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Abstract

A wide column test of a composite isogrid panel 
subjected to quasi-static, axial compression is modeled 
with a hybrid-static dynamic computational method. 
The data from the test panel exhibited discontinuous 
responses in the compressive load for slowly increased 
end-shortening. The computational model was 
developed to corroborate these discontinuities with the 
phenomenon of mode jumping. Mode jumping refers to 
the transient response of the panel from an unstable 
bifurcation point on a postbuckled equilibrium path to a 
second stable equilibrium state on a new equilibrium 
path. On the new equilibrium path, both the analysis and 
test show that the panel can resist increased end-
shortening beyond that of the unstable critical point. 
Fair agreement is achieved between the analysis and 
test.

Introduction

The postbuckling response of geodetic and isogrid 
stiffened structures under quasi-static compression 
loading has received less attention than the buckling of 
these structures. This lack of attention may be due to the 
common approach to design so that a geodetic structure 
fails in a global buckling mode rather than in a local 
buckling mode. However, Refs. 1-3, indicated that when 
local buckling occurred first it was not catastrophic, and 
it was possible to increase the applied load until total 

collapse occurred. Koury et al.1, noted that one of their 
panels underwent three different buckle patterns under 
increasing load prior to the catastrophic failure of a 

single stiffener. Heard et al.2, noted that a materially 
nonlinear analysis of the postbuckled response of an 
aluminum isogrid cylinder exhibited repeated changes 

in buckle pattern during monotonic loading. The 
cylinder buckle patterns were of progressively shorter 
wavelength, and the changes in each pattern were 

accompanied by brief drops in strain. The test results2, 
however, did not exhibit these transient changes in 
buckle pattern. 

Transient changes in the postbuckled deformation 
states under monotonically increasing quasi-static, end-
shortening were first observed in a compression test of a 

multi-bay, flat aluminium plate by Stein4. This 
phenomenon is now called mode jumping. Mode 
jumping refers to the transient response of a structure 
from an unstable bifurcation point on a postbuckled 
equilibrium path to a second stable equilibrium state on a 
new equilibrium path. The structure can carry increasing 
static compressive loads beyond that of the unstable 
critical point on the new equilibrium path. Thus, the 
structure exhibits postbuckling strength along the new 
stable equilibrium path. Since it is difficult to use static 
path following methods to locate disconnected 
equilibrium paths, combined static and dynamic analyses 
can model best conditions observed in tests. A hybrid 
static-dynamic computational approach was developed 

and used by Riks, Rankin and Brogan5, and later used by 

others6,7 to model one bay of Stein’s aluminum plate. 
Others have used a hybrid static-dynamic approach to 

model the response of composite cylinders8,9, composite 

cylinders with cutouts10, and cracked aluminum 

cylinders11. 

To the authors’ knowledge, there is no reported 
work in the literature on mode jumping of isogrid panels. 
The objective of this paper is to use a hybrid static-
dynamic computational approach to corroborate that the 
discontinuities observed in the load-shortening response 
of an isogrid test panel are associated with the mode 
jumping phenomenon. The procedures to transition 
between static and dynamic analyses and to select the 
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damping coefficients differ somewhat with those in 
Refs. 5-11. The following sections are included in the 
paper: wide column test of the composite isogrid panel, 
hybrid static-dynamic method, finite element model, 
results and discussion, and some concluding remarks.

Wide column compression tests

A series of composite isogrid panels of rectangular 
planform were tested under quasi-static, uniaxial 
compression as wide columns. That is, the two opposite 
lateral edges of the panels were free, and the loaded 
edges were secured in an iron frame fixture. The panels 
were laminated from IM7/977-2 graphite-epoxy with a 
skin lay-up of [±60/02]2s, and a stiffener lay-up of [0]8. 
These isogrid panels were manufactured by the United 
States Air Force Phillips Laboratory for composite 

launch vehicle components1. One of the delivered 
panels, labeled P23, was cut to form additional test 
articles denoted P23RA, P23RB, P23LA, and P23LB as 
shown in Fig. 1(a). Test articles LA and LB had three 
axial stiffeners, and RB and RA had one axial stiffener. 
Notice in Figs. 1(a)-(b) that distinct polygonal skin 
regions defined by the stiffener pattern were not 
symmetric about the axial stiffeners. This asymmetry 
was due to the manufacturing technique used to avoid 
stiffener material build-up by ‘off-setting’ the three 
intersecting stiffeners.

The longitudinal ends of the test articles were 
secured in iron fixtures filled with an aluminum epoxy 
potting compound and were ground flat and parallel. 
The instrumented specimens were placed between the 
platens of a hydraulic testing machine with an axial load 
capacity of 120 kips (533.8 kN). The testing machine 
was operated in displacement control with the rate of 
end-shortening specified as 0.02 in./min. (0.508 mm/
min.).

Each of the test panels exhibited discontinuities or 
“jumps” in the load versus end-shortening plots, and 
other response plots. Only panel P23RA is selected for 
the analyses presented here. This small panel had one 
continuous axial stiffener in the center, four off-axis 
stiffeners that terminated at the free edges of the panel, 
and had its three-stiffener intersections contained in the 
potting material of the end-fixtures. Panel P23RA had 
planform dimensions of approximately 3.75 in. by 6 in. 
(95.25 mm by 152.4 mm) The nominal cross-sectional 
dimensions of the stiffeners are 0.64 in. (16.26 mm) in 
height and 0.0455 in. (1.156 mm) in thickness. The 
nominal skin thickness is 0.0564 in. (1.433 mm). 

Fourteen electrical resistance strain gages were 
bonded to the skin and axial stiffener. These gages are 
numbered one to fourteen as shown in Fig. 1(b), and are 
identified as SG1 to SG14 in the text. Gages SG1 and 
SG3 measured back-to-back axial strains in the left skin 
cell, and SG5 and SG7 measured back-to-back axial 
strains in the right skin cell. In Fig. 1(b), back side gage 
numbers are shown in parentheses. Gages SG13 and 
SG14 measured back-to-back strains at the center of the 
web of the axial stiffener in a direction normal to the 
skin. One direct current differential transducer (DCDT) 
was used to monitor the axial displacement of the panel 
at the movable platen. The second and third DCDTs 
monitored the out-of-plane displacements at the center 
of the left skin cell and at the center of the right skin 
cell, and these displacements are denoted by wL and wR, 
respectively. Measurement of wL is coincident with gage 
SG1, and measurement of wR is coincident with gage 
SG5. 

Hybrid static-dynamic method 

The hybrid static-dynamic approach for the nonlinear 
response of the panel consists of three steps. First, a 
static analysis is performed to establish the equilibrium 
path on the load end-shortening response plot that 
emanates from the origin. Stability analyses of these 
states on this equilibrium path are conducted to locate 
the unstable critical point. Second, a dynamic analysis is 
initiated at this unstable critical point, which includes 
dissipative forces, to represent the transient mode jump 
of the panel to the vicinity of a new stable equilibrium 
state, assuming the new asymptotically stable state 
exists. Third, a second sequence of static analyses is 
undertaken along this new stable equilibrium path.

To model the response of the panel, we assume the 
material law is linear elastic, the strain-displacement 
relations referred to the reference state are nonlinear, the 
external dissipative forces are due to linear viscous 
damping, and that any external loads are conservative 
and independent of the displacements; i.e., deadweight 
external loads. Using the finite element method, the 
continuum representation of the panel is discretized. Let 

 denote the generalized nodal displacement vector,  

the velocity vector, and let  denote the acceleration 

vector. The dot ( ) denotes differentiation with respect 
to time. The equations of motion are

(1)

where M is the symmetric and positive definite mass 
matrix, D is the symmetric and positive definite damp-

U U·

U··

·

MU·· DU· f int U( )+ + λ f ext=
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ing matrix,  is the internal force vector, λ is the 

load factor, and  is the external load vector. Con-
trolled, proportional external loading is assumed in Eq. 
(1). Since the material is elastic, the components of the 
internal force vector are the partial derivatives of the 
strain energy with respect to the corresponding nodal 
displacement.

Setting the time derivatives of U to zero in Eq. (1), 
yields the governing nonlinear static equilibrium 
equations. These equilibrium equations are solved 
iteratively by Newton’s method, which leads to the 
following sequence of linear equations for the 

incremental displacement vectors , where k is the 

current iteration, and , 

(2)

(3)

In Eq. (2) the tangent stiffness matrix is given by

(4)

and  is the residual force vector. The initial guess 

 is the equilibrium displacement vector from the 
previous load state. If the iterations converge, then the 
residual force vector is very close to the null vector with 
respect to a specified error tolerance. When the 

sequence  converges, the limit  
is the equilibrium displacement vector for the specified 
load factor λ. 

As the system as represented by Eq. (1) is purely 

and completely dissipative12, the energy method can be 
used to analyze the stability of an equilibrium state. 
Thus, the stability of an equilibrium state is determined 
by the nature of the quadratic form given by the second 

variation of the total potential energy. Let  denote 
the second variation of the total potential energy, which 
is equal to the second variation of the strain energy for 
deadweight loading. Since the first partial derivatives of 
the strain energy with respect to the displacements gives 
the components of the internal force vector, then the 
tangent stiffness matrix in Eq. (4) is equivalent to 
computing the second partial derivatives of the strain 
energy with respect to the displacements. Consequently, 
the second variation of the total potential energy can be 
written as 

 (5)

where ,  is any kinematically 

admissible variation of the displacement vector about 
the equilibrium state, and the superscript T denotes 

f int U( )

f ext

∆U k( )

k 1 2 …, ,=

KTAN∆U k( ) R k( ) λ f ext f int U k 1–( )( )–= =

U k( ) U k 1–( ) ∆U k( )+=

KTAN U k 1–( ) λ;[ ] ∂ f int ∂U⁄
U k 1–( )=

R k( )

U 0( )

U 1( ) U 2( ) …, ,{ } U* λ( )

δ2Π

δ2Π δUTKTANδU( ) 2⁄=

KTAN KTAN U* λ;( )≡ δU

matrix transpose. Eigenvalues of the tangent stiffness 
matrix at an equilibrium state determined its stability. 
For the equilibrium path on the load versus end-
shortening response plot that emanates from the origin, 
we seek the first unstable critical state encountered 
when monotonically increasing the load factor, λ, from 
zero. For a perfect system, there may be stable critical 
states corresponding to bifurcation points as λ is 
increased. In the numerical analysis, we determined the 
first unstable critical point if no stable equilibrium state 
were found in the vicinity of a critical point on the load-
shortening plot. Let Scr denote this first unstable critical 

state at the corresponding load factor λcr.

 A nonlinear dynamic analysis is initiated from the 
state Scr with the load factor fixed at λcr by specifying a 
small initial velocity times the eigenvector associated 
with the zero eigenvalue of the tangent stiffness matrix. 
The time derivatives of the internal forces, 
displacements, and velocities are approximated in the 
time domain with an implicit time integration scheme. 

Proportional damping13 is assumed; i.e., 

, (6)

where α and β are the mass and stiffness scalar coeffi-
cients of proportionality. Matrix D is updated for each 
iteration at a particular time step of the dynamic analysis 
with a full Newton-Raphson scheme. Coefficients α and 
β are selected by analogy to a linear, single degree-of-
freedom oscillator. For this linear oscillator, the scalar 

product  is equal to  and the scalar product 

 equals ω2, where ζ is the dimensionless damping 
factor and ω is the undamped natural frequency in radi-
ans per second. Thus, for proportional damping of the 
linear oscillator, Eq. (6) reduces to

. (7)

We define mass and stiffness damping factors ζM and  

ζK, respectively by α = ζMω and β = ζK/ω such that Eq. 
(7) leads to 2ζ = ζM + ζK. The underdamped case is used 
to specify ζM and  ζK such that 0 < ζ < 1. Let f be an 

undamped natural frequency in Hertz, then the coeffi-
cients α and β are given by 

 (8)

The frequency used in the analysis is the lowest nonzero 
vibration frequency at the critical state Scr. By defini-
tion, the fundamental frequency at state Scr vanishes and 
its eigenmode coincides with the buckling mode, so that 
the lowest nonzero frequency is the second frequency. 

D αM βKTAN U λ;( )+=

M 1– D 2ζω
M 1– K

2ζω α βω2+=

α ζ M2πf= β ζK 2πf( )⁄=
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After initiating the motion at state Scr, the trajectory 

of the motion in phase space approaches an 
asymptotically stable equilibrium state denoted as S1, 
assuming this state exists. The trajectory is considered to 
have arrived in the vicinity of state S1 once the kinetic 

energy remains less than 1% of the peak kinetic energy 
in the transient response. Let TA denote the time of 
arrival of the trajectory in the vicinity of state S1. The 
displacement vector in the transient analysis at TA is 

used as the initial guess  in the Newton’s iteration 
to determine the displacement vector for equilibrium 
state S1. A geometrically nonlinear static analysis along 
the secondary path is continued until additional 
instabilities are encountered, or the analysis is otherwise 
completed.

Finite element model

All finite element analyses were performed using the 
Structural Analysis of General Shells (STAGS) finite 

element software13, and the 410 element14. The 410 
element is a flat, 4-node quadrilateral element with three 

translations (u,v,w), and three rotations  at 

each node. This element is formulated from the 
Kirchhoff-Love hypotheses for small strains, and it is 
implemented using a co-rotational procedure to account 
for large rotations and displacements. 

The finite element model of panel P23RA referred 
to Cartesian coordinates x, y, and z is shown in Fig. 2. 
The directions of positive displacements and rotations 
are also indicated in this figure. Along the top edge of 
the model, a uniform axial displacement in the negative 
x-direction, denoted by , was specified at all nodes by 
a series of multiple-point constraint equations. All other 
degrees-of-freedom (DOF) along the top edge were 
specified to vanish. The bottom edge of the model was 
fixed. The panel within the end fixtures was modeled by 
specifying all DOFs to vanish except for displacement 
u. A buckling analysis from a linear prebuckling 
equilibrium configuration of the perfect panel was used 
to judge if the finite element mesh had sufficient 
fidelity. Mesh refinement was terminated once an 
additional refinement indicated no change in the first ten 
buckling loads and modes. There were 2,676 nodes and 
2,605 elements, and this mesh is depicted in Fig. 2. 

The material properties used in the analysis are 
listed in Table 1. The nominal value of the longitudinal 
modulus E1 supplied by manufacturer was changed, by 
less than 5%, such that the stiffness from a linear 

U 0( )

βx( βy βz, , )

u

analysis with the refined mesh matched the slope of the 
test data on the load-shortening plot near the origin.

All geometrically nonlinear analyses, static or 
dynamic, were performed under controlled shortening. 

Park’s form of implicit, linear multi-step method15 was 
used with a constant time step, denoted DT, for all 
dynamic analyses. The default STAGS convergence 
tolerance on the displacement norm and the residual 

norm13 was reduced to DELEX = 1x10-7, while the 

eigenvalue tolerance13 was reduced to DELEV= 1x10-5. 

Results and Discussion

Buckling analysis of the linear equilibrium state

The critical value of the end-shortening for the linear 
prebuckling equilibrium configuration of the perfect 
model of panel P23RA was in. (0.1338 
mm) as predicted by analysis. The associated critical 
load was 4,448 lbs. (19.78 kN). Let ∆ denote the 

normalized end-shortening defined by  such 
that ∆ = 1 corresponds to the critical end-shortening 
predicted for the perfect structure from a linear 
prebuckling equilibrium configuration. Also, we 
normalized the load factor by the relation  
such that λ = 1 corresponds to the critical load. Test data 
was similarly normalized.

Test results

The load-shortening response of the panel P23RA from 
the test is shown on the plot of load factor versus the 
normalized end-shortening in Fig. 3(a). As shown in 
Fig. 3(a), one discontinuity in the response occurs at (∆, 
λ) = (1.530, 1.400), and a second one occurs at (∆, λ) = 
(2.612, 1.983). A magnification of the plot in Fig. 3(a) 
near (∆, λ) = (1.530, 1.400) is shown in Fig. 3(b). At the 
initiation of the first jump, the load is 6,227 lbs. (27.7 
kN), and at the end of the jump, the load factor reduces 
to λ = 1.393, which corresponds to a decrease in load of 
28 lbs. (125 N). At the initiation of the second jump, the 
load is 8,818, lbs. (39.2 kN), and at the end of the jump, 
the load factor reduces to λ = 1.910, which corresponds 
to a decrease in load of 323 lbs. (1.44 kN). The load 
factor versus out-of-plane displacement at the centers of 
left skin cell and the right skin cell are shown in Fig. 
4(a). A magnification of the plot in Fig. 4(a) near  λ = 
1.400 is shown in Fig. 4(b). Note that the discontinuity 
in the deflection response at λ = 1.400 only occurs in the 
left skin cell of the panel and not on the right skin cell. 
The back-to-back axial strain gage data for the left skin 
cell in Fig. 5(a) and the right skin cell in Fig. 5(b), also 

ucr 0.005266=

∆ u ucr⁄=

λ λ λ cr⁄→



5 
American Institute of Aeronautics and Astronautics

corroborates that the deflection discontinuity in the 
response occurs only in the left skin cell. Back-to-back 
gages SG13 and SG14 on the web of the axial stiffener 
indicate a jump and change of sign of the strain at λ = 
1.400 as shown in Fig. 6. Hence, at ∆ = 1.530 both the 
skin on the left side of the axial stiffener and the 
stiffener itself exhibit jumps in their displacement 
response. However, the skin on the right side of the 
stiffener does not change its deformation pattern.

Analysis for the initial unstable critical state 

To model the loss of stability near ∆ = 1.530 observed in 
the test, we had to include a geometric imperfection in 
the finite element analyses. A geometrically nonlinear 
analysis of the perfect panel indicated an unstable 
critical point near ∆ = 1 and not at ∆ = 1.530. The 
eigenvectors from the linear prebuckling equilibrium 
configuration at  ∆ = 1 were used to form the initial 
imperfection as no measured surface imperfection data 
was available from the test. An initial geometric 

imperfection13,16 is represented by a stress-free 
displacement state , specified by 

(9)

where Ui, , are the first four buckling 
modes. Each mode is normalized in STAGS such that its 
maximum displacement component is unity. The partici-
pation factors ai were determined by trial, with the 
objective of finding an unstable state on the equilibrium 
path of the imperfect model near ∆ = 1.530. Employing 
a geometrically nonlinear static analysis, we found that 
when

(10)

where h is the skin thickness, that one negative eigen-
value in KTAN occurred above a value of ∆ = 1.762, 
which corresponds to λ = 1.576. At the next shortening 
increment, a negative root was found, therefore the criti-
cal state was bounded, and (∆, λ) = (1.762, 1.576) is a 
stable equilibrium state Ss near the critical state Scr.   
The initial geometry of the imperfect panel correspond-
ing to Eqs. (9) and (10) is shown in Fig. 7. The 
deformed panel at equilibrium state Ss is shown in Fig. 

8. An eigenvalue analysis of the tangent stiffness matrix 
KTAN at stable state Ss is performed to estimate the 
shortening, and corresponding load factor at the unsta-
ble critical state Scr. The first two eigenvalues of ∆ at 
state Ss, and the projected values of ∆ to estimate subse-
quent critical states are listed in Table 2. Thus, from the 
lowest projection in Table 2 we estimate that the critical 
normalized shortening at state Scr is ∆cr = 1.762(1 + e1) 

U0

U0 a1U1 a2U2 a3U3 a4U4+ + +=

i 1 2 3 4, , ,=

a1 a2 a3 a4–= = = ai 0.1h=

= 1.764, where e1 is the lowest eigenvalue of KTAN at 

state Ss, and the corresponding load factor is λcr = 
1.578. The equilibrium state corresponding to (∆, λ) = 
(1.762, 1.576) on the equilibrium path, which is denoted 
Ss, is stable, but it is near the initial unstable state Scr at 
(∆cr, λcr) = (1.764, 1.578).

Transient response initiated at the unstable critical state

A mode jump is initiated for the imperfect panel model 
under controlled shortening. The equilibrium 
displacements are those from state Ss, but the 

normalized end-shortening was specified as ∆ = 1.770, 
which is 0.4% greater than the estimated critical 
shortening value. The distribution of the initial velocity 
is specified as the eigenmode predicted for equilibrium 
state Scr, which was scaled so that the component with 
the largest magnitude was 0.01 in./s (0.254 mm/s). This 
eigenmode is the same shape as the first vibration mode, 
which is shown in Fig. 9(a). The resultant initial 
velocity magnitude was 0.035 in./s (0.89 mm/s).

To estimate the proportional damping factors α and 
β in Eq. (8), a linear vibration analysis was performed at 
the equilibrium state Ss to determine the natural 
frequencies. The first two natural frequencies are listed 
in Table 2, and the corresponding vibration modes are 
shown in Figs. 9(a) and 9(b), respectively. The 
frequency f2 is representative of the first non-zero 
frequency of the theoretically unstable critical state and 
was used in Eq. (8). We specified the mass and stiffness 
damping factors in Eq. (8) as ζM = 0.06 and ζK = 0.171, 

and calculated α = 493 /s and β = 21x10-6 s. The 
effective level of damping was ζ = 0.116, which is 
within the recommended range of 0.05 < ζ < 0.20 from 

Ref. 5. We note that researchers5-11 have used the 
frequencies of either the loaded or unloaded 
configuration to specify α and β.

A constant time step of DT = 20x10-6 s, was used in 
the Park’s numerical integration method. A maximum 
value of kinetic energy of 2.45x10-3 in.-lb. (277. x10-6 J) 
occurred at time T = 2.04 x10-3 s. Using the 1% criterion 
mentioned earlier, the time of arrival in the vicinity of 
state S1 was TA = 8.08 x10-3 s. The strain energy 
decreased from an initial value of 35.126 in.-lb. (3.969 
J) to a value of 35.116 in.-lb. (3.967 J) at TA. 

The change in load factor to λ = 1.734 shown in 
Fig. 3(b) occurred during the transient analysis because   
the end-shortening was fixed in value. The load factor of 
1.578 at the initial unstable critical state Scr decreased to 
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1.570 at state S1, which is a 35 lb. (155 N) decrease in 

load. As shown in Fig. 4(b), the skin cell deflections wL 
and wR both increase in value through the mode jump. 
Compare the deformed shape of the axial stiffener 
before the mode jump in Fig. 8 to its shape after the 
mode jump in Fig. 10. This comparison reveals that 
there is a reversal in the curvature of the web through its 
height at the center of the stiffener, as a result of a shift 
in the deformation pattern along the length of the 
stiffener. 

Static analysis on the new equilibrium path

A geometrically nonlinear static analysis of the 
imperfect isogrid panel was re-initiated at a normalized 
end-shortening of ∆ = 1.7702 using the displacement 
vector from the transient state at T = TA as the initial 

guess for a new equilibrium state along the secondary 
postbuckling path. This is an increase in ∆ of only 
0.01% with respect to the value of 1.7700 specified 
during the transient analysis. A total of four iterations 
were required to converge at ∆ = 1.7702 at this first step 
of the nonlinear static analysis. The load was 
incremented until the onset of a new instability was 
detected at (∆, λ) = (6.971, 3.355) along this new 
postbuckling path. 

Comparison of test and analysis

The wide column test of the composite isogrid panel 
under slowly increased end-shortening, and the hybrid 
static-dynamic analysis of this panel, both exhibit an 
abrupt change in shape of the panel where the load jump 
occurs, followed by continued loading after the load 
jump. The analysis predicted the critical state Scr at (∆,  
λ) = (1.762, 1.578), while the corresponding values 
from the test are (1.530, 1.40). That is, the predicted 
normalized shortening is 15% greater, and the load 
factor is 13% greater, than the corresponding values 
from the test. The decrease in load through the mode 
jump predicted by the analysis was 35 lb. (156 N), or 
25% more than the drop recorded in the test of 28 lbs. 
(125 N). The slope of the load-shortening response 
following the mode jump predicted by the analysis is 
less than that from the test as shown in Fig. 3(b). An 
unstable state was predicted on the new equilibrium 
path from the analysis at (∆, λ) = (6.971, 3.355), but the 
second mode jump in the test occurred at (∆, λ) = 
(2.612, 1.983).

The out-of-plane displacements of the left (wL) and 
right (wR) skin cells predicted from the analysis and 

those measured in the test are in reasonable agreement 
as is shown in Figs. 4(a) and 4(b). However, the test data   

indicated that the displacement wL decreased slightly 

through the mode jump and displacement wR did not 
change, while the analysis predicted both the 
displacements wL and wR increased through the mode 
jump as shown in Fig. 4b. At the load jump, the abrupt 
change in the strains from gages SG13 and SG14 shown 
in Fig. 6 means there is change in curvature of the 
stiffener through its height at mid-span, which is also 
demonstrated by the deformation change predicted from 
the analysis as shown in Fig. 8 and Fig. 10.

Concluding remarks

The correlation of the hybrid static-dynamic nonlinear 
finite element analyses to the wide column, composite 
isogrid test article measurements indicates and 
corroborates that the discontinuities observed in the 
response under monotonically increasing quasi-static 
shortening are associated with the phenomenon of mode 
jumping. To achieve the correlation with the test, the 
mode jumping analysis required: (1) locating the 
unstable bifurcation point on the equilibrium path 
emanating from the origin on the load end-shortening 
response plot of the imperfect panel; (2) a transient 
dynamic analysis initiated at the unstable bifurcation 
point which included viscous proportional damping and 
an initial velocity in the shape of the buckling mode; 
and (3) re-establishment of equilibrium on the new 
equilibrium path using as an initial estimate of the 
displacement the displacement obtained from the 
transient analysis when the kinetic energy remained less 
than 1% of its peak value.

The test results showed that the discontinuity in the 
response was manifested by a jump in the lateral 
deflection of the left side skin cell and a jump in the 
bending response of the central axial stiffener. The right 
skin cell did not exhibit a jump in response. However, 
the analysis predicted that both the left and right side 
skin cell deflections increased through the mode jump. 
The drop in the compressive force at a fixed end-
shortening in the mode jump predicted from the analysis 
was 25% more than the recorded experimental results, 
which is a good correlation. However, the analysis over 
predicted the force and end-shortening at the critical 
equilibrium state, from which the mode jump was 
initiated, by approximately 15%. 

Subsequent loading along the new static 
equilibrium path in the analysis indicated an instability 
at a normalized shortening of 6.971, which exceeds the 
normalized shortening of 3.355 for the secondary 
instability recorded in the test. The discrepancy between 
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the analysis and test for the second mode jump is likely 
due to material damage that may have occurred in the 
test panel that is not modeled in the analysis.
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Table 1:  IM7/977-2 mechanical properties

Elastic Properties Density 

E1 E2 G12 ν12 ρ

23.85 Msi 1.10 Msi 0.8 Msi 0.25 0.0582 lb./in.3

164.44 GPa 7.58 GPa 5.516 GPa 0.25 1613.8 kg/m3

Table 2:  Eigenvalues and vibration frequencies at equilibrium state Ss at ∆ = 1.762 

Mode
Eigenvalue of KTAN

e
Projected critical shortening

∆
Vibration frequency

f

1 0.0010 1.764 76.6 Hz

2 0.4946 2.633 1307 Hz

P23RA

P23RB
P23LB

 (a) Schematic of specimens cut from panel P23

P23LA

1(3)

2(4)

5(7)

6(8)

11 (12)

10 9

13 (14)

 (b) Strain gage pattern P23RA & P23RB

View A-A

A

Fixture

Fig. 1 Isogrid specimens and strain gage pattern for single axial stiffener panels

9-14
Stiffener Offset

panel P23

A

X
Y
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Θ
Θ
Θ x    15.00

y   -30.00
z    90.00

9.354E-01

x

y

z
mean_0m00n def
Model geometry,  all units
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v = w = 0

βx = βy = βz = 0

u free, 
v = w = 0

βx = βy = βz = 0

βx

βz

βy

Fig. 2 Finite element model of isogrid panel P23RA

(b) Magnification near mode jump(a) Over entire analysis range
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Fig. 3 Plots of the load factor versus normalized end shortening from test and analysis
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