Synthesis and Structural Characterization of a Novel Indium Mercapto Derivative

\[\text{[Clln(SCH}_2\text{(CO)O})_2\text{]}^2^-\text{[(4-MepyH)}_2\text{]}^2^+\]

Kulbinder K. Banger
Ohio Aerospace Institute, Brook Park, Ohio

Stan A. Duraj
Cleveland State University, Cleveland, Ohio

Philip E. Fanwick
Purdue University, West Lafayette, Indiana

David G. Hehemann
Cleveland State University, Cleveland, Ohio

Aloysius F. Hepp
Glenn Research Center, Cleveland, Ohio

Robert A. Martock
Cleveland State University, Cleveland, Ohio

July 2004
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076
Synthesis and Structural Characterization of a Novel Indium Mercapto Derivative
[Clln(SCH$_2$(CO)O)$_2$]$^{2-}$[(4-MepyH)$_2$]$^{2+}$

Kulbinder K. Banger
Ohio Aerospace Institute, Brook Park, Ohio

Stan A. Duraj
Cleveland State University, Cleveland, Ohio

Philip E. Fanwick
Purdue University, West Lafayette, Indiana

David G. Hehemann
Cleveland State University, Cleveland, Ohio

Aloysius F. Hepp
Glenn Research Center, Cleveland, Ohio

Robert A. Martock
Cleveland State University, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center
Acknowledgments

Aloysius F. Hepp (Director’s Discretionary Fund), David G. Hehemann (NASA Cooperative Agreement NCC3–318), Stan A. Duraj (NCC3–162), and Philip E. Fanwick (NCC3–246). We thank Professor Andrew Barron of Rice University and Professor Paul O’Brien of Manchester University, UK, for preprints of their work.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov
SYNTHESIS, AND STRUCTURAL CHARACTERIZATION
OF A NOVEL INDIUM MERCAPTO DERIVATIVE,
[ClIn(SCH₂(CO)O)₂]²⁻·[(4-MepyH)₂]²⁺

Kulbinder K. Banger
Ohio Aerospace Institute
Cleveland, Ohio 44142

Stan A. Duraj
Cleveland State University
Department of Chemistry
Cleveland, Ohio 44115

Philip E. Fanwick
Purdue University
Department of Chemistry
West Lafayette, Indiana 47907

Aloysius F. Hepp*
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135
Phone: 216–433–3835; Fax: 216–433–6106
E-mail: Aloysius.F.Hepp@nasa.gov

Robert A. Martock
Cleveland State University
Department of Chemistry
Cleveland, Ohio 44115

ABSTRACT

The synthesis and structural characterization of a novel In(III) complex is described. The reaction between InCl₃ with sodium mercapto-acetic acid, (NaSCH₂(CO)OH) in 4-methylpyridine, (CH₃(C₅H₅N), (4-Mepy)) at 25 °C affords [ClIn(SCH₂(CO)O)₂]²⁻·[(4-MepyH)₂]²⁺. X-ray diffraction studies of (1) show it to have a distorted square pyramidal geometry, with the [(−SCH₂(CO)CO−)] ligands in a trans conformation. The compound crystallizes in the P 1 (No. 2) space group with a = 7.8624(6) Å, b = 9.950(1) Å, c = 13.793(2) Å, α = 107.60(1)°, β = 90.336(8)°, γ = 98.983(9)°, V = 1014.3(4) Å³, R(F) = 0.037 and Rw = 0.048.

* Corresponding author
INTRODUCTION

The synthesis of suitable single source Metal Organic Chemical Vapor Deposition, (MOCVD) precursors for the preparation of binary compounds of group 13/16 (IIIB/VIB), has been the recent subject of investigation by a number of groups. Thin films of metal chalcogenides In₅S₃ or Ga₅S₅ i.e. “midbandgap” semiconductors display properties suitable for use in a large array of optoelectronic devices. The mechanism for decomposition, yields metal sulphide type moieties which can be incorporated into thin-film coatings during fabrication, Scheme I. Therefore, the facile synthesis of these group of compounds, which readily decompose to afford the desired semiconductors with the correct stoichiometry are highly desirable.

\[
\text{M(S₂N₂Et₂)₂} \rightarrow \text{MS} + \text{EtNCS} + \text{Et₂NCS₂Et}
\]

Scheme I. Suggested decomposition pathway of metal chalcogenides.

In continuing the development of these types of precursors, we have investigated the preparation of mono-thio-oxygen derivatives. An apparent limitation of these complexes is the possibility of oxygen incorporation during thin film growth. However, recent reports in literature successfully demonstrate thin film fabrication using mono-thio-oxygen derivatives by MOCVD, which show no oxygen contamination.

Recently we have synthesized a novel gallium(III) mercapto derivative. Further to this series, we now report the facile preparation and structural characterization of [ClIn(SCH₂(CO)O)₂]₂⁻[(4-MepyH)₂]⁺, (4-Mepy₂ = CH₃(C₅H₅N)), (1).

EXPERIMENTAL

General

Air and moisture-sensitive materials were handled under anaerobic conditions using standard Schlenk line techniques, in flame-dried glassware. Solids were manipulated in a Vacuum Atmospheres dry box equipped with a HE-493 drier train. Heptane and 4-methylpyridine were distilled from CaH₂ under a dinitrogen atmosphere prior to use. Anhydrous Indium(III)chloride and [NaSCH₂(CO)OH] were purchased from Aldrich Chemical Company (Milwaukee, WI) and used without further purification.

Preparation of [ClIn(SCH₂(CO)O)₂]₂⁻[(4-MepyH)₂]⁺

Sodium mercapto-acetic acid, (NaSCH₂(CO)OH) (0.64 g, 5.651 mmol) and an InCl₃, (0.50 g, 2.261 mmol) were reacted in 50 mL of 4-methylpyridine in a Schlenk tube, at ambient temperature under Argon for 7 days. The reaction mixture was then filtered and the collected filtrate layered with 100 mL of heptane. Controlled evaporation, at room temperature subsequently afforded colorless white needles suitable for single crystal analysis.

X-Ray Crystal Data Collection

Single crystal x-ray diffraction data were collected on an Enraf-Nonius CAD4 computer controlled kappa axis diffractometer equipped with a graphite crystal, incident beam monochromator. A colorless needle of C₁₆H₂₀ClInN₂O₄S₂ having approximate dimensions of 0.50 by 0.17 by 0.13 mm was mounted on a glass fiber. Cell constants and an orientation matrix for data collection were obtained from least-squares refinement, using the setting angles of 25 reflections in the range 20 < θ < 22°, measured by the computer-controlled diagonal slit method of centering. The triclinic cell parameters, calculated volume and density are shown in Table I. Crystal quality was determined by measuring several intense omega reflections, which displayed a half height width of 0.57° with a take off angle of 3.0°, indicating moderate crystal quality. There were no systematic absences; the space group was determined to be \(P\bar{1}\) (No. 2). A total off 2665 reflections were collected, of which 2665 were unique. Lorentz and polarization corrections were applied to the data. The linear absorption coefficient is 17.0 cm⁻¹ for Mo K radiation.
An empirical absorption correction based on the method of Walker and Stuart was applied. Relative transmission coefficients ranged from 0.769 to 1.000 with an average of 0.916.

Table I. Crystallographic data for C_{16}H_{20}ClInN_{2}O_{4}S_{2}, (CCDC 170558).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula Weight</td>
<td>518.75</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.50 by 0.17 by 0.13</td>
</tr>
<tr>
<td>Space group (No.)</td>
<td>P 1 (No. 2)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.8624(6)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>9.950(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>13.793(2)</td>
</tr>
<tr>
<td>α (°)</td>
<td>107.60(1)</td>
</tr>
<tr>
<td>β (°)</td>
<td>90.336(9)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>98.983(9)</td>
</tr>
<tr>
<td>V, Å³</td>
<td>1014.3(4)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>(\rho_{\text{calc}}, \text{g cm}^{-3})</td>
<td>1.698</td>
</tr>
<tr>
<td>Temperature, K</td>
<td>293</td>
</tr>
<tr>
<td>(\lambda) Radiation (wavelength)</td>
<td>Mo K_α(0.71073 Å)</td>
</tr>
<tr>
<td>(\mu, \text{cm}^{-1})</td>
<td>15.00</td>
</tr>
<tr>
<td>Transmission coeff.</td>
<td>1.000–0.426</td>
</tr>
<tr>
<td>Scan method</td>
<td>(\omega–2\theta)</td>
</tr>
<tr>
<td>No. observed data</td>
<td>2665</td>
</tr>
<tr>
<td>No. unique data</td>
<td>2665</td>
</tr>
<tr>
<td>Largest shift/esd in final cycle</td>
<td>0.15</td>
</tr>
<tr>
<td>R(F_o)</td>
<td>0.037</td>
</tr>
<tr>
<td>R_w</td>
<td>0.048</td>
</tr>
<tr>
<td>F_{000}</td>
<td>520.0</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>1.473</td>
</tr>
</tbody>
</table>

The structure was solved using the solution program Mo1EN on a VAX computer. Interpretation of a Patterson heavy atom method revealed the position of the In atom. The remaining atoms were located in succeeding difference Fourier syntheses. Hydrogen atoms were located and added to the structure factor calculations but not refined. The structure was refined in full-matrix least-squares where \(w\) is defined as per the Killean and Lawrence method with terms of 0.020 and 1.0.

RESULTS AND DISCUSSION

The indium complex (1) was prepared by the stoichiometric reaction of indium(III)chloride and sodium mercapto-acetic acid (NaSCH₂(CO)OH), in 4-methyppyrine, which results in the concomitant deprotonation and ligation of the mercapto derivative. After 7 days, the organic phase is isolated from the grey precipitate and carefully layered with 100 mL of freshly distilled heptane. Slow evaporation at room temperature under inert conditions produced a large quantity of colorless crystals, from which one was selected for analysis by single crystal X-ray diffraction. The product was elucidated as the ionic In(III) species [ClIn(SCH₂(CO)O)]²⁺[(4-MepyH)₂]²⁺ (1), (Figure 1, Table II).
Table II. Selected bond distances (Å) and angles (°) for C_{16}H_{20}ClInN_{2}O_{4}S_{2}.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance/Å</th>
<th>Atoms</th>
<th>Angle/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Cl</td>
<td>2.425(2)</td>
<td>Cl-In-S(1)</td>
<td>108.57(6)</td>
</tr>
<tr>
<td>In-S(1)</td>
<td>2.409(2)</td>
<td>Cl-In-S(2)</td>
<td>111.93(6)</td>
</tr>
<tr>
<td>In-S(2)</td>
<td>2.407(2)</td>
<td>Cl-In-O(11)</td>
<td>100.1(1)</td>
</tr>
<tr>
<td>In-O(11)</td>
<td>2.233(4)</td>
<td>Cl-In-O(21)</td>
<td>95.9(1)</td>
</tr>
<tr>
<td>In-O(21)</td>
<td>2.210(4)</td>
<td>S(1)-In-S(2)</td>
<td>139.46(7)</td>
</tr>
<tr>
<td>S(1)-C(21)</td>
<td>1.804(6)</td>
<td>S(1)-In-O(11)</td>
<td>82.3(1)</td>
</tr>
<tr>
<td>S(2)-C(22)</td>
<td>1.796(7)</td>
<td>S(1)-In-O(21)</td>
<td>95.1(1)</td>
</tr>
<tr>
<td>O(11)-C(11)</td>
<td>1.273(7)</td>
<td>S(2)-In-O(11)</td>
<td>88.9(1)</td>
</tr>
<tr>
<td>O(21)-C(21)</td>
<td>1.267(7)</td>
<td>S(2)-In-O(21)</td>
<td>82.7(1)</td>
</tr>
<tr>
<td>O(12)-C(11)</td>
<td>1.24(2)</td>
<td>O(11)-In-O(21)</td>
<td>163.8(2)</td>
</tr>
<tr>
<td>O(12)-H(1)</td>
<td>1.66(7)</td>
<td>In-S(1)-C(12)</td>
<td>97.4(2)</td>
</tr>
<tr>
<td>O(22)-H(2)</td>
<td>1.65(6)</td>
<td>In-S(2)-C(22)</td>
<td>97.3(2)</td>
</tr>
<tr>
<td>O(22)-C(21)</td>
<td>1.232(7)</td>
<td>In-O(11)-C(11)</td>
<td>119.3(4)</td>
</tr>
<tr>
<td>N(101)-H(1)</td>
<td>1.00(7)</td>
<td>In-O(21)-C(21)</td>
<td>119.9(3)</td>
</tr>
<tr>
<td>N(202)-H(2)</td>
<td>1.01(6)</td>
<td>O(12)-H(1)-N(101)</td>
<td>172(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(22)-H(2)-N(201)</td>
<td>172(5)</td>
</tr>
</tbody>
</table>

Compound (1) is significant as it represents the first Indium thioglycol complex. The compound exists as a salt of 4-MepyH⁺, which displays a distorted square pyramidal geometry around the indium atom. The ligand-metal interactions are those of a Indium(III) co-ordination sphere with negative charge, (2e⁻) on the bidentate ligand ['SCH₂(CO)O'] and on the chloride. The In-S and the In-O bond lengths are 2.407(2), 2.409(2) and 2.210(4), 2.233(4) Å respectively, Table II. The thioglycollic derivatives ['SCH₂(CO)O'] are arranged in the expected trans geometry, binding preferentially through the soft donor, since In(III) behaves as a class b, (soft) acceptor. In addition, indium having an underlying d¹⁰ configuration allows it to take part in d-π-π back bonding with the thioglycol ligand. In addition, ionic contacts are established between the carbonyl group of the mercapto derivative and the protonated amine, [4-MepyH⁺], 1.66(7) and 1.65(6) Å.

SUMMARY

In conclusion, the mercapto ligand, ['SCH₂(CO)O'] belongs to an interesting class of ligand that contains both soft and hard donors sites. Under neutral reaction conditions ['SCH₂(CO)OH] has been shown to be a 1e⁻ donor ligand binding through S⁻. However, under basic reaction conditions it is evident that mercapto ligand undergoes deprotonation with reaction with 4-Mepy, thus generating the 2e⁻ ligand ['SCH₂(CO)O']. Examination of the C-O bond lengths support these findings. In complex (1) bonding is through the soft and hard donor atoms, which account for the observed distorted square pyramidal geometry. Preliminary studies for the use of complex (1) for the preparation of indium sulfide films is under investigation.

REFERENCES

Figure 1. ORTEP drawing of [ClIn(SCH(CO)O)O][4-MepyH]2+ [(4-MepyH)2]2+, (4-Mepy = CH3(C5H5N)); thermal ellipsoids enclose 50% of electron density.
Title and Subtitle
Synthesis and Structural Characterization of a Novel Indium Mercapto Derivative \(\text{[Cln(SCH}_2\text{(CO)}\text{O)O]}_2\text{[\text{4-MepyH}_2]}\text{^2+}}\)

Authors
Kulbinder K. Banger, Stan A. Duraj, Philip E. Fanwick, David G. Hehemann, Aloysius F. Hepp, and Robert A. Martock

Performing Organization
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

Abstract
The synthesis and structural characterization of a novel In(III) complex is described. The reaction between \(\text{InCl}_3\) with sodium mercapto-acetic acid, \((\text{NaSCH}_2\text{(CO)}\text{O})\text{H})\) in 4-methylpyridine, \((\text{CH}_3\text{(C}_5\text{H}_5\text{N}), (\text{4-Mepy}))\) at 25 °C affords \(\text{[Cln(SCH}_2\text{(CO)}\text{O)O]}_2\text{[\text{4-MepyH}_2]}\text{^2+}}\), (1). X-ray diffraction studies of (1) show it to have a distorted square pyramidal geometry, with the \((–\text{SCH}_2\text{(CO)CO–})\) ligands in a trans conformation. The compound crystallizes in the \(\text{P}_1\) (No. 2) space group with \(a = 7.8624(6)\) Å, \(b = 9.950(1)\) Å, \(c = 13.793(2)\) Å, \(\alpha = 107.60(1)^\circ\), \(\beta = 90.336(8)^\circ\), \(\gamma = 98.983(9)^\circ\), \(V = 1014.3(4)\) Å\(^3\), \(R(F) = 0.037\), and \(R_w = 0.048\).

Subject Terms
Indium compounds; Crystal structure; Thiols; Pyridines; Photovoltaics; Coordination

Security Classification
Unclassified