Semantic Annotation of Computational
Components

Peter Vanderbilt! and Piyush Mehrotra®

b AMTI®, NASA Ames Research Center, M/S T27A-2, Moffett Field, CA 94035
pv@nas.nasa.gov
2 NASA Ames Research Center, MS 258-5, Moffett Field, CA 94035
Piyush.Mebrotra@nasa.gov

Abstract. This .paper describes a methodology to specify machine-
processable semantic descriptions of computational components to en-
able thern to be shared and reused. A particular focus of this scheme is
to enable automatic composition of such components into simple work-
flows. R

1 Introduction

Part of the vision of the Semantic Grid is to enable “an infrastruc-
ture where all resources, including services, are adequately described
in a form that is machine-processable”(1]. This paper describes a
methodology to specify machine-processable semantic descriptions
of computational components.

The focus of the CRADLE project is to represent the semantics
of workflow components, or so called “tools,” with the ideal goal of
enabling automatic generation of semantically correct workflows. A
prototype of CRADLE has been implemented including a repository
for tool descriptions, a plan (or workflow) generation program and
a prototype plan execution system. While the focus of CRADLE is
on tools, we think that similar techniques apply to data collections
and web/grid services.

In general, a tool is a program, component or service that com-
putes one or more outputs from one or more inputs. Some tools
require significant computation such as a simulation that computes

* This work is supported by the NASA Advanced Supercomputing Division under
Task Order A61812D (ITOP Contract DTTS59-99-D-00437/TO #A61812D) with
Advanced Management Technology Incorporated (AMTI).



a flow field around some object or one that computes thermody-
namic properties given a flow. However, tools also include format
translators, data extraction functions, data analysis and visualiza-
tion programs.

In order to manage the growing number of these tools and to
share them, it is desirable to put tool descriptions in web-accessible,
searchable repositories. Associated with each tool would be informa-
tion about what it does, how to run it, who created it, its properties
and so on.

The main focus of our research is to find ways to express the
semantics of a tool in a machine-readable way. Semantic tool de-
scriptions could be used to narrow the set of tools that a user must
select from to solve a particular problem. Further, we are interested
in plans, collections of interconnected tools, and how to use semantic
descriptions to ensure the well-formedness of a plan and to determine

1ts semantics. Plans are a kind of workflow that have been restricted

to DAGs (directed acyclic graphs).

Our goal is to facilitate plan generation, which is a process that
creates a plan whose execution produces a specified result given spec-
ified inputs. Plan generation uses tool descriptions to determine fea-
sible combinations of tools. In order to push the research, we take
as the ideal goal the automatic (“hands-off”) generation of plans.
However, we recognize that, for various reasons, user input may be
needed to select among several combinations of tools.

This paper describes CRADLE’s dataspace approach. A datas-
pace is an abstraction that allows one to provide meaningful, com-
pound names to various properties of real or logical entities. We
present how this approach can be used to specify descriptions of
computational components and also to chain together these compo-
nents in semantically consistent ways to yield simplified workflows.

2 Tool and Problem Specifications

Consider the situation where a scientist is computationally investi-
gating the flow characteristics of a class of aerodynamic structures.
For a given system of a body and external characteristics, there
may be several potential properties that could be calculated. Assume
there are tools that take various properties (radius, angle, velocity)




and generate datasets (such as meshes), tools that take datasets to
other datasets (such as other meshes and flow simulations), tools
that analyze datasets (yielding floats, integers and booleans) and
tools that convert between the different dataset formats used by
these tools.

The scientist needs a way to compose these tools depending on

—ha S Q. 1 Le ealeiilated FIUES S B
waot 15 51 Ven and wilau 1:> O O Caiculated. UCL LO U0 Ullls, vnere

must be ways to describe tools and the pro le ns that users want to
solve.

Consider a simplified example of a “body” whose properties in-
clude its geometry file, volume, mass, (average) density, velocity and
momentum. A “problem” specifies which properties will be provided
(the “givens”) and which will be calculated (the “goals”). At differ-
ent times, there will be different sets of givens and goals. Assume

that the scientist has at his disposal the following “tools”:

1. Three tools for calculating each of momentum, velocity or mass of
a body, given the other two. (There is one tool for each unknown)
2. Three tools for calculating each of average density, mass or vol-

ume, given the other two.
3. A tool that takes a body’s geometry file and yields its volume.
4. A tool that calculates the mass and volume of a system of bodies,
each with mass and momentum.

So how does one specify these tools and how would the scientist
specify what data he wants (given what data he has)?

In a programming language, a tool would be a method or func-
tion. In WSDL[5], such a tool would be a web service[4] operation. In
these two systems, the machine-readable aspects of a “tool” descrip-
tion are the types of its inputs and outputs. A type system ensures
that a composition of tools is consistent at the type level.

While type correctness is required, it is not sufficient for our
purposes. For instance, the first three tools mentioned in item #1
above, take two floats and return a float (assuming velocity and
momentum are scalars) and are thus indistinguishable from the point
of view of the types. Of course, the problem is that the semantics
of each tool is not taken into account. Generally, the semantics of
a tool is expressed as a comment and/or is implied by the name of



the function and the names of its inputs. It is difficult to effectively
reason about information in this form. .

Another possible method is to require that the function name
indicate the quantity being produced. Unfortunately, there may be
tools with more than one output. Item #4, above, is an example of
such a tool that generates both mass and momentum.

One can associate one or more output names with each tool.
However, there may be more than one tool producing the same out-
put. For instance, there are three tools yielding mass in our example.
While the types are different, one could imagine examples where the
types are the same. A way to solve this problem is to treat the input
names as significant (as well as the output names).

While this approach goes a long way, there are still a few prob-
lems. One is that a name alone may not adequately specify a quan-
tity and its representation. For instance, if a velocity-producing tool
and a velocity-using tool use different units or formats, the tools
will not interoperate. Basically, this is & human issue — the system
can compare names but only humans can ensure that the names are
used consistently. Thus it is important that each name have an as-
sociated natural language description that, together with its type,
unambiguously describes the associated quantity and its format.

There is also a problem when two different users unintentionally
use the same term with different meanings. While it is possible for a
system to detect conflicting definitions, it is better to have a name
qualification scheme such that two independent people use differ-
ent qualifiers for the names they define. Examples of such schemes
include UUIDs, URIs, XML QNames and Java class names.

A related problem arises, for example, when one tool uses “width”
while another uses “breadth” for the same concept. In this case, the
two tools will be deemed incompatible when really they are compat-
ible. What would help is a way to equate two names.

There is also a problem with the “fHatness” of names. Consider a
simulation of several interacting physical bodies, each with velocity,
a mass and momentum. In this case, a simple name, like “velocity,” is
ambiguous, since each body has a velocity. One could use names like
“bl_velocity” and “b2_velocity” but then a tool taking “velocity” as
an input will not apply. What is needed is a notion of compound
names, or paths. In the system above, the bodies could be named




“bl” and “b2” and their velocities would be named by “bl.velocity”
and “b2.velocity” (where the period combines two names). Tools
apply as if universally quantified over paths, so the tool described
above also can take inputs “bl.velocity” and “bl.mass” and yield
“bl.momentum.”

A final problem is illustrated by considering the computation of

+h £ wnnt Aam oA ANV T Arl b UL Ts M s Tty T
a8 &rca Oy relhangues anG €uipses. il Have Licigliv, Widuil alid

“area” properties, all foats, but the tools used to compute their
areas must be different. The issue is that property names alone do
not determine the semantics of the object of which they are a part.

Thus there needs to be a way to associate a tool with a class of
objects.

3 The Dataspace Model

In this section, we describe an abstract model called the dataspace
model that addresses the issues of the previous section. Briefly,
dataspace is a tree-like structure with named slots as leaves, A slo
can be thought of as a place where a data value can be deposited.
Dataspaces have tvpes that imply a vocabulary of slot names and
their semantic interdependencies. Each tool is agsociated, via a rels-
tion called “appliesTo,” with one type of dataspace. Logically when
a tool runs, it is passed a dataspace of the appropriate type; the tool
retrieves its inputs from certain slots and places its outputs in other
slots. Roughly, two tools can be composed only if they both have
the same “appliesTo” type and the names of the inputs of one are
among the names of the outputs of the other. We now discuss the
model in more detail.

A dataspace is used to model some real world or logical entity,
such as a physical body (of various shapes), a surface, a flow field,
a particle or a galaxy. An entity can also be a composite thing like
a system of several bodies or a flow interacting with the surface of
some structure.

A dataspace is made up of a collection of named slots each ca-
pable of holding one piece of information, like a float, an array of
floats or a filename. Each slot is either empty or filled and, when
filled, its content denotes one aspect of the entity being modeled. An
aspect is some parameter, attribute, property or view of an entity.

-+ W



Example of aspects are a body’s mass, velocity or a reference to a file
containing its geometry. Different aspects can be used for different
representations or units for the same property.

It is possible that an aspect of an entity is itself a composite
entity, in which case the aspect is represented by another dataspace,
refered to as a subdataspace. In general a dataspace forms a tree
with named edges and siofs at the leaves. For example, a velocity
aspect might be a vector modeled by a subdataspace with x, y and z
aspects. Similarly a system with two bodies could be modeled as two
subdataspaces named “bl” and “b2.” In this case, “bl.velocity.x”
names a slot that contains the x component of bl’s velocity.

Each slot or subdataspace is considered one aspect and is given
an aspect name. A compound name, like “bl.velocity.x,” is called an
aspect path.

Aspects are typically interdependent and, so, the values of cer-
tain slots can be computed from others. For example, a physical
body might have aspects mass, geometry, velocity, volume, average
density and momentum. Given any two of mass, velocity or momen-
tum, the third can be calculated. Volume, mass and density are in a
similar relationship and, presumably, volume can be computed from
geometry.

A dataspace type denotes a set of dataspaces and is typically
associated with some class of entities. A dataspace type defines a
vocabulary of aspect names and their associated types and interpre-
tation. The type also denotes a set of constraints on the values of
aspects and their interdependencies. These semantic properties are
given explicitly by an associated description string or are implied by
the names of the type and its aspects. Essentially, the type name
becomes a proxy for these human-understood semantics.

Consider the following example definition

dataspace Body {
aspect URL geometryFile;
aspect Float volume;
aspect Float mass;
aspect Float density;
aspect Float velocity;
aspect Float momentum;




¥

While CRADLE actually uses an XML syntax, a more convenient
syntax like this is better for explanatory purposes. This definition
defines a type named “Body” with six aspects. The first aspect is
named “geometryFile” and is of type “URL.” The remaining five
aspects are of type Float with names “volume,” “mass,” “density,”
“velocity” and “momentum.” We assume “URL” and “Float” are
defined elsewhere. The interdependencies between aspects are im-
plied by the aspect names. A description string could be added to
the definition if further explanation was needed.

Each dataspace type definition defines a new, independent type.
Even if the aspects are identical, it is assumed that their interde-
pendencies are different, as implied by the name of the type or its
description. For instance, there could be two type definitions with
identical aspects, “height,” “weight” and “area,” but having differ-
ent names, “Rectangle” and “Ellipse.” They would denote different
types.

The CRADLE type system supports inheritance where inheri-
tance implies an “isa” or subset relation — instances of a derived type
are instances of the base type. A derived type has all the aspects of
the supertype and can add new aspects, refine existing aspects and
add additional constraints (between aspects). For example, Square
could be a subtype of Rectangle, adding the constraint that the
“height” and “width” aspects are the same. An aspect is refined if
the derived aspect’s type is a subtype of the base aspect’s type and if
any description-implied constraints of the derived aspect imply the
corresponding constraints of the base aspect.

Now that the dataspace model has been described, we turn to
CRADLE tool descriptions, which use the dataspace model as a
basis for defining their inputs and outputs. Each tool description
has an appliesTo attribute, a set of input aspect paths and a set of
output aspect paths. Consider the following.

tool momentum_calc {
appliesTo Body;
input mass;
input velocity;
output momentum;




}

This definition describes a tool that yields the momentum of a body,
given its mass and velocity. Thé ellipsis is to indicate that there may
be other attributes for the tool, such as execution information.

The “appliesTo” attribute identifies a dataspace type and spec-
ifies that the tool is capable of computing aspect values relative to
the associated kind of entity. Thus the “appliesTo” type scopes the
tool’s inputs and outputs.

The “appliesTo” type also determines the relative semantics of
the inputs and outputs. Recall from section 2 the example of two
area-computing tools with the same inputs and output, one for rect-
angles and one for ellipses. In this case, the two tool descriptions
would be the same except one would have “appliesTo Rectangle”

and the other “appliesTo Ellipse.”

4 Plan Generation and Execution

As discussed above, a dataspace type defines a vocabulary of slot
names and the semantics of their interdependencies. A tool is spec-
ified with respect to some dataspace type and,-so, its semantics is
determined by the relative semantics of its inputs to outputs.

When a user uses CRADLE, he presents a problem which consists
of a problem type, a set of givens and a set of goals. The problem type
is a dataspace type and each given and goal is an aspect path relative
to the problem type. During this process, the CRADLE repository
may be used to browse the set of types and their aspects. An example
of a problem is as follows.

problem {
problemType Body;
given velocity;
given geometryFile;
given density;
goal momentum;

}

Given a problem, the CRADLE plan generator attempts to find a
a plan, which is a directed acyclic graph of steps. Each step contains




the name of a tool and the set of prerequisite steps that it must
follow. The plan also indicates which steps yield one or more of the
goals. The plan must be such that each tool’s “appliesTo” type is a
supertype of (or possibly equal to) the problem type. Each input of
each tool must be among the problem’s givens or among the outputs
of a previous tool. Each of the problem’s goals must be among the
cutputs of soime tool.

The full plan generation algorithm is too complex to present
. here, so we give a quick summary. The algorithm uses backward

chaining and works back from the goals. At each point it has a list,
neededAspects, of aspects (really aspect paths) that need to be com-
puted and a list, producedAspects, of aspects that are given or com-
puted by some tool. Iteratively, it selects a needed aspect, subgoal,
and finds a tool, tool, whose “appliesTo” is a supertype of (or equal
to) the problem type and whose outputs contain subgoal. If there is
no such tool, it backtracks if possible. If there is more than one tool,
it tries each in turn. To handle the “flatness” problem mentioned
in section 2, the algorithm also considers applying a tool to certain
subdataspaces of the original problem, in addition to applying it at
the root. The outputs of tool are added to producedAspects and its
inputs are added to neededAspects. Also a step is allocated and added
to the plan. The iteration terminates when all neededAspects are in
producedAspects.

Plan ezecution is the process by which a plan is executed. It
follows the usual rules for executing a DAG. The dataspace model
is used to link outputs of one tool to the inputs of the next. As
mentioned earlier, the dataspace concept is logical and it is not nec-
essarily the case that any real data structure directly implements
the dataspace, although some implementations may. The purpose of
the dataspace concept is to provide a conceptual model interrelating
types, tool descriptions, problem specification, plan generation and
plan executions.

As examples, one implementation may directly implement the
dataspace as a centralized hash table from which the tools extract
their inputs and into which they place their outputs. Another im-
plementation may instantiate a software component for each step
and use the fully qualified input and output names to hook together
ports. A third implementation might generate a script using a “man-



gled” form of the aspect paths to name files or script variables that
carry data produced by one step to later ones.

5 Status and Future Work

A CRADLE prototype has been implemented using a client-server
model with a protocol similar to web services. The server is in Java
and accesses a MySQL database containing tables for tool and datas-
pace type descriptions. The type descriptions can be used by tool
specifiers and by users posing “problems” to CRADLE. Type de-
scriptions are also used during plan generation to reason about in-
heritance and the types of subdataspaces. Tool descriptions are used
during plan generation and may also be used during plan execution
to obtain execution-related information.

For future research, we will look at applying a similar method-
ology to data collections and the tools that operate on them. As
RDF|3] is a popular standard for expressing and sharing machine

T A | P e 3 7 7 17 3 1
processable information on the web, we will investigate using RDF/-

XML[2] in the client-server protocol. Also, we plan to look at vari-
ous extensions to the dataspace model, including arrays, parameter-
ized aspects (similar to methods) and parameterized types. Adding
machine-processable constraint expressions to dataspace types is an-
other potential avenue of investigation.

Acknowledgments: We gratefully acknowledge the contributions of
Ken Gee and Karen McCann in the early discussions regarding the
direction and design of the project.

References

1. Global Grid Forum, Semantic Grid Working Group: The Semantic Grid Vision.
http://www.semanticgrid.org/vision

2. W3C: RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/rdf-
syntax-grammar/

3. W3C: Resource Description Framework (RDF): Concepts and Abstract. Syntax.
http://www.w3.org/ TR /rdf-concepts/

4. W3C: Web Services Architecture. http://www.w3.org/TR/ws-arch/

W3C: Web Services Description Language (WSDL). http://www.w3.org/TR/-

wadl20/

4]




