumed to be 
30 g/cm2 over 15% of the solid angle and 60 g/cm2 for the remaining 25%) and normally different than the shield material comprising 
the remaining 60% of the total solid angle.  Only the shield mass requirements for the remaining 60% of the solid angle are taken 
herein as shielding.  Lacking a specific vehicle design, we assume an isotropic distribution of radiation within the habitable volume 
thus simplifying the analysis. A framework for mission architectural optimization will be established here which will allow later 
specific designs to be introduced and optimized.  

The habitable volume will be assumed to cover the entire solid angle with a constant thickness.  The required crew living space will 
be for optimal performance and calculated assuming a right circular cylinder with 2.2 meter height.  The three critical organs (skin, 
lens, BFO) identified by the NCRP will be used in designing the shield as follows.  Let Rj (x) be the dose equivalent rate to the jth 
critical organ within a shield of thickness x calculated from the time dependent environments.  In addition to the GCR background, 
we will assume that if we are not within two years of solar minimum that a design limit solar event occurs (4 times Sept. 1989 event) 
and that an additional shelter is available which is a tolerable volume for such a short duration (see figure 1).  We assume the shelter 
volume is a right circular cylinder of 2 meter height with Tolerable living requirements.  Dose rate and career dose limitations are 
required for the shield design process over the appropriate time intervals.  For example, a mission to the L1 in three segments (Earth 
to L1 trip in time T1, time on duty of T2, and return trip of duration T3) would first have to meet a requirement similar to  
 

Rj(x1) T1 + Rj(x2) T2 + Rj (x3) T3 + Hspe(xspe) < Lj          (1) 
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where xi is the shield thickness of the ith segment of the mission and Lj is the exposure limitation. The thirty-day and annual dose rate 
constraints must be applied over each mission segment where the SPE drives the crew quarter shield design.  We assume x1 = x3 for 
missions in which the transport vehicle is common to both transport segments with corresponding assumptions on required mass.  The 
Lj is the accepted exposure limit to the jth critical organ defined for LEO operations.  Note, xi, i = 1-3 are greater than 1 g/cm2 in order 
to meet micrometeoroid impact requirements.  Note, the above prescription does not account for the ALARA principle.  Herein, the 
shelter is assigned to be the sleep quarters as one form of ALARA. 

There are many combinations of x1, x2, x3, and xspe which satisfy the constraints above so that one must optimize the shielding 
by minimizing the total shield mass subject to the above constraints as follows: 
 

Min{Vs(x1) + Vs(x2) + Vs(x3) + Vs(xspe)} . ρ = Mm           (2) 
 

where Vs is the shield volume of each mission segment associated with the required living volume of optimum performance or the 
crew quarter/shelter as appropriate.  Note, Vs(x3) is set to zero if the same transport vehicle is used in segments 1 and 3. 

We now set up the logic for implementing the computational procedures outlined above.  We will think beyond the optimization of a 
given vehicle or habitat and approach the problem of optimizing a given defined mission architecture.  The first step in the process of 
finding an optimum mission architecture is specification of the mission start time, the sequence of mission segments with the 
associated required equipment, the crew member characteristics associated with each segment, the desired crew performance level on 
each segment, the construction materials for the shield on each segment, and the associated locations where the segment occurs.  
These aspects of the mission are described by elements of the mission architectural profile matrix as shown in table 5.  Note that 
within this profile we only allow sequential mission segments and no multisegmented capability is allowed at this stage of 
development.  Note, the last two row entries in table 5 will be taken as initial estimates of the design variables (shield thickness) to be 
optimized. 

Table 5.  Mission Architectural Profile Matrix 

Mission title and start date:  T0 

Segment no. 1 2 3 … 
Duration, days T1 T2 T3 … 

Min. helio-radius Rmin1 Rmin2 Rmin3 … 
Max. helio-radius Rmax1 Rmax2 Rmax3 … 

Crew no. N1 N2 N3 … 
Females F1 F2 F3 … 
Min. age FA1 FA2 FA3 … 

Males M1 M2 M3 … 
Min. age MA1 MA2 MA3 … 

Performance Perf1 Perf2 Perf3 … 
Equipment Eq1 Eq2 Eq3 … 
Location Loc1 Loc2 Loc3 … 

Shield material Mat1 Mat2 Mat3 … 
Shield thickness x1 x2 x3 … 
Shelter thickness δ1 δ2 δ3 … 

The mission duration is of course an important factor affecting the shield design.  In addition, the crew size, composition, and 
expected performance levels all affect the shield design of the specific equipment required for a given segment.  The total crew 
number and performance level (see figure 1 and table 3) will determine the volume of space required for a given segment and the 
associated wall area which must be shielded.  The presence of females and their minimum age will often drive the dose rate 
constraints since the allowable career exposure of females is substantially less than males of the same age (see table 2).  Age also 
determines the allowable career exposures for both males and females.  Requiring the female crew to be approximately ten years older 
than their male counter parts effectively results in career limitations that no longer depend on gender.   

In the present procedures, we will allow only a limited amount of hardware in the optimization process but will attempt to allow 
sufficient generality to expand to a more complex array of equipment, habitats, and vehicles.  We will allow transfer vehicles for 
various transport segments of a mission allowing up to nine such unique vehicles denoted by indices of 1 through 9.  If two segments 
use the same vehicle it will have the same index for each segment and a mapping of design thickness into a unique optimization 
parameter set must be made in the analysis.  Similarly, each habitat will have a unique identifier denoted by index 11 to 19.  This will 
constitute the only allowable hardware in the present study.  Clearly this can be generalized by defining spacesuits as 21 to 29 and 
rovers as 31 to 39 and so on as required (see table 6) 

 



 

Table 6.  Mission equipment designation numbers. 

Mission equip. Designated indices, Eqi 
Transfer vehicles  

Habitats 
Spacesuits 

Rovers 
… 

1-9 
11-19 
21-29 
31-39 

… 

There are three locations where mission segments of interest may occur which are near earth for which we identify location indices as 
given in table 7. The lunar environment is modified by interaction with surface materials.  These environments are applied as 
appropriately to the mission segments. 

Table 7. Mission location indices 

Location Location index, Loci 
Deep space 

Lunar surface 
Martian surface 

1 
2 
3 

The standard material associated with human activity has mainly been aluminum alloy 2219 although 6061 has also played a role.  For 
construction of the walls of the habitable volume, other materials will generally provide greater protection.  Many of these materials 
may be structural elements or materials on board for other purposes.  The Graphite nanofiber/H is a hydrogenated herringbone 
graphite structure capable of absorbing more than its weight of hydrogen.  The current list of materials in the database and the 
associated material indices used in the present study are given in table 8.  The last two entries into the mission profile are the shield 
wall thickness xi and shelter/crew quarter thickness δi as initially estimated for each segment. 

Table 8.  Shield materials and material indices 

Shield material Materials index, Mati 
Al 2219 

Polyetherimide 
Polysulfone 
Polyethylene 

Lithium hydride 
Liquid methane 

Graphite nanofiber/H 
Liquid hydrogen 

1 
2 
3 
4 
5 
6 
7 
8 

The first analysis task is to calculate the mission background dose rate to each critical organ over all the mission segments and 
configurations.  This allows the assumption of a SPE at the worst time in each segment as will be treated subsequently.  The 
background dose rates throughout the mission are established using the database on annual dose within the materials, the location, the 
specific equipment involved, and the specified shield thickness.  The mission dose rate (per day) over the period tstart to tstart + t1 + t2 + 
t3+… is given as  

           {Hj1(x1,Eq1,Mat1,t)/365   tstart ≤ t < tstart + t1 
Rj(t) =  {Hj2(x2,Eq2,Mat2,t)/365   tstart + t1 ≤ t < tstart + t1 + t2                                               (3) 

    {Hj3 (x3,Eq3,Mat3,t)/365   tstart + t1 + t2 ≤ t < tstart + .. 
              {  

where appropriate equipment geometry and location is implied for each segment.  Note, Rj(t) is to be evaluated for each critical organ 
type j.  The dose rate is used to establish exposure constraints and evaluation of the impact of a SPE on the mission design. 

The dose rate for each segment depends on the time, the location, the equipment, and the shield material.  Since the space radiation is 
isotropic one obtains some simplification in evaluating dose rate.  The dose rate for the jth critical organ and ith segment within a 
transfer vehicle (e.g., Eqi = 1 to 9) is given as 

Rji(xi,Mati,t) = [0.6 Hi(xi,Mati,l=1,t) + 0.15 Hj(30,Al,l=1,t)  + 0.25 Hj(60,Al,l=1,t)]/365                                      (4) 

where l = 1 denotes the location in Deep Space as is appropriate for the transfer and the contributions from Al accounts for the basic 
vehicle structure assumed to be constructed of Al 2219.  The dose rate for a segment on the lunar or Mars surface will assume (for 
now) only exposures while in the habitat (e.g., Eqi = 11 to 19) as 

Rji(xi,Mati,t) = Hi(xi,Mati,l=2 or 3,t)/365                                                                    (5) 
 8



where l = 2 or 3 denotes a location on the lunar or Martian surface.  Of course, a habitat in space (say L1) would have l = 1.  
Effectively, we assume only a small fraction of time is in an exploration EVA mode and adequate means of avoiding a SPE is 
available.  These issues will be addressed in greater detail in a subsequent analysis.  The associated shield mass depends on the 
number of crew Ni and the desired performance level Perfi as follows. 

The habitable volume for a given performance level Perfi and duration ti for either the transfer vehicle or habitat with Ni crew 
members is given by 

Vi = VPerfi(ti) Ni                                                          (6) 

where the specific volume VPerfi(ti) is given in figure 1 with Perfi the desired performance level and ti the segment duration.  Assuming 
a right circular cylinder of 2.2 meter height, the associated cylindrical radius is 

ri = √[Vi/(2.2 π)]                                                       (7) 

and the associated shield mass of the segment is 

Mi (xi) = ρ π (r i +
ρ100

ix
) 2 (2.2 + 

ρ100
ix

) - 2.2 ρ π r i
 2                                                                           (8) 

where xi is the areal density of the shield material in g/cm2  and ρ is the matter density (g/cm3). The mass calculated by equation (8) is 
in metric ton. Multiply Mi’s by 1000 to get the mass in kilogram units. In the present study, we will assume that all equipment 
satisfies the same relations to performance level, crew size, and time. 

The design must accommodate a possible SPE during any time except within two years of solar minimum.  Furthermore, the exposure 
for any 30-day or annual period must satisfy dose rate constraints to prevent occurrence of deterministic effects.  In this respect, we 
will allow for a very rare SPE which is 4x the September 29, 1989 event for design purposes and the assumption of an even larger 
event is on the order of few percent per year (only one such event seen in last 60 years).  A storm shelter will be assumed to be the 
crew quarters where the crew spends a significant fraction of the day sleeping and in leisure activity and is placed within the habitable 
volume that is the primary shielded region.  As such the shelter wall will be taken as xspe = xi + δi where δi represents the crew quarter 
wall shield thickness and assumed (for now) to be of the same material as the shield material for that segment. Similarly, for SPE 
shelter is evaluated with Perf = 3 (Tolerable performance) for a duration of one day we have  

Vi,spe = V3(1 d) Ni                                              (9) 

Assuming the shelter to be a 2 meter high right circular cylinder results in an associated cylindrical radius of 

r i,spe = √[Vi,spe/(2 π)]                                                         (10) 
and the associated shelter shield mass is 

Mi, spe (xi) = ρ π (r i,spe +
ρ

δ

100
i ) 2 (2 + 

ρ

δ

100
i ) - 2ρ π r2

 i,spe                                                                   (11) 

We then run an accumulation assuming the SPE occurs in segment i as follows. 

First we find the time of occurrence of the maximum of Hi(xi,timax) as follows 

∫t
t+∆ Rj(t’) dt’ + Hj,spe(xSPE) [1 – U(t,∆)] = Hj(t,∆)                                                             (12) 

where U(t,∆) is unity if both t or t+∆ are within two years of solar minimum and contains timax.  We maximize Hj(t,∆) for ∆ = 1 month 
and 12 months on each segment i and each organ type j.  We require 

Hj(tmax,∆) < Lj(∆)                                                    (13) 

In addition to the dose rate constraints, the career limits constraint will be applied assuming no prior exposures as 

∫ Rj(t’) dt’  + Hjspe(xspe) < Lj(agemin,gender)                                                                         (14) 

assuming Hjspe(xspe) as the maximum over all segments. 

The mass of the shield that is to be minimized depends on the volume being protected and the areal density required to meet dose 
constraints.  The specific volume (volume per crewmember) depends on duration and performance level as shown in figure 1.  The 
total shield mass relation depends on the mission.  For example, the Mars Reference Mission assumes that the transit to Mars and 
return to Earth are different vehicles so that the total mass is 

Mn (x1,x2,x3,δ1,δ2,δ3, ) = M 1+ M2 + M3+ M1,spe   + M2,spe + M3,spe                                        (15) 
 

Whereas, the L1 mission (and lunar/asteroid missions) use (M’ = max{M1,M3} and x1 = x3) so the total mass is  
 9



Mn(x1,x2 ,δ1,δ2) = M’ + M2 + M1,spe+ M2,spe                                                                       (16) 

The corresponding mass is minimized over the unique equipment xis and δis subject to constraints (13) and (14).  In general, the 
mission mass is the sum over unique equipment used over all the segments 

M = Σ Mi                                                  (17) 

The computational procedure must account for all of these specific mission aspects.  We now define the baseline reference missions 
for which the trades will be evaluated. 

SINGULAR MISSION ARCHITECTURE 

In this section, we will examine the singular missions including trades on shield materials.  The missions to be considered are the near 
Earth 100-day class missions such as a lunar or a L1 mission.  The craft reference construction material will always be taken as 
Aluminum 2219 alloy.  This is the dominant material used in the Shuttle and International Space Station and represents current 
standard practice.  The initial mission profile matrix will be given along with the optimized results for aluminum shielding to be used 
as a baseline for further study.  Material trades are then made using the materials in table 4 in comparison to aluminum. 

L1 SINGULAR MISSION -There are several possible missions to L1 for not only space science but as a possible gateway to deep 
space exploration to asteroids or Mars.  A reference profile for a singular L1 mission is for 18 days in transit from and back to LEO 
with a 26-day mission stay.  The crew size is taken as four members with careers in midlife (40 years of age). The optimized profile 
for aluminum 2219 alloy is shown in table 9. The mass of the aluminum shield is about 4.5 metric tons.  The main protection 
requirement is against the solar particle events that may occur, and the driver is the 30-day dose rate limit in table 1.  In this mission 
we assume a single vehicle used as a habitat at the site. 

Trades have been studied for the L1 baseline mission material given in table 9 for the materials listed in table 4. The optimized mass 
for using various materials is shown in figure 9. As an example, an optimized profile for graphite nanofibers is shown in table 10, and 
the associated shield mass is found to be 2 metric tons and is achieved using the graphite nanofiber/H experimental energy storage 
material.  As on can see from the tables, the areal density of graphite nanofiber/H material is a factor of 2.5 less than that required for 
Al2219 alloy. 

Table 9.  L1 Singular Mission Architectural Profile Matrix for 
Al2219 Shielding  

  L1/T0 = 1/1/2014 
Segment no. 1 2 3 
Duration, days 18 26 18 

Min. helio-radius, AU 1.0 1.0 1.0 
Max. helio-radius, AU 1.0 1.0 1.0 
Crew no. 4 4 4 

     Females 2 2 2 

     Min. age 40 40 40 

     Males 2 2 2 

     Min. age 40 40 40 

     Performance 1 1 1 
Equipment 1 1 1 

Location 1 1 1 

Shield material 1 1 1 

Shield thickness, g/cm2 1 1 1 

Shelter thickness, g/cm2 34.76 34.76 34.76 

 

 
Fig. 9.   Optimized mass for L1 reference and trade missions 

for various materials. 

LUNAR SINGULAR MISSION-The lunar singular mission profile will be taken as a 4.5-day transit to an L1 with a 2-day layover 
followed by a 2-day trip to the lunar surface.  The surface stay is for 30 days followed by a 2-day return to L1 with a second 2-day 
layover followed by a 4.5-day return to LEO.  The trip begins on March 3, 2018 near solar minimum. The crew size is taken as four 
middle aged men and women of equal numbers. The optimized reference profile is given in table 11. Note there are several pieces of 
equipment involved in this scenario which affects the overall mass.  This mission falls within two years of solar minimum, and no 
SPE is expected to occur. Only minimum shielding is required, and material type plays no role. 
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Table 10.  L1  Singular Mission Architectural Profile Matrix for Nanofiber/H Shielding 

L1/ T0 = 1/1/2014 
Segment no. 1 2 3 
Duration, days 18 26 18 

Min. helio-radius, AU 1.0 1.0 1.0 
Max. helio-radius, AU 1.0 1.0 1.0 
Crew no. 4 4 4 

     Females 2 2 2 

     Min. age 40 40 40 

     Males 2 2 2 

     Min. age 40 40 40 

     Performance 1 1 1 
Equipment 1 1 1 

Location 1 1 1 

Shield material 7 7 7 

Shield thickness, g/cm2 1 1 1 

Shelter thickness, g/cm2 14. 14. 14. 
 

Table 11. Initial  Lunar Singular Mission Architectural Profile Matrix for Al2219 Shielding 

 
  Lunar/T0 =  3/6/2018 
Segment no. 1 2 3 4 5 6 7 
Duration, days 4.5 2 2 30 2 2 4.5 
Min. helio-
radius, AU 

1. 1. 1. 1. 1. 1. 1. 

Max. helio-
radius, AU 

1. 1. 1. 1. 1. 1. 1. 

Crew no. 4 4 4 4 4 4 4 
     Females 2 2 2 2 2 2 2 
     Min. age 40 40 40 40 40 40 40 

     Males 2 2 2 2 2 2 2 
     Min. age 40 40 40 40 40 40 40 

Performance 1 1 1 1 1 1 1 
Equipment 1 11 2 12 2 11 1 
Location 1 1 1 2 1 1 1 
Shield material 
index 

1 1 1 1 1 1 1 

Shield thickness, 
g/cm2 

1 1 1 1 1 1 1 

Shelter thickness, 
g/cm2 

1 1 1 1 1 1 1 

. 
The lunar singular mission material trade has been studied for the reference mission profile given in table 11, and the optimized mass 
is shown in figure 10. This mission falls within two years of Solar minimum and no SPE is expected to occur. Minimum shielding is 
required and material type plays no  essential role. As a result, table 10 is also the profile for trades for all the materials.  The small 
differences in shield mass is due to the differences in geometry resulting from different densities of the shielding materials. 



 

Fig. 10.   Optimized mass for Lunar reference and trade missions for various materials. 

GATEWAY INFRASTRUCTURE 

The Gateway infrastructure [11] is described elsewhere and provides a transportation network for near Earth missions but also a 
staging area for deep space exploration.  The transportation infrastructure is assumed to be operated by career astronauts as a service 
to exploration and development of space including commercialization.  Inherent in the assumptions made by the NCRP in arriving at 
the LEO career dose limits in tables 1 and 2, is that the astronaut will have a ten year career starting at a specified age [3,4].  We 
assume herein that the astronaut will perform two trips a year throughout a ten year career or a total of 20 trips.  The career exposure 
constraint is then written as  

20 ∫ Rj(t’) dt’  + 2 Hjspe(xspe) < Lj(agemin,gender)                                                               (18) 

 
Gateway Lunar Surface Expedition (Career, Age = 45 yr)
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Fig. 11  Gateway infrasturcture operations shield 

mass requirements for variaous materials. 

 

 

 

 

 

 

 

where 20 combines the exposure over 20 trips and the factor 2 occurs since only 1 or 2 large solar particle events will occur in a given 
solar cycle (about 10.5 year duration).  The dose rate in equation (18) is taken as the average value over the solar cycle.  Unlike the 
singular missions where shield design is dominated by the possibility of solar particle events, the operation of the infrastructure will 
be dominated by the galactic cosmic ray exposures for which the limits in table 1 and 2 have large uncertainties.  In this case, the 
shield requirements are tentative and may be quite different when the design uncertainty is reduced.  We will consider two classes of 
missions separately as if crews are assigned to specific mission classes. 

where 20 combines the exposure over 20 trips and the factor 2 occurs since only 1 or 2 large solar particle events will occur in a given 
solar cycle (about 10.5 year duration).  The dose rate in equation (18) is taken as the average value over the solar cycle.  Unlike the 
singular missions where shield design is dominated by the possibility of solar particle events, the operation of the infrastructure will 
be dominated by the galactic cosmic ray exposures for which the limits in table 1 and 2 have large uncertainties.  In this case, the 
shield requirements are tentative and may be quite different when the design uncertainty is reduced.  We will consider two classes of 
missions separately as if crews are assigned to specific mission classes. 
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LUNAR TRANSPORTATION INFRASTRUCTURE-The lunar mission profile will be taken as a 6-day transit to an L1 with a 5-day 
layover followed by a 2.5-day trip to the lunar surface with four separate pieces of equipment to support different mission segments.  
The surface stay is for 3-days followed by a 2.5-day return to L1 with a second 5-day layover and 6-day return to LEO.  The crews 
consist of four men and women beginning their careers at age 45 and beginning in 2010 and continuing to 2020.  The initial profile 
matrix is given in table 12.   

Table 12.  Gateway Lunar Surface Expedition Initial Profile 

  Date of Mission:  2010-2020 
Segment no. 1 2 3 4 5 6 7 
Duration, days 6 5 2.5 3 2.5 5 6 
Min. helio-radius, AU hr hr. hr. hr. hr. hr. hr. 
Max. helio-radius, AU Hr

. 
Hr
. 

Hr
. 

Hr
. 

Hr
. 

Hr
. 

Hr
. 

Crew no. 4 4 4 4 4 4 4 
     Females 2 2 2 2 2 2 2 
     Min. age 45 45 45 45 45 45 45 

     Males 2 2 2 2 2 2 2 
Min. age 35 35 35 35 35 35 35 

Performance 1 1 1 1 1 1 1 
Equipment 1 11 2 12 2 11 1 
Location 1 1 1 2 1 1 1 
Shield material index 1 1 1 1 1 1 1 
Shield thickness, g/cm2 1 1 1 1 1 1 1 
Shelter thickness, 
g/cm2 

   1 1 1 1 

hr (minimum heliocentric radii) = 0.9974 AU 
Hr (maximum heliocentric radii) =  1.0026 AU  

 
The dose rate exposure constraints remain the same but the career limits are given by equation (18).  The resulting shield mass for this 
45-year-old crew is shown in figure 11.  It is clear in this case that the present aluminum alloy base technology will be inadequate and 
development of advanced materials concepts will be enabling technology for the operation of such infrastructure.  This will even be 
more true when reliability based design methods are implemented. 

 
 

Table13.  Gateway Telescope Construction Mission 

 
Segment no. 1 2 3 
Duration, days 6 25 6 
Min. helio-radius, AU hr hr. hr. 
Max. helio-radius, AU Hr. Hr. Hr. 
Crew no. 4 4 4 
     Females 2 2 2 
     Min. age 35 35 35 

     Males 2 2 2 
     Min. age 35 35 35 

Performance 1 1 1 
Equipment 1 11 1 
Location 1 1 1 
Shield material index 1 1 1 
Shield thickness, g/cm2 44.15 5.35 44.15 
Shelter thickness, g/cm2 55.79 24.81 55.79 

 
hr (minimum heliocentric radii) = 0.9974 AU 

Hr (maximum heliocentric radii) =  1.0026 AU  
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Fig. 12  Gateway telescope construction career shield 
mass mass requirements for workers starting at age 

50.

 
L1 TRANSPORTATION INFRASTRUCTURE -There are several possible missions to L1 for not only space science and tourism but 
as a possible gateway to deep space exploration to Mars and beyond.  A reference profile for a single L1 mission is for 6 days in 
transit from and back to LEO with a 25-day mission stay as given in table 13 for aluminum alloy based technology.  The crew size is 
taken as four members with careers beginning at age 35. The optimized profile for a single lifetime mission in 2014 using aluminum 
2219 alloy is shown in table 13.  The total shield mass in this case is 27.3 metric tons.  There is a strong age dependence, and 
increasing the age to 40 years eliminates the need for shielding in the wall beyond the minimum 1 g/cm2 and the shelter shield to only 
28.7 g/cm2 resulting in only 7.4 metric tons of shield requirements for a single lifetime mission.   
 
As can be seen, there is a great difference in requirements on age in addition to great differences in operation of the infrastructure 
over the astronaut career as was seen in the lunar scenario.  If the astronaut crew spends their careers operating beginning at age 50 
years, the L1 infrastructure shield requirements are shown in figure 12.  It is clear from the shield masses in figure 12 that aluminum 
alloys stand out as poor candidate materials, and the development of new materials will have an important impact on the operation of 
the Gateway infrastructure. 

CONCLUSION 

Even the present limited study of developing 100-day mission capabilities outside the Earth’s protective magnetic field brings a host 
of issues revealed but is not fully resolved in arriving at affordable solutions to further explore and develop space.  A primary 
limitation of the current study is that reliability based methods to deal with the great uncertainties remain undeveloped. We do show 
that the once in a lifetime mission as was committed by NASA in the late 1960’s and early 1970’s are still possible under our current 
state of knowledge.  The extension to operating a complex infrastructure with career astronauts immediately encounters massive 
shielding characteristic of a Mars mission scenario.  The reason is simple, 20 few month missions add up to a long time for space 
exposure over the astronaut career.  The next step is to develop reliability based design methods based on mainly the biological 
uncertainty of astronaut risks, which will greatly alter the current result.   
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