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SUMMARY

The principle objectives of the current program were to experimentally investigate the
repeatability of acoustic and aerodynamic characteristics of 2D-CD mixer-ejector nozzles
and the effects on the acoustic and aerodynamic characteristics of 2D mixer-ejectors due
to (1) the configurational variations, which include mixers with aligned CD chutes, aligned
convergent chutes, and staggered CD chutes and aerodynamic cycle variables, (2)
treatment variations by using different treatment materials, treating the ejector with
varying area, location, and treatment thickness for a mixer-ejector configuration, and (3)
secondary inlet shape (i.e., a more realistic inlet) and the blockage across the inlet (a
possible fin-like structure needed for installation purpose) by modifying one of the inlet of
a mixer-ejector configuration. The objectives also included the measurement dynamic
pressures internal to the ejector for a few selected configuration to examine the internal
noise characteristics.

Acoustic testing in General Electric’s Jet Noise Test Facility, Cell 41, was conducted for
five basic mixer configurations, namely, two aligned CD chute mixers of SAR (Suppressor
Area Ratio) 2.8 and 3.3, an aligned convergent chute mixer with SAR=2.8, and two
staggered CD chute mixers with SAR=2.8. With the variation of treatment type, treatment
area, treatment thickness, ejector length, modifications at the secondary inlet, and the
above listed five mixer geometry, 25 different configurations, were tested.

Tests were conducted for two aligned CD-chute mixers of SAR 3.3 and 2.8 with long
fully treated ejector to establish the repeatability of measurement by comparing the current
results with previously obtained data. In general, the repeatability of test results for both
the mixer-ejector configurations is very good. Small differences observed in the data
shown here could be due to uncertainty of exact duplication of ejector treatment, flight
Mach number, and aerothermodynamic conditions. The azimuthal variation of acoustic
field for the aligned CD-chute mixers with long ejector is significant and is much higher at
lower jet velocities. A variation of about 4 to 6 EPNdB is observed at jet velocities
between 1147 ft/sec and 1600 ft/sec. Even at higher jet velocities the azimuthal variation
of noise levels is of significance.

Significant noise reduction is observed due to flight simulation for the aligned CD-chute
mixers with long ejector. Significant SPL reduction due to flight simulation is observed at
higher polar angles for the entire frequency range. Major noise reduction took place

NASA/CR—2004-213117 iii



between flight Mach numbers of 0 and 0.24. The static pressure increases with increasing
flight Mach number, both on the ramp and chute surfaces due to freejet fan pressure rise,
indicating lesser loading for the chutes. The pumping increases with increasing flight Mach
number, since the total pressure at the inlet goes up. The transition from subsonic to

supersonic mode seems to be slightly delayed with respect to NPR due to flight
simulation.

A nickel based brick-like foam metal was used as the bulk absorber, instead of astroquartz,
for an aligned CD-chute mixers of SAR 2.8 with long ejector to determine its effectiveness
in noise suppression. The foam metal seems to be performing as well as and, in most
cases, slightly better than astroquartz treatment. This is a very encouraging result, since
maintaining proper astroquartz treatment is more laborious and time consuming. Since the
foam metal is solid in structure and did not show any deterioration during testing, this
treatment was used in all the subsequent treated configurations, instead of astroquartz.

Acoustically the staggered 10 and 9 full CD-chute mixer performs best compared to other
configurations at velocities above 1600 ft/sec. At lower velocities the aligned convergent
chute mixer performs much superior to other mixer designs acoustically. The effect of
mixer geometry on ramp static pressure distributions is insignificant. The static pressure
distributions on the chute surface is more or less the same for the three CD chute mixers.
However, it is significantly different for convergent chute mixer, especially at lower
NPRs. The static pressure levels for convergent chute are much lower compared to those
for CD chute configurations. The static pressure distributions between the mixer
configurations clearly indicate that the mode switch is delayed for convergent chute
mixer and is relatively early for 9 and 2 half staggered chute configuration.

Tests were conducted for 10 and 9 full CD-chute staggered mixer with fully treated long
ejector and with short hardwalled ejector to study the acoustic, flow related, and
performance related characteristics at fixed jet velocities by varying the nozzle pressure
ratio and total temperature. The EPNL increases with increasing jet velocity. With
respect to aerothermodynamic conditions the EPNL increases with increasing NPR and
with decreasing nozzle total temperature. The trend is reversed at lower jet velocities,
especially, with flight simulation. Based on the fixed EPNL contours, the EPNL
increases with increasing NPR and nozzle total temperature. However, it is interesting to
note that the fixed EPNL can be achieved by lowering the NPR and nozzle total
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temperature together at a lower NPR conditions. With respect to increasing NPR and
with decreasing total temperature the pumping decreases.

Based on the dynamic pressure measurements made inside the ejector treatment attenuates
internal noise and is more effective at lower NPR (or jet velocity). Treatment closer to the
mixer exit is also effective in flap dynamic pressure attenuation, but relatively less
compared to a similar treatment area closer to ejector exit, especially for very high NPR.
Ejector treatment is important, especially on entire surface, when the externally generated
noise component is lower or of the same magnitude compared to the internal noise
component.

For the treatment study, the acoustically performing best mixer-ejector configuration (i.e.,
the 10 and 9 full staggered CD-chute mixer with long ejector) was used to identify any
additional acoustic benefit. The mixer-ejector configurations used under current programs
generate dominant jet mixing noise compared to internally generated noise in the farfield,
especially at higher jet velocity conditions. Thus, the influence of various parameters
altered in ejector treatment on the farfield noise is small at higher velocities. However,
significant impact is noticed on farfield noise due to treatment variation at lower jet
velocities. It is believed that the influence of all these treatment parameters on internally
generated noise is similar, even though, not experienced in the farfield for higher jet
velocity conditions. If the jet-mixing noise is reduced by better mixer design or suitably
applying other innovative means the impact of internal noise will be realized even at higher
jet velocity conditions and the treatment study would be beneficial.

The fully treated ejector performs the best. However, 7/9 treatment is close to the full
treatment configuration, especially at higher velocities. The 0.57-thick treatment is better
in suppressing acoustic energy. Treatment location closer to ejector exit suppresses more
acoustic energy. Fully treated ejector is acoustically better that the flaps only treated
configuration. Silicon carbide bulk material seems to have more potential in suppressing
internal noise.

Based on the tests conducted to evaluate the impact of secondary inlet geometry the
influence of scab-on inlet as a high gradient inlet ramp and the fin as a blockage to the
secondary flow is relatively small on farfield acoustic characteristics as well as on the flow
and performance related parameters.
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1.0 INTRODUCTION

Environmental acceptability and economic viability are crucial issues in the development of
the next generation HSCT (High Speed Civil Transport). An exhaust system design that
meets FAR 36 Stage 3 takeoff acoustic requirements and provides high levels of cruise
and transonic performance and adequate takeoff performance at an acceptable weight to
the success of the program.

To date, test work under NASA/GE Contract NAS3-25415 ”Low Noise Exhaust Nozzle
Technology Development” has identified a viable candidate 2D mixer ejector nozzle
system with high levels of acoustic suppression. The acoustic suppression has been
obtained with a primary (mixer) nozzle with aligned (top-to-bottom) mixing chutes.
Aerodynamic mixing tests (@ total temperature of primary nozzle of about 860°R) of both
aligned and non-aligned (staggered) chutes have indicated, through laser velocimetry
plume mapping, that staggered chutes improve the mixing process within the ejector.

It is worthwhile to investigate the acoustic suppression benefits of the staggered chute
mixers. In addition, the acoustic characteristics of mixers with convergent chutes, which
potentially have improved thrust coefficient and are relatively less complicated to design
and fabricate, need to be evaluated. Also, the issues of treatment, with respect to its type,
area, thickness, and location, and the ejector inlet geometry with a support fin which may
be needed for structural support of the nozzle installation, need to be assessed for future
mixer-ejector designs. The Large Engine Technology (LET) program under NAS3-26617
provides an opportunity to investigate all these issues.

The objectives of the current program under two LET Task orders (i.e., 11 and 23) were
to experimentally investigate the effects on the acoustic and aerodynamic characteristics of
2D mixer-ejectors due to (1) the configurational variations, which include mixers with
aligned CD chutes, aligned convergent chutes, and staggered CD chutes and aerodynamic
cycle variables, (2) treatment variations by using different treatment materials, treating the
ejector with varying area, location, and treatment thickness for a mixer-ejector
configuration, and (3) secondary inlet shape and the blockage across the inlet (a possible
fin-like structure needed for installation purpose). In addition, internal dynamic pressures
for a few selected configurations were measured to examine the internal noise

characteristics. All the experiments were conducted in GEAE’s Cell 41 Acoustic Test
Facility.
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While, the convergent chute mixer study and the treatment study were conducted under
LET Task Order #23 subtask C, the tests for staggered chute mixers, internal dynamic
pressure measurement, and the influence of modified inlet with and without blockage
across it were performed under LET Task Order #11. The test procedure, data
acquisition, and data analysis for both the task orders are the same. In addition, significant
amount of the hardware is common to both the tasks. Finally, the results from both the
tasks are examined simultaneously to evaluate the comparative acoustic and aerodynamic
related characteristics of various mixer-ejector configurations. Therefore, a single final
report for both the tasks is prepared, which is more effective and useful to reflect the
objectives and avoids duplication of common descriptions. This approach to the final
report was agreed by the NASA Task Manager for both LET Task Orders 11 and 23 (Mr.
Doug Harrington).
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2.0 TEST FACILITY DESCRIPTION AND DATA ACQUISITION
PROCEDURES

All the tests for the 2D mixer-ejector acoustic models were conducted in the General
Electric Anechoic Free-Jet Facility, known as Cell 41, located in Evendale, Ohio. Brief
description of the facility and data acquisition procedures are included in this section.

2.1 ANECHOIC FREE-JET JET NOISE FACILITY

The GEAE anechoic free-jet jet noise facility, shown in Figure 2-1, is a cylindrical
chamber 43' (13.1 meters) in diameter and 72' (21.95 meters) tall. The inner surfaces of
the chamber are lined with anechoic wedges made of fiberglass wool to render the facility
anechoic above 220 Hz. The facility can accommodate model configurations up to 5.3"
(13.5 cm) and 5.5" (14.0 cm) equivalent flow diameter in the inner and outer flow streams,
respectively. The corresponding throat areas for these streams are 22 and 24 square
inches. The streams of heated air for the dual flow arrangement, produced by two separate
natural gas burners, flow through silencers and plenum chambers before entering the test
nozzle. The operating domain of the facility in terms of total temperature, pressure ratio,
mass flow rate, and jet velocity is indicated in Figure 2-2 for single- and dual-flow
operation and for static and simulated flight operation. Each stream can be heated to a
maximum of 1960°R with nozzle pressure ratios as high as 5.5, resulting in a maximum jet
velocity of 3000 feet/second.

The tertiary air stream system, which is used to simulate external flow, consists of a
250,000 scfm (at 50" of water column static pressure) fan and a 3,500 horsepower electric
motor. The transition duct work and silencer route the air from the fan discharge through
the 48" (1.2 meter) diameter free-jet exhaust. The silencer reduces the fan noise by 30 dB
to 50 dB. Tertiary flow at its maximum permits simulation up to a Mach number of about
0.4. Mach number variation is achieved by adjusting the fan inlet vanes. The combined
model and free-jet airflow is exhausted through a "T" stack silencer directly over the
models in the ceiling of the chamber. The "T" stack is acoustically treated to prevent high
levels of noise to the surrounding community. |

The facility is equipped with two systems of microphone arrays to measure the acoustic
characteristics of the test models in the farfield, a fixed array of microphones and an array
on a traversing tower. The fixed array has 17 microphones mounted from the false floor,
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the wall, and the ceiling of the test cell, which provides measurements at a minimum
distance of 26.75' (8.15 meter) from the nozzle reference location covering the polar angle
(0) range from 50° to 155°. The traversing tower contains 13 microphones, mounted at
polar angles 0 ranging from 45° to 155°, and provides measurements at a distance of 22'
(6.7 meter) from the nozzle reference location. The traversing tower can be positioned at
any azimuthal angle ¢ between +55° to -55° with respect to the fixed microphone array
(or ¢ = -10° to 1009) as shown in Figure 2-3.

The facility is also equipped with a laser velocimeter (LV) system and a shadowgraph
system for jet flowfield measurement and flow visualization, respectively. LV and
shadowgraph tests were not conducted in Cell 41 for the current program and, therefore,
these systems are not described in this section.

2.2 DATA ACQUISITION SYSTEMS

Cell 41 is supported by well-calibrated acoustic and aerodynamic data acquisition systems.
Acoustic data measured by both the microphone arrays is analyzed by an on-line system,
which computes 1/3-octave band data for model scale at a 40' arc corrected to standard
day conditions (i.e., 59°F and 70 % humidity) and narrowband data as measured. In
addition, this data is recorded on magnetic tapes for post processing if desired. All static
and total pressures including model surface pressures are measured using an aerodynamic
data acquisition system consisting of multiport scanivalve contained pressure transducers,
signal conditioner, and analog/digital converters. The pressure signals are supplied to a
Micro VAX computer system where it can be analyzed or down-loaded to GE's
mainframe or workstation computer systems. Concurrently, a front-end computer with
touch-screen application is used for signal and facility control and for real time data
monitoring. Temperature data (thermocouple signals) are fed directly to the front-end
computer. Online 1/3-octave data are further analyzed for scaling, flight transformation,
and extrapolation to any sideline or arc location.
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3.0 CONFIGURATION DESCRIPTION AND SCOPE OF TESTING

3.1 MODEL GEOMETRY

The basic 2D nozzle system with aligned CD chutes evolved around the GE21/F14 study
L1IM (VCE) cycle associated with a Mach 2.4 cruise aircraft with a nominal 700 pps size
engine. At the 50,000 Ib net takeoff thrust (power code 68, altitude=689’, Mp=0.32) the
exhaust nozzle design point corresponds to NPR=4.0, T8=2040°R, W,=708.6 pps, and
A8=1086 in®. Figure 3-1 shows a side and a top views of the 2DCD mixer-ejector nozzle
model (NRA) attached to the transition section in Cell 41. A close up view of the 2D
model is shown in Figure 3-2. The basic 2D mixer-ejector nozzle model system used in the
current program was designed and fabricated under Contract NAS3-25415. The various
conﬁguratidns tested under Contract NAS3-25415 used either the SAR 2.8 or 3.3 mixer
rack assembly. The ejector has two lengths (16.055” and 11.5” model scale, or about 120”
and 80” full scale, respectively) and three mixing area ratio (MAR) hangers resulting in
MAR values of 0.95, 1.2, and 1.4. For the current tests a MAR of 0.95 was used for all
configurations.

Mixers with Aligned CD Chutes: . Both the CD chute aligned mixers (SAR=2.8 and
3.3), designed and procured under Contract NAS3-25415, were tested under the present
test series to verify the repeatability of acoustic results. These mixers have 20 aligned CD
chutes, split into upper and lower 10-chute racks, aligned top-to-bottom with a 0.4”
center gap. The chute CD cross section was designed assuming chute exit plane local
static pressure of 11.0 psia. At takeoff NPR of 4.0 the Ps=58.8 psia. NPR based on local
static pressure is therefore becomes 5.34. With y=1.33 at facility maximum T8=1960°R,
A.xi/A8 (i.e., CER) becomes 1.43. Based on the model throat area, A8 of 19.14 and 22.16
sqﬁare inches for the mixers of SAR=3.3 and 2.8, respectively, the mixer exit area (Aexit)
becomes 27.27 and 31.69 square inches, respectively. Based on the throat area of 19.14
and 22.16 square inches, the equivalent mixer diameters D8y are 4.94” and 5.317,
respectively. Figure 3-3 through 3-5 show the detailed geometry of the SAR 2.8 and 3.3
chutes.

Mixers with Aligned Convergent Chutes: In addition, a SAR=2.8, 20 convergent
chutes, aligned top-to-bottom mixer with A8=22.16 in’, interchangeable with the existing
hardware has been designed, fabricated and tested under the current program (Contract
NA83-26617, Task Order #23) to identify noise characteristics of a convergent chute

NASA/CR—2004-213117 9



Axisymmetric Transition

- (ross Section "‘ Section
-w= )D Section

Figure 3-1. 2D acoustic model system adapted to GEAE Cell 41.

NASA/CR—2004-213117 10



"8'7=YVS 10193fd
o[ess NIy 08 pue sanyds gD ynm 9jzzou 103d3fs-1ossaxddns g jo moke| 'z-¢ amndig

e T

v : % -+ aucdl
A EX) K e . . pafapupuy -agey ¥ BN) - SYRPNPS : SNPINN PR . K
‘n“ o : .oH!'... llllllllllllllll '.— ~ \\\0 -
5 P a—— | [

s g ‘ Ot- 0«100 . .’ X\
: = a2 1 7
" Y TS % T lllll \“
i S MLl “
; QP b 1P m
$ b o - ol o e o ; VI. < - - - i - . - - ——
8 8 H
: £ g m
- i el “
§ b [ X - : o e —
7“ nov h y Q \@.’0' & //I%ilu
& : 2 ®_ >~ TTeealVe
W T s .0 eeeee k %l
3 b : G N 18T ® 7
S84 808 Kok R 7] a = : o

.07

bva - -~
-'hl""" - A

wwv’mtlwl.l!
3 4 ﬂL&f
MBIA ued (e) S

11

NASA/CR—2004-213117



de8 dy-oi-dy 204D = ¥°HD 6 “(SOYOUI Uy I8 SUOISUIWIP [[8)
sueyd jeoIy) 18 YIPIM ANYD = oM °g SIOXTW SINYP-(0) 10§ SIatoweted 10308) A[EOS Puk S1Howods A9y  'g-¢ dmB1

sueyd 1201y} 1€ JUSDLO 210D JO YIPIAL = THOOM */
dBY + Y = XNy g

o1 MO[J (ATepu0sas) JUSIqUIR [BI0 ], = J8SY °G ovo L69°0 | L9TO | ST'E9 | 10V v6'v vi'6l | €S°L/1 £t

gV 10} Jojowierp juafealnby = gq ¢ o¥o ¥v9’0 | 0CE0 | €879 | L9OV I¢°S 91Tt LN 8T

eaIR Jeony) wieons Arewild = gV ‘¢ NI NI NI NI NI NI NI
(NI 9801 JO ©aI® 5[5 [[nj B UO poseq YOy | ‘Hopy | ‘RI0OM | XMy | DSy ‘Ped ‘[Y 481 avs
10108,] 9[e0g Jeoul ] = A4S T 6 8 L 9 1Y 14 £ (4 I

g/ XNy = oney vary lossaiddng = Yy '1

02°0=2/2°H0) II‘ m2<1E 8V LV SY0SSHAddNS HLNHD dD 40 MHIA dNH

- . - _ - - X
@ oN.o.u

1690 0
L - -
“8 a ﬂa B

P
¥

L970=HOD py of (et Nm..Oﬂm—MOU& . . s

- N \MMOU M N\&MOU? ] e

il

CCEAYS i | 3T=YVS

12

NASA/CR—2004-213117



memm——1 1

Tos2o 0.480

o
l o~
AS8
g
3.7388 s EXIT PLANE
et 4.00 — 0.5714 le——o
THROAT PLANE—+| T
CONSTANT -
, 3.219
3.356
3.06
1.986 L Ny 3.10
TANGENT LINE [
1.937 TRUE RADIUS ,
~ PERPENDICULAR _
TO 30° LINE AN . 1 T )
7 S o N NTFR1 NS
) 020 el 3
. ' : g3 y

Figure 3-4. Details of SAR=2.8 CD-chute design (all dimensions are in inches).
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Figure 3-5. Details of SAR=3.3 CD-chute design (all dimensions are in inches).
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design. Figure 3-6 shows an isometric view of the convergent chute rack. The various
geometric parameters for the convergent chute design, are shown in Figure 3-7. Note that
the chute exit plane (also the throat plane) for the convergent chute terminates at the
throat plane of the SAR 2.8 CD chute rack (see Figures 3-6 & 3-7).

Mixers with Staggered CD Chutes: Two staggered CD chute mixers with SAR of 2.8
were designed and fabricated, and tested under the current program Contract NAS3-
26617, Task Order 11 and are interchangeable with the hardware of NAS3-25415. Both
the staggered chute nozzle configurations used a new lower rack with the existing SAR
2.8 10 CD chute upper rack. One of the staggered lower chute rack configuration has 9
full cold chutes and two half cold chutes, as shown in Figure 3-8. The 9 full chutes are
offset laterally by one-half chute-to-chute period, so that the center of the primary stream
on the upper rack is aligned with the center of the secondary stream on the lower rack. A
half cold chute is placed on each end of the lower rack. This geometry provides uniform
stagger of the cold to hot flow elements while matching the hot and cold flow areas. The
second staggered lower chute rack configuration has 9 full cold chutes, as shown in Figure
3-9. When coupled with the upper 10 full CD chute rack, the 9 chute rack provides non-
uniform chute stagger, the degree of offset increasing to either side of the nozzle minor
axis. As with the aligned CD chute racks, the CD flowpaths for the staggered chute lower
racks were designed with a CER of 1.43. The core flow area A8 for these two mixers is
also 22.16 in>. All the staggered chute configurations were tested with the existing ejector
system.

Ejector Geometry : The ejector system, acquired under Contract NAS3-25415, used for
the current program, has two ejector lengths (Lgy), three position MAR capability, and
acoustic treatrent area variation. The ejector treatment area is varied by treating the
entire ejector system, or the flaps alone, or the side walls alone, or select portion of the
ejector surfaces. Bulk absorber treatment material and its density is varied within each tray
as the trays are removable and repackable.

The treatment trays are divided into compartments to prevent degradation and/or
compaction of treatment throughout the tray and allow for uniform packing, especially for
softer materials, like astroquartz.. The treatment trays are designed to be packed with bulk
material with a rigid back plate and a perforated facesheet with 37% porosity. The
facesheet is made out of Hastalloy with 0.045” hole diameters on a straight line pattern,
0.067” spacing on centers. For hardwalled configurations, sheet metal, 0.0267-0.034”

NASA/CR—2004-213117 15
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Figure 3-7. Details of SAR=2.8 convergent-chute design (all dimensions are in inches).
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Figure 3-8. Isometric view and the details of SAR=2.8 nine and two halves CD-chute rack
design for staggered mixer assembly (all dimensions are in inches).
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thick, trimmed to fit the tray compartment dimensions, are inserted between perforated
facesheet and bulk absorber

Bulk Absorbers: Several bulk absorbers are used to pack the treatment trays under this
program. Astroquartz of style 550 mat, 0.0002” maximum fiber diameter, 0.02” thick
sheets are compressed inside the treatment tray compartments to a desired density of
about 1 lb/ft’. Retimet metal foam grade 8ONC2, 0.08” thick, 95% porous, 0.03” pore
size, is placed over the astroquartz (behind the perforated facesheet) to protect the
astroquartz from degradation due to flow turbulence. This treatment was used only for the
aligned mixer configurations for verifying repeatability.

A nickel based foam metal, 0.5 thick, is used in most of the configurations. In addition, a
silicon carbide (SiC) foam with 100 ppi is also used in one configuration. SiC foam was
jointly selected by the EPM and acoustic teams after a series of screening tests for
impedance, density, structural strength, sonic environment, etc. Foam metal and SiC foam
are cut to fit snugly into the treatment trays and are held in place by the perforated |
facesheet on the top.

Fin Across the Secondary Flow Inlet : According to conceptual installation studies by
Boeing a fin structure across the ejector inlet of the mixer-ejector may be required to
support the mixer-ejector nozzles, particularly in the out-board locations due to reduced
thickness of wing spar. To get a preliminary assessment of the effect of the fin on the
farfield noise and the flow entrainment a 1/7th scale model fin (based on the conceptual
design of fin by Boeing) was designed to fit the existing 2D mixer-ejector nozzle
hardware, fabricated and tested in Cell 41. Figure 3-10 is a photographic view of the fin
attached to the 2D mixer-ejector model in Cell 41 anechoic chamber.

Modified Scab-on Inlet : The basic inlet configuration of the 2D model scale mixer
nozzle has a very gentle curvature and is not practical. The inlet for secondary flow has a
relatively shallow angle of about 259, shown in Figure 3-2. A more realistic inlet, based on
the current 2D fixed chute nozzle preliminary design, has a much smaller inlet length
resulting in an ejector inlet angle of about 359, which is relatively steeper compared to
Gen 1 design. Aerodynamically, such a steep inlet might cause flow separation and could
influence the noise and the performance of the nozzle. Before finalizing the Gen 2 design it
is essential to assess the impact of the new inlet design on acoustics and ejector flowfields.

NASA/CR—2004-213117 20
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To facilitate this objective a scab-on inlet adapter with 359 inclination was designed and
fabricated, which was installed on the existing inlet of Gen 1 scale model nozzle
configuration and tested. Figure 3-11 shows the side view of the modified inlet compared
to the existing original inlet ramp.

3.2 AcCOUSTIC TEST MATRIX

The acoustic test matrix is constructed around the GE21/F14 study L1M cycle (VCE) for
the M2.4 HSCT. This is representative engine cycle for dry power (i.e., power code 50).
The set of test conditions used for the current test program is shown in Table 3-1 and
Figure 3-12. The test points are defined in terms of NPR, T8, and the corresponding ideal
jet velocity V;. Points 1, 68, and 2 through 7 are on the L1M cycle line. The points are
nominally selected at even increment of NPR, except for point 68 and 5. The point 68
gives an intermediate ideal jet velocity of 1400 ft/sec at the lower limit of L1M cycle.
Point 5 yields a V; of 2384 ft/sec, which is a typical takeoff velocity with partial PLR.
Point 7 is the maximum dry condition for the L1M cycle. Point 8 is on a projected L1M
cycle line to obtain acoustic data at maximum jet velocity of possible interest, to evaluate
nozzle suppression characteristics along a continuously uniform NPR/TS line. Point 9 is on
the F404-400 cycle line and has the same NPR (i.e., 3.4) of LIM cycle point 5. The T8 for
point 9 is slightly higher than that of point 5. This point is chosen to match with the F404-
400 cycle for future cycle trade studies.

A mode switch study was performed to quantify its effect on acoustic characteristics of
the nozzle. Between the two consecutive L1M points, where a mode switch occurs,
several tests were conducted with 0.1 NPR increment to assess the transition NPR.
Several tests were conducted by decreasing the NPR in step of 0.1 starting from condition
of supersonic mode, until the ejector transitions back to the subsonic mode. This would
provide hysteresis influences on acoustics and flowfield.

Several tests for a few selected configurations were conducted to study the effect of
temperature (i.e., jet density) on noise and to assess internal and external noise
components radiated from the nozzle. For this study, several aerothermodynamic
conditions were employed at a fixed jet velocity V;. In addition, tests were conducted at

NASA/CR—2004-213117 22
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Table 3-1. Test point definition for L1M & F404-400 cycles

Test Point | NPR | T8OR | Vjft/sec.
1 1.5 1000 1147
68 1.75 | 1102 1400
2 2.0 1175 1595
3 2.5 1325 1919
4 3.0 1485 2200
5 34 | 1590 2384
6 4.0 1750 2637
7 4.5 1860 1812
8 5.0 1960 2968
9 3.4 1645 2426

Table 3-2. Test point definition for temperature and density study

TestPoint | NPR | TSOR | Vjftsec | NPYIEAL
67 15 | 1486 1400 1400
68 175 | 1102 1400
38 1.6 | 1666 1590 1590
69 175 | 1418 1590
2 20 | 1175 1595
70 2.25 | 1016 1590
37 25 | 913 1590
36 20 | 1693 1920 1920

3 2.5 | 1325 1919
10 34 | 1038 1920
71 2.3 | 1881 2200 2200
34 25 | 1732 2200
4 3.0 | 1485 2200
35 34 | 1359 2200
31 2.75 | 1863 2384 2384
32 3.0 | 1738 2384
5 34 | 1590 2384
33 40 | 1438 2384
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fixed NPR by varying T8 and vice versa. The test points for this study are defined in Table
3-2 and in Figure 3-12.

For a few selected configurations internal dynamic pressure was measured using a fiber
optic probe. For these tests the total temperature of the primary stream was set at 1360°R
due to the temperature limitation of the probe. The NPR for these tests were varied from
1.4 to 4.8 at a step of 0.2.

3.3 ACOUSTIC TEST CONFIGURATIONS

Acoustic testing in Cell 41 was conducted for five basic mixer configurations, namely, two
aligned CD chute mixers of SAR 2.8 and 3.3, an aligned convergent chute mixer with
SAR= 2.8, and two staggered CD chute mixers with SAR=2.8. With the variation of
treatment type, treatment area, treatment thickness, ejector length, modifications at the
secondary inlet, and the above listed five mixer geometry, 25 different configurations, as
listed in Table 3-3, were tested. All the model configurations were oriented in Cell 41 (see
Figure 3-13), such that the acoustic data could be acquired for both community and
sideline locations. The community location with respect to minor axis (i.e., $=0°) is not
attainable due to microphone tower positioning limitation. However, the tower could be
positioned at ¢=4° instead of ¢=0°. Thus, the acoustic data measured at ¢=4° is used for
community location with respect to minor axis. For some configurations measurements
were made at all these four azimuthal locations and for most cases the community and
sideline data were acquired, only, with respect to the major axis (this refers to ejector
inlets in top-bottom orientation on the aircraft).

Configurations 1 and 2: Configurations 1 and 2 are the aligned CD chute mixers of SAR
3.3 and 2.8, respectively, with long fully treated (with astroquartz) ejector. Acoustic data
was acquired along L1M cycle line for static and simulated flight conditions of Mach 0.12,
0.24, and 0.32 at community and sideline points with respect to both major and minor axis
of the ejector. These data were obtained to verify the repeatability of the acoustic results
obtained earlier (under Contract NAS3-25415). In addition, the data will also support
HEAT (High-lift Engine Aeroacoustic Test) nozzle testing in the NASA Ames Research
Center 40°x 80’ acoustic wind tunnel. A mode-switch study was also conducted for these
configurations.

NASA/CR—2004-213117 26



Table 3-3. Matrix for 2D mixer-ejector nozzle tests in cell 41 (Contd.)

CONFIGURATION DEFINITION TEST REMARKS
CONDITION
CONFIG
NO# CHUTE SAR | FRULL TREATMENT
TYPE SCALE TYPE
FLAP
LENGTH
1 CDALIGNED | 3.3 | 120" | ASTROQUARTZ | LIMCYCLE, | SIDELINE & COMMUNITY
Mp=0,.12,.24,.32 | WRT MAJOR & MINOR AXES,
MODE SWITCH STUDY
2 CDALIGNED | 2.8 | 120" | ASTROQUARTZ | LIMCYCLE, | SIDELINE & COMMUNITY
Mp=0,.12,24,.32 | WRT MAJOR & MINOR AXES,
MODE SWITCH STUDY
21 CDALIGNED | 2.8 | 120" | FOAMMETAL LIMCYCLE, | SIDELINE & COMMUNITY
Mp=0,.12,24,.32 | WRT MAJOR & MINOR AXES,
MODE SWITCH STUDY
3 CONVERGENT | 2 8 | 120" | FOAMMETAL LIMCYCLE, | SIDELINE & COMMUNITY
ALIGNED Mp=0&032 | WRTMAJOR AXIS ONLY,
MODE SWITCH STUDY
4 CONVERGENT | 2 8 | 120" HARD WALL LIMCYCLE, | SIDELINE & COMMUNITY
ALIGNED Mp=0& 032 | WRTMAJOR AXISONLY,
MODE SWITCH STUDY
5 CONVERGENT | 2.8 | 80" FOAM METAL LIMCYCLE, | SIDELINE & COMMUNITY
ALIGNED Mp=0& 032 | WRTMAJOR AXISONLY,
MODE SWITCH STUDY
6 CONVERGENT | 2.8 | 80" HARD WALL LIMCYCLE, | SIDELINE & COMMUNITY
ALIGNED Mp=04& 032 | WRTMAJOR AXIS ONLY,
MODE SWITCH STUDY
7 9&2-Half CD | 2.8 | 120" | FOAMMETAL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mp=0& 032 | WRTMAJOR AXISONLY,
MODE SWITCH STUDY
8 9&2-HafCD | 2.8 | 120" HARDWALL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mp=0&0.32 | WRTMAJOR AXISONLY,
MODE SWITCH STUDY
9 9&2-HafCD | 28| 80" FOAM METAL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mp=0& 032 | WRTMAJOR AXIS ONLY,
MODE SWITCH STUDY
10 9&2-HafCD | 29| 80" HARD WALL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mp=0& 032 | WRTMAJOR AXIS ONLY,
MODE SWITCH STUDY
11 9CD 2.8 1 120" | FOAMMETAL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mp=0,24,32,36 | WRTMAJOR AXIS ONLY,
TempErrecT | MODE SWITCH STUDY,
INTERNAL DYNAMIC
PRESSURE
MEASUREMENT
12 9CD 2.8 1 120" HARD WALL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mp=04& 032 | WRTMAJOR AXIS ONLY,
MODE SWITCH STUDY,
INTERNAL DYNAMIC
PRESSURE
MEASUREMENT
13 9 CD 281 80" FOAMMETAL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mp=0&032 | WRTMAJOR AXISONLY,
MODE SWITCH STUDY
14 9 CD 2.81 80" HARD WALL LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED Mg=0,.24,32,.36 | WRTMAJOR AXIS ONLY,
TEMP EFFECT MODE SWITCH STUDY
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Table 3-3. Matrix for 2D mixer-ejector nozzle tests in cell 41 (Concluded)

CONFIGURATION DEFINITION TEST REMARKS
CONFIG CONDITION
NO # CHUTE SAR | ruir | TREATMENT
TYPE SCALE TYPE
FLAP
LENGTH
16 9CD 2.8 | 120" | FOAMMETAL | L1M CYCLE, | SIDELINE & COMMUNITY
STAGGERED 49EIECTOR | Mo & (.32 | WRTMAJOR AXISONLY,
AREA FROM TREATMENT STUDY
EXIT
17 9CD 2.8 | 120" | FOAMMETAL | L1M CYCLE, | SIDELINE & COMMUNITY
STAGGERED 4SEIECTOR | M) & (.32 | WRTMAJOR AXISONLY,
AREA CLOSER TREATMENT STUDY
TO MIXER
EXIT
18 9CD 28| 120" | 03-THICK | LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED FOAMMETAL | M) & (.32 | WRTMAIOR AXISONLY,
7/9-EJECTOR TREATMENT STUDY
AREA ‘
19 9CD 2.8 | 120" | FOAMMETAL | L1IM CYCLE, | SIDELINE & COMMUNITY
STAGGERED FLAPSONLY Mon & 0.32 WRT MAJOR AXISONLY,
TREATMENT STUDY
20 9CD 281 120" | 02"-THICK | LIMCYCLE, | SIDELINE & COMMUNITY
STAGGERED FOAMMETAL | nrc e 032 | WRTMAJOR AXISONLY,
7/9~1?JAI§EC:0R F= ) TREATMENT STUDY
9CD " SILICON LIMCYCLE, | SIDELINE & COMMUNITY
22 STAGGERED 281 120" | carpmerosm Mie=0 & 0.32 | WRTMAIJOR AXISONLY,
= i TREATMENT STUDY
23 9CD 2.8 ] 120" | FOAMMETAL | 1M CYCLE, | SIDELINE & COMMUNITY
STAGGERED BOATTALL | ¢ 0 &032 | WRTMAJOR AXISONLY,
LIMITED F= ) TREATMENT STUDY
CONFIG.
(<7/9 EJECTOR
AREA)
24 9CD 2.8 1 120" | FOAMMETAL | L1M CYCLE, | SIDELINE & COMMUNITY
STAGGERED (<79 EJECTOR | M= & (032 | WRTMAIJOR AXISONLY,
WITH AREA) MODE SWITCH STUDY
MODIFIED
INLET
25 9CD 2.8 | 120" | FOAMMETAL | LIM CYCLE, | SIDELINE & COMMUNITY
STAGGERED (IS EIECTOR | M= & 032 | WRTMAIOR AXISONLY,
WITH FIN AREA) MODE SWITCH STUDY
ACROSS
INLET
26 9CD 2.8 | 120" | FOAMMETAL | LIM CYCLE, | SIDELINE & COMMUNITY
STAGGERED (T9EJECTOR | Mp=() & 0.32 | WRTMAJOR AXISONLY,
WITH AREA) ' MODE SWITCH STUDY
MODIFIED
INLET & FIN
ACROSS IT
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Figure 3-13. Plan view of Cell 41 Anechoic Freejet Facility showing 2D nozzle orientation
for acoustic measurements at community (i.e., ¢ = 90° and ¢ = 0°) and sideline
(i.e., ¢ = 25° and ¢ = 65°) planes with respect to both major and minor axes.
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Configuration 21: Until this test series, the treatment used in the ejector was Astroquartz,
which is a soft cotton-like material and consists of quartz fibers. During the testing this
material usually gets deteriorated and also gets packed unevenly in the treatment trays.
Therefore, frequently, the treatment trays are repacked, which involves more effort and
could change acoustic properties of the treatment between and during tests. To avoid
these issues a nickel based foam metal, which is a rigid porous foam, was used as the
ejector treatment for the aligned chute mixer with SAR=2.8. The results are compared
with those for configuration 2 to establish the effectiveness of the foam metal treatment.
Based on the excellent agreement of the acoustic results between these two
configurations, foam metal was used for most of the configurations.

Configurations 3 - 6: Aligned convergent chute mixer was used for configurations 3
through 6. Long ejector of 16.055” (120” full scale) was used for configurations 3 and 4,
while short ejector of 11.5” (80” full scale) was used for configurations 5 and 6.
Configurations 3 and 5 were fully treated with foam metal bulk absorber, while
configurations 4 and 6 employed hard wall ejectors. Acoustic and model surface static
pressure data was acquired along the L1M cycle line at community and sideline points
with respect to major axis for static and Mach 0.32 simulated flight conditions. Mode
switch study was also conducted for these configurations by measuring the acoustic data
at the sideline point with respect to major axis at static and Mach 0.32 conditions.

Configurations 7 - 14: Staggered CD chute mixer with 9 full and 2 half chute lower rack
and 10 chute upper rack was used for configurations 7 through 10. Staggered CD chute
mixer with 9 full chute lower rack and 10 chute upper rack was used for configurations 11
through 14. Long ejector of 16.055” (120 full scale) was used for configurations 7, 8, 11,
and 12, while short ejector of 11.5” (80” full scale) was used for configurations 9, 10, 13,
and 14. Configurations 7,9, 11, and 13 were fully treated with foam metal bulk absorber,
while configurations 8, 10, 12, and 14 used hard wall ejectors. Acoustic and model surface
static pressure data was acquired for configurations 7, 8, 9, 10, 12, and 13 along the L1M
cycle line at community and sideline points with respect to major axis for static and Mach
0.32 simulated flight conditions. Mode switch study was also conducted for these
configurations by measuring the acoustic data at the sideline point with respect to major
axis at static and Mach 0.32 conditions.
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In addition, the configurations 11 and 14 were used to study the effect of jet density.
Acoustic and model static pressure data was acquired for these configurations along the
L1M cycle line at community and sideline points and at aerothermodynamic points defined
in Table 3-2 at sideline point only with respect to major axis for static and Mach 0.24,
0.32, and 0.36 simulated flight conditions. Mode switch study was also conducted for
these configurations by measuring the acoustic data at the sideline point with respect to
major axis at static and Mach 0.24, 0.32, and 0.36 conditions.

Internal dynamic pressures were measured for configurations 11 and 12 by using fiber
optic probe at two flap locations, one closer to mixer exit and the other closer to ejector
exit, at a fixed primary stream total temperature of 1360°R at several NPR from 1.4 to 4.8
at a step of 0.2 at static condition. Farfield acoustic data and the model surface static
pressures were also measured at community and sideline points with respect to major axis
simultaneously. These results document changes in internal dynamic environment as well
as interpret farfield changes in internal noise characteristics due to ejector length and
treatment.

Configurations 16 - 20, 22, and 23: Configurations 16-20, 22, and 23 employed
staggered CD chute mixer which has a lower rack with 9 full width cold chutes and an
upper rack with 10 full cold chutes. Long ejector of 16.055” (120” full scale) was
employed for these configurations for treatment study. Foam metal treatment was used for
all configurations except configuration 22. Configurations 23 and 16 had treatment over
7/9th and 4/9th of the total area, respectively, and the results of these tests are compared
with those for configuration 11, which was fully treated with foam metal, and also with
configuration 12, whose walls were untreated. This comparison would thus assess
influence of treatment area on acoustic suppression. Configurations 18 and 20 employed
treatment thicknesses of 0.3” and 0.27, respectively, over 7/9th of total area and these
results are compared with those for configuration 23 (with 0.5”-thick treatment) to assess
the effect of treatment thickness. The effect of treatment location on the acoustic
suppression is examined using configuration 17 by treating 4/9th of ejector area starting
from the mixer exit plane and compared with the results of configuration 16, for which the
same amount of treatment was applied toward the ejector exit. Finally for configuration 22
the long ejector was fully treated with another type of treatment, Silicon carbide (SiC)
foam, to examine its effectiveness compared to the nickel based foam metal, used for
configuration 11. SiC foam was one of the bulk material that was jointly screened with
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EPM team for desirable acoustic and material properties in terms of impedance, density,
mechanical strength, sonic fatigue, etc.

Acoustic and model surface static pressure data was acquired for all the configurations
along the L1M cycle line. Mode switch study was also conducted for these configurations
by measuring the acoustic data at the sideline point with respect to major axis at static and
Mach 0.32 conditions.

Configurations 24 - 26: Staggered CD chute mixer with 9 full cold chute lower rack and
10 full cold chute upper rack was used for configurations 24 through 26. Long ejector of
16.055” (120 full scale) with treatment over 7/9th of the total area was used for these
configurations. The effect of secondary inlet ramp shape on acoustic and aerodynamic
parameters (i.e., pumping, flap static pressures, etc.) were studied by using the modified
inlet ramp in configuration 24 and comparing the results with those of configuration 11. A
structural fin was installed across the secondary inlet for configurations 25 and 26 with
baseline and modified inlet ramps, respectively, and tested to examine its effect on acoustic
and aerodynamic parameters. Acoustic and model surface static pressure data was
acquired for all these configurations along the LIM cycle line. Mode switch study was
also conducted for these configurations by measuring the acoustic data at the sideline
point with respect to major axis at static and Mach 0.32 conditions.

3.4 ACOUSTIC DATA NOMENCLATURE AND NORMALIZATION

The farfield acoustic data measured by an array of microphones at an azimuthal location ¢
are analyzed to generate various acoustic parameters as per the flow chart of Figure 3-14.
These parameters include Sound Pressure Level (SPL), Sound Power Level (PWL) based
on azimuthal uniformity, Overall Sound Pressure level (OASPL), Perceived Noise Level
(PNL), Tone corrected Perceived Noise Level (PNLT), and Effective Tone corrected
Perceived Noise Level (EPNL). EPNL for static condition is computed using the PNLT

values assuming a flight velocity of 360 ft/sec (i.e., Mp=0.32) and is termed as Pseudo
EPNL.

Often the noise level parameters are normalized with respect to a reference thrust Fpef or
with respect to the reference thrust Fref and jet density. These normalization arose out of
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Input Data
Model Scale Standard Day Data at 40 ft (12.19 m) Arc

‘ .
Background Correction
Subtract Background Noise Due to Tertiary Flow at each Velocity

¥
Flight Transformation

Convert to Lossless
Add Atmospheric Attenuation A(f) = a(f)(R)
Where R = Actual Distance, ft.
o = Atmospheric Attenuation at A(f) for As Measured Day

A

Extrapolate to 40 ft (i.e.. 12.19 m) Arc - Standard Day
Subtract 20 Log,0[40ft (or 12.19 m)/R (Actual Distance)]

Subtract Atmospheric Attenuation for 40 ft (or 12.19 m) Arc - Standard Day
A(f) = Ostandard Day) (£) 40 ft(or 12.19 m)

y
Determine Scaled Frequency
fScaled = (fModcl Scalc)/ (Diamcter Ratio)
Diameter Ratio = (Diameter Full Scale)/(Diameter Model Scale)

Scale SPL Levels k
dB =20 Log 1o(Diameter Ratio)

>

Extrapolate to Arc or Sideline
SPL = 20 Log;o[R/40 ft (or 12.19 m)]
Add Atmospheric Attenuationsiundard Day = Ostandard Day (R)

4

Qutput Files (Print & ARD

Untransformed Model Data Corrected for Background Noise
Flight Transformed Model Data
Flight Transformed Scaled and Extrapolated Data at Desired Arcs and Sidelines

Output Data
Sound Pressure Levels (SPL)

Over All Sound Pressure Levels (OASPL)
Perceived Noise Levels (PNL)
Sound Power Levels (PWL)
Tone Corrected Perceived Noise Levels (PNLT)
Effective Tone Corrected Perceived Noise Levels (EPNL)

Figure 3-14. Acoustic data processing flowchart.
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establishing velocity dependence of jet noise, using classical Lighthill's scaling laws and the
normalization factors are defined as follows:

NF;y, = Normalization factor with respect to thrust = -10 Log ((FG);/Fref), dB

NF = Total normalization factor with respect to thrust and density
=-10 Log (FG)/Fref) (p/ po)® -1, dB

where,
Fref = Reference Gross Thrust, 60000 lbs

p = Jet density based on isentropic expansion of primary stream
po = Ambient Density of Air

(FG); = ideal gross thrust in Ibs

@ = Density exponent, 2 for high velocities

Note that the value of Frer = 60,000 Ibs is chosen for these studies, which is a typical
value for the full scale engine thrust at takeoff for an HSCT.
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4.0 ACOUSTIC AND AERODYNAMIC DATA ANALYSIS FOR DIFFERENT
MULTI-CHUTE MIXER CONFIGURATIONS

The current test program covers five basic mixer configurations, namely, two aligned CD
chute mixers of SAR 2.8 and 3.3, an aligned convergent chute mixer with SAR= 2.8, and
two staggered CD chute mixers with SAR=2.8. The aligned CD chute mixers were tested
with fully treated long (i.e., 16.055”) ejector. Astroquartz was used as the bulk treatment
for the SAR 3.3 mixer. However, the aligned CD chute mixer with SAR=2.8 was tested
with astroquartz as well as with a nickel based foam metal as ejector treatments.

Each of the convergent chute and staggered CD chute mixers was tested with two
different ejector lengths, 16.055” and 11.5”. Each of these ejectors was tested with and
without acoustic treatment. For treated configurations, the entire ejector, flaps and side
walls, were treated with the nickel based foam material with a 37% open perforated
facesheet. Acoustic and performance related results for each mixer configuration are
presented in this section indicating the influence of treatment, ejector length, and flight
simulation on these characteristics for the fixed mixer geometry. In addition, the influence
of the mixer geometry on acoustic and performance related parameters is also included in
this section.

4.1 ALIGNED CD-CHUTE MIXER CONFIGURATIONS:

The CD chute mixers with SAR=3.3 and 2.8, used for the present configuration, has 20
aligned CD chutes and has throat areas of 19.14 and 22.16 square inches (AS8),
respectively. The side view of the aligned CD chute mixer-ejector is shown in Figure 4.1-
1. The isometric view of the 20 CD chute aligned mixer configuration for SAR=2.8 is
shown in Figure 4.1-2.

Instrumentation : Each mixer nozzle has 21 static pressure taps (Ps) and 4 skin
‘thermocouples. The flap and the secondary inlet contain 51 static pressure taps, 24 total
pressure taps, and 12 skin thermocouples. Flap static pressure taps are used to identify the
flow characteristics in the ejector. The secondary inlet total pressure taps are used to
evaluate the secondary flow rate.

The various components of the mixer-ejector nozzle, namely, the ramp, the inlet flow
guide, the chute, and the flap surfaces, are instrumented with static pressure taps. The
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secondary flow path is instrumented with static pressure taps and total pressure rakes to
evaluate the secondary mass flow rate. The model instrument locations are shown in

Figures 4.1-3 through 4.1-8. The axial coordinates, X are tabulated with respect. to the
mixer exit plane.

Figures 4.1-3 and 4.1-4 show the side views and Figures 4.1-5 and 4.1-6 show the plan
views (upper and lower racks, respectively) of the model with SAR=2.8 indicating the
locations of the static pressure taps on the ramp, inlet flow guide, and the chute surfaces,
and the total pressure rakes in the secondary flow path. The instrumentation layout for
mixer of SAR 3.3 is similar to that of mixer with SAR=2.8, except the numbering for a
few taps are different. Static pressure taps PS1 through PS8 are on the ramp (i.e., the
forward inlet ramp) used to assess potential flow separation on the ramp if any. Static
pressure taps PS9 through PS16 (PS30 through 37 for SAR=3.3) are spaced on centers of
8 equal projected chute exit area, and are located in the cold flow side of the chutes (see
Figure 4.1-4). An integrated force coefficient, called chute loading coefficient, is
computed using the static pressure distributions on the chute secondary flow side, using
the following expression;

Chute Loading Coefficient (%) = 2[((Psc)i-Pamb) Ajl 100/(FG);

Where,

(Psc)j = static pressure measured by the ith tap
A ; = elemental projected area in axial direction for the static pressure (Ps.); in in”
(FG); = ideal gross thrust in 1bs

This coefficient is not the same as ACgg due to chute base drag. Accurate chute base drag
calculation needs an integration of axial component of static pressure distribution over the
entire chute surface. Hence, this calculation of chute loading coefficient is a qualitative
indicator of chute base drag.

Static pressure taps PS17 and PS18 (PS38 and PS39 for SAR=3.3) are placed at axial
midspan from the chute leading edge to exit, to gauge static pressure variation with axial
location within the cold flow chute, so as to assess whether use of PS9 through PS16
(PS30 through PS37 for SAR=3.3) would yield an accurate estimation of base drag. Static
pressure taps PS19 through PS21 (PS40 through PS42 for SAR=3.3) are placed at the
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exit of cold flow chute at three vertical locations to measure variation in local static
pressure. Static pressure taps PS22 through PS25 (PS43 through PS46 for SAR=3.3) are
placed within a hot core flow segment from the throat plane to the exit plane, at mid-span
height, to assess shock free operation of the CD flowpath at the aerodynamic design point
and to aid in adjusting the nozzle pressure ratio to attain shock-free operation if it does
not occur at design point.

Static pressure taps PS26 and PS27 (PS47 and PS48 for SAR=3.3) are placed within a hot
core flow segment along the "finger", located at and just aft of the chute exit plane, to
understand primary flow expansion along the "finger".

Static pressure taps PS51 through PS59 (same for both the mixers) on the aft flow guide
(i.e., the inlet) and PS28 and PS29 (PS49 and PS50 for SAR=3.3) on the chute rack in the
center of cold flow chute are placed to establish the stagnation point of the flow around
the blunt leading edge of the inlet flow guide, to determine whether the inlet is full flowing
in the region of the total pressure rakes, and to measure the static pressure distribution
over the full axial extent of the inlet for assessing the inlet flow quality.

Twenty-four total pressure elements and 6 static pressure taps comprising three total
pressure rake systems within the inlet (two rakes on the upper inlet and one on the lower
inlet) are used for secondary mass flow estimation. Total pressure elements PT101
through PT108 and static pressure taps PS100 and PS109 are in one upper inlet rake
along the chute cold flow centerline. The second upper inlet rake comprises of total
pressure elements PT111 through PT118 and static pressure taps PS110 and PS119 and is
placed along chute hot flow centerline (see Figure 4.1-5). The third rake, formed by total
pressure elements PT121 through PT128 and static pressure taps PS120 and PS129, is
placed in the lower inlet along the chute cold flow centerline (see Figure 4.1-6). For each
rakes the total pressure elements are located on centers of 8 equal areas perpendicular to
the secondary throat to measure the ambient air entrainment. The total and static pressure
elements are numbered the same for both the mixers. The secondary mass flow rate Wg is
evaluated using the average contributions of the three total pressure rakes with a double
weighting for the rake along the chute hot flow centerline. The pumping is expressed as
the ratio of secondary to primary mass flow rates, Wg/Wp, where Wp is the primary
stream mass flow rate, evaluated using nozzle pressure ratio, total temperature, rake
measurements at the primary stream charging station, and throat area. The corrected
pumping is expressed as follows;
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Corrected Pumping = Wg/W P‘/%
where, Tt and T8 are the secondary and primary stream total temperatures, respectively.
Using the primary and secondary stream mass flow rates, total temperatures, total
pressures, and assuming complete mixing at the ejector exit plane a mixed velocity (Vpix)
is also computed on the basis of 1D ejector model.

A line of 14 static pressure taps, PS60 through PS73, are placed on the flap in line with
the centerline of a cold flow chute. Similarly, another 14 static pressure taps, PS74
through PS87, are placed on the flap in line with the centerline of a hot flow chute (see
Figures 4.1-7 and 4.1-8). The static pressure nomenclature remains the same for both the
mixers. These static pressure taps are used to assess the ejector flow characteristics. The
axial static pressure distribution on the flap surface would indicate the mode of flow (i.e.,
subsonic or supersonic modes) and the presence or absence of shocks in the ejector.
Integrated static pressures and integrated moment of the static pressures with respect to
flap leading edge would yield various flow and performance related ejector characteristics.
The normalized force and moment of the force are expressed as follows;

Normalized Force = —-—-——2( (P )i JAX

EJ i=] amb

N
Normalized Moment of the Force = ! 2 (1 - -(-—&‘-‘——)i}x, Ax;

(LEI )2 i Fors
where;
Lgy= length of the flap
N = number of pressure taps on the flap

(—gf-s-‘—’—)#) = ratio of average flap pressure (i.e., average of hot [i.e., (Ps)»] and cold

[i.e., (Ps).] flow chute centerlines) at ith tap and ambient pressure
Xj= axial coordinate of ith pressure with respect to flap leading edge
Axj= (Xj41 - %4-1)/2

Tests for both the mixer configurations (i.e., #1, #2, and #21) were conducted along the
L1M cycle line for static and simulated flight conditions of Mach 0.12, 0.24, and 0.32.
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Acoustic data was acquired for both the major and minor axis community points (i.€., at ¢
= 90° and 4°), and their respective sideline angles ((i.e., at ¢ = 25° and 65°) using the
traversing microphone array (see Figure 4.1-9). In addition, acoustic data was also
acquired at ¢ = 45° using the fixed microphone array. The actual azimuthal location for
the community point with respect to minor axis is ¢ = 0°. However, due to the facility
limitation the acoustic data for this location was acquired at ¢ = 4°. Static and total
pressures were measured for the mixer, secondary inlet, and flap pressure taps.

4.1.1 Comparison with Old Data:

Aligned CD chute mixers were tested earlier (under Contract NAS3-25415) with and
without long treated ejectors. The flaps and sidewalls for these configurations were fully
treated with astroquartz of 1 1b/ft3 with a 37% porous facesheet. Acoustic data was
measured at the community and the sideline points with respect to the ejector major axis at
static and with flight simulation of Mach 0.32. The acoustic results from these tests are
compared with the similar results obtained from the current repeat tests of the same
configurations.

Results for the Mixer with SAR=3.3

Figure 4.1-10 shows the comparison of EPNL, peak PNLT, and PNLT at various polar
angles (0) as functions of jet velocity (Vj) at a sideline distance of 1629° with respect to
major axis at static condition and with a simulated flight Mach number of 0.32. Agreement
between old and current EPNL values is excellent for static condition. With flight
simulation the EPNL agreement is also excellent, except for the lowest and highest jet
velocities of 1147 and 2812 ft/sec. Small differences of PNLT values are observed
between old and current results.

At several jet velocities the PNLT directivities are compared between old NRA and
current results in Figure 4.1-11. Except for lower jet velocities of 1147 and 1595 ft/sec the
agreement between old and current results is very good at static condition. With flight
simulation the PNLT comparisons show the similar trend as observed for static condition,
except for 2812 ft/sec, where the old NRA data show lower PNLT levels. Spectral
comparisons at various polar angles (8) for different jet velocities are shown in Figures
4.1-12 through 4.1-15. Reasonable agreement is observed between old and current data.
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Figure 4.1-12. Comparison of SPL spectra at polar angle 8 = 60° at different L1M cycle
conditions between old NRA and the current data for an aligned CD-cgmte
mixer with fully treated long ejector; SAR = 3.3, MAR =0.95, ¢ = 25".
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Figure 4.1-13. Comparison of SPL spectra at polar angle 8 = 90° at different L1M cycle
conditions between old NRA and the current data for an aligned CD—cgmte
mixer with fully treated long ejector; SAR = 3.3, MAR = 0.95, ¢ = 25".
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Figure 4.1-14. Comparison of SPL spectra at polar angle 8 = 120° at different L1IM cycle
conditions between old NRA and the current data for an aligned CD-chute
mixer with fully treated long ejector; SAR = 3.3, MAR =0.95, ¢ = 25°.
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Figure 4.1-15. Comparison of SPL spectra at polar angle 8 = 140° at different LIM cycle
conditions between old NRA and the current data for an aligned CD-chute
mixer with fully treated long ejector; SAR = 3.3, MAR =0.95, ¢ = 25°.
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Results for the Mixer with SAR=2.8

Figure 4.1-16 shows the comparison of EPNL, peak PNLT, and PNLT at various polar
angles (0) as functions of jet velocity (Vj) at a sideline distance of 1629° with respect to
major axis at static condition and with a simulated flight Mach number of 0.32 between
present data and the results obtained under NRA program. Statically, the agreement
between old and current EPNL values is excellent up to about 2400 ft/sec. For higher
velocity conditions, the present levels are slightly higher compared to the NRA results
Small differences of PNLT values are observed between old and current results at higher
velocities at static condition. With flight simulation, except for the lowest jet velocity of
1147 ft/sec the agreement between old and current EPNL values is excellent. Small
differences of PNLT wvalues are observed between old and current results, mostly at lower
velocities with flight simulation. '

At six different jet velocities the PNLT directivities are compared between old NRA and
current results in Figure 4.1-17. Statically the agreement between old and current results is
very good for all cases, except for velocities 1147 and 2812 ft/sec, for which small
differences are observed between old and current data at some polar angles. With flight
simulation the agreement between old and current results is also very good for lower jet
velocities. At higher jet velocity conditions the old NRA PNLT levels are relatively lower
compared to the current data. Spectral comparisons at various polar angles (6) for the six
jet velocities are shown in Figures 4.1-18 through 4.1-20. Reasonable agreement is
observed between old and current data.

In general, the repeatability of test resuits for both the mixer-ejector configurations is very
good. Small differences observed in the data shown here could be due to uncertainty of
exact duplication of ejector treatment, flight Mach number and aerothermodynamic
conditions. It should be noted that the NRA tests were conducted at a flight Mach number
higher than 0.32 (at about 0.36) due to an erroneous pressure measurement, whereas, the
flight transformation to these data was applied for 0.32 Mach. This could introduce a
small amount of disagreement between the current and old data, especially lowering the
noise levels for old NRA tests.
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Figure 4.1-18. Comparison of SPL spectra at polar angle 6 = 60° at different L1M cycle
conditions between old NRA and the current data for an aligned CD-chute
mixer with fully treated long ejector; SAR = 2.8, MAR =0.95, ¢ = 25°.
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Figure 4.1-19. Comparisbn of SPL spectra at polar angle 8 = 90° at different L1M cycle
conditions between old NRA and the current data for an aligned CD-chute
mixer with fully treated long ejector; SAR =2.8, MAR =0.95, ¢ = 25°.
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Figure 4.1-20. Comparison of SPL spectra at polar a}lgle 0 = 120° at different L1M cycle
conditions between old NRA and the current data for an aligned CD-chute
mixer with fully treated long ejector; SAR = 2.8, MAR =0.95, ¢ = 25°.
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4.1.2 Effect of Treatment Type:

Tests for configuration #21, SAR 2.8 mixer with long ejector, fully treated with nickel
based foam metal, were conducted along the L1M cycle line for static and simulated flight
conditions of Mach 0.12, 0.24, and 0.32. Acoustic data was acquired for both the major
and minor axis community points, and their respective sideline angles. Static and total
pressures were measured for the mixer, secondary inlet, and flap pressure taps. Typical
results presented in this section are the comparisons of acoustic data between the same
mixer-ejector with astroquartz acoustic treatment (i.e., from configuration #2) and the
nickel based foam metal treatment (i.e., from configuration #21) at sideline (i.e., ¢ = 25°)
and community (i.e., ¢ = 90°) locations with respect to the ejector majdr axis with flight
simulation (Mg = 0.32).

Figure 4.1-21 shows the comparison of EPNL, peak PNLT, and PNLT at various polar
angles (0) as functions of jet velocity (Vj) at a sideline distance of 1629’ with respect to
major axis with a simulated flight Mach number of 0.32 between ejectors with astroquartz
and foam metal treatments. The agreement between EPNL from both treatments is
excellent for entire velocity range at ¢ = 25° and for higher velocity conditions at ¢ = 90°.
Small differences of PNLT values are observed between these configurations of different
treatments, especially at lower velocities. However, the levels with foam metal treatment
seem to be slightly better in most cases.

PNLT directivities at six different jet velocities are compared between astroquartz and
foam metal treated configurations in Figure 4.1-22. The agreement between both sets of
results is very good, except at lowest and highest velocity conditions. Again, the foam
metal treated configuration resulted in lower noise levels at most angles for each velocity
condition. Spectral comparisons at various polar angles (6) for the six jet velocities are
shown in Figures 4.1-23 through 4.1-26. Both the sets of results are very close to each
other with slight improvement in the noise levels due to foam metal treatment.

In general, the foam metal seems to be performing as well as and, in most cases, slightly
better than the astroquartz treatment. This is a very encouraging result, since maintaining
proper astroquartz treatment is more laborious and time consuming. Since the foam metal
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Figure 4.1-23. Comparison of SPL spectra at polar angle 8 = 60° at different L1M cycle conditions
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between astroquartz and a foam metal treated long ejector for an aligned CD-chute
mixer with flight simulaton (Mg = 0.32); SAR = 2.8, MAR =0.95.
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Figure 4.1-24. Comparison of SPL spectra at polar angle 6 = 90° at different L1M cycle conditions
between astroquartz and a foam metal treated long ejector for an aligned CD-chute
mixer with flight simulation (Mg = 0.32); SAR = 2.8, MAR =0.95.
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Figure 4.1-25. Comparison of SPL spectra at polar angle 8 = 120° at different L1M cycle conditions

between astroquartz and a foam metal treated long ejector for an aligned CD-chute
mixer with flight simulation (Mg = 0.32); SAR = 2.8, MAR =0.95.
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Figure 4.1-26. Comparison of SPL spectra at polar angle 8 = 140° at different L1M cycle conditions
between astroquartz and a foam metal treated long ejector for an aligned CD-chute
mixer with flight simulation (Mg = 0.32); SAR = 2.8, MAR =0.95.
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is solid in structure and did not show any deterioration during testing, this treatment was
used in all the subsequent treated configurations, instead of astroquartz.

4.1.3 Azimuthal Variation:

The azimuthal variation of acoustic characteristics of the aligned CD chute mixer-ejector
configurations of SAR 3.3 and 2.8 with astroquartz and nickel based foam metal
treatments, respectively (i.e., configurations #1 and #21), are obtained from the
measurements made at five azimuthal locations.

Results for the Mixer with SAR=3.3:

Figure 4.1-27 shows the azimuthal variation of EPNL and PNLT at various polar angles
(©) as functions of jet velocity (Vj) at a sideline distance of 1629’ for static and with flight
simulation conditions. Significant azimuthal variation is observed in these figures. In
general, the azimuthal variation is more at lower jet velocities. The variation diminishes
with increasing jet velocity. With respect to EPNL the levels are higher at both the
community points and between the community points the levels at ¢ = 900 are higher
compared to ¢ = 49, The levels are lowest at the sideline with respect to major axis (i.e., ¢
= 259). In the forward arc for lower polar angles PNLT levels are lowest at ¢ = 4°. For
higher polar angles the PNLT variations with respect to azimuthal angle are similar to
EPNL. The azimuthal variation of EPNL and peak PNLT is further studied by plotting
these noise levels with respect to azimuthal angle for different L1M cycle conditions in
Figures 4.1-28 and 4.1-29. Again, a minimum EPNL is observed at ¢ = 25° for most
cases.

At four different jet velocities the azimuthal variation of PNLT directivities are shown in
Figure 4.1-30. The azimuthal variation is higher at lower velocities and is observed for all
polar angles. For velocities above 2000 ft./sec, the azimuthal variation of PNLT is much
less and is even smaller in the forward arc. Spectral comparisons at various polar angles
(©) for each of the four jet velocities are shown in Figures 4.1-31 through 4.1-34.
Azimuthal variation of SPL is more dominant for lower jet velocities and at higher
frequencies. For higher jet velocities, the azimuthal variation of SPL is small and is
insignificant at lower frequencies.
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Figure 4.1-28. Variation of EPNL with respect to azimuthal angle () at different LIM

cycle conditions for an aligned CD-chute mixer with treated long ejector;
SAR=3.3, MAR=0.95.
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In general, the azimuthal variation of acoustic field is significant and is much higher at
lower jet velocities. A variation of about 5 to 6 EPNdB is observed at jet velocities
between 1147 ft/sec and 1600 ft/sec. Even at higher jet velocities the variation is of
significance.

Results for the Mixer with SAR=2.8:

Some acoustic results for static and with flight simulation (Mg=0.32) conditions, showing
the azimuthal variation for the aligned CD chute mixer of SAR=2.8 with long foam metal
treated ejector (i.e., Configuration #21), are presented. Figures 4.1-35 shows the
azimuthal variation of EPNL and PNLT at various polar angles (6) as function of jet
velocity (Vj) at a sideline distance of 1629°. Significant azimuthal variation is observed in
these results. In general, the azimuthal variation is more at lower jet velocities. The
variation diminishes with increasing jet velocity. The EPNL levels are higher at the
community point with respect to the major axis. However, relatively smaller difference is
observed between community and sideline points with respect to the minor axis for all the
jet velocities. The levels are lowest at the sideline with respect to major axis (i.e., ¢ =
250). The azimuthal variation of EPNL and peak PNLT is further studied by plotting these
noise levels with respect to azimuthal angle for different L1M cycle conditions in Figures
4.1-36 and 4.1-37. Again, a minimum EPNL is observed at ¢ = 259 for most cases.

At four different jet velocities the azimuthal variation of PNLT directivities are shown in
Figure 4.1-38. The azimuthal variation is higher at lower velocities and is observed for all
polar angles. Spectral comparisons at various polar angles (0) for each of the four jet
velocities are shown in Figures 4.1-39 through 4.1-42. Azimuthal variation of SPL is more
dominant for lower jet velocities and at higher frequencies (see Figure 4.1-39). For higher
jet velocities, the azimuthal variation of SPL is small and is insignificant at lower
frequencies.

In general, the azimuthal variation of acoustic field is significant and is much higher at
lower jet velocities. A variation of about 4 to 6 EPNdB is observed at jet velocities
between 1147 ft/sec and 1600 ft/sec. Even at higher jet velocities the variation is of
significance. The azimuthal variation of farfield noise for 2D nozzles is caused by the non-
axisymmetric radiation pattern of internal noise and the externally generated mixing noise
from non-axisymmetric jet. At lower velocities the internal noise is significant and the jet
plume responsible for external component of the noise remains axially non-axisymmetric
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Figure 4.1-36. Variation of EPNL with respect to azimuthal angle ‘(q)) at different L1M

cycle conditions for an aligned CD-chute mixer with foam metal treated
long ejector; SAR=2.8, MAR=0.95.

NASA/CR—2004-213117 -

79



* 4
Ln
” I— X
T
I B
[a ]
= 8 I O — X
= - pran— VI B o
E e g e s o
§<C b= R SR P! M S DTN, s,
a A
.l | 1 s M, |
" T i
g s\\~ &- ...... 9'—“ -
SO
& B
i
@) STA-HC\ %’ﬁm
i ;
® [o—a1 1147 fs
A8=1086 IN?, EJL=120" -
1629 FEET SIDELINE OO 1595fts
o 599F 70% RH STD DAY | &4 1919 ft/s
N 1
™ | (b) FLIGHT (Mp=032) +-—+ 2200 fi/s
»—X 2384 fi/s
= &—o 2637 fi/s
»—4 2812 f/s
o —
- /.———'
— | .
% 7o) LG I & —
=2 ———
& VR I e L N S N X
o o S —~——— I v I —
<C o T — =
- S¢c—4F== —1
a — T 1T -
‘N‘\ss _“__________.4,-——“‘ -
e [ o
o | A - I —
m \~\~\~ """"" __,._.A"‘"" -——
R R e e R —
] —— %
fo= /E} - g
(=2} Dt iy — 7~ | I3 e_',,
s S -e ________________ oo o
B 1T
0 10 20 30 40 50 60 70 80 90

AZIMUTHAL ANGLE, DEG.

Figure 4.1-37. Variation of peak PNLT with respect to azimuthal angle (¢) at different
LIM cycle conditions for an aligned CD-chute mixer with foam metal
treated long ejector; SAR=2.8, MAR=0(.95.

NASA/CR—2004-213117 80



‘66 0=MVIN ‘' Z=¥VS ‘101025 Suo[ pajean [eIdW WL YIIM IOXTW J)nYyd-(D) paudife ue
10J SUONIPU0D 3oAd 17T JO (¢ A) SANID0[A 10 JUSIRJIIP 10J SANIANIAMP | TN JO UOHBLIBA [RIPNWIZY "§¢-] " NS

33430 ‘TTONY HY10d . 334930 "31ONV HY10d

091 obl 0ct 001 08 09 Ov_. 091 ovi gct 001 08 09

Q
030 06 07| AVQ QLS HY %0L 65
ANI'THAIS LH8H 6791
93059 v—v 1 1Hch 57
930 52 G- | - «0C1=UH NI 9801=8V

930V @8
iBuy [eyinwizy

g6

00t

Y —

qoi

133

0

YRET=A

g6

81

0oL
8P "LINd

58

{

96

08

1281 ‘S T=UdN ‘SN Ly11=IA

(ze'0=dW) LHOI LI (@)

: . - ‘ D A SR 24
// ~ - .\\\\%
DILVLIS ®) N\l _

g6

S8
NASA/CR—2004-213117




"o0001 = 81 °S'] = MdN ‘95 Lp1T = A ‘S6'0=4YI ‘§'T=4V'S “10100fa Fuo] pareay) [erow weoy
I JoXIW 9NYD-(G) pausife ue 10y (g) sa3ue sejod snoLIEA 18 BNO3dS TIdS JO UONRIIEA [BYINWIZY “6g-T
ZHY 'AONIND3HA

1

-
G
o™

- -
T
-

=

-
yot
e

-

"

LOTI=TH NI 9801=8V |

y 2 | 20 10 500,

A : ' . r— =
- AVA ALS HY %0L 3665
(ze0=1W) LHOI' (9) ANITEAIS LA9 6291

£
[44]

0s

ss

0t

ZHY 'AON3IND3HA

}

¥'0

am31g

20 10

§0°0,

DJILVLS (®)

93006 o—-©
93059 v—-+~
DIA R -

030 b —&)
o|buy feyinunzy

§

gs

09

1
8P “13A31 36NSSIHd ANNOS

59

82

NASA/CR—2004-213117



“MoSTEL = 8L ‘ST =UdN 938/1) 6161 ='A ‘S6°0=4VI ‘8'T=UVS

‘10300l Suo| pajean [ejows Weoj

Yl 1oXIUI 9JNyd-(1D) pausife ue 1o} (g) sojFue rejod snouea 18 Boads 4§ JO UONBLIEA [BYINWIZY (-1 9IN3T]

ZH4 'AON3ND3H4

ZHY 'AON3ND3HA

! Z b y0 20 1o 50, 0} 8y z . yo 20 10 500,
v v v v " 2 v -y . —r—r— v M T
s AVA ALS HYA %0L Ho6S W& ) 3006 ¢--9]
@€0=dW) IHOI @) aNITEdIS LAH 6291 DILV.LS ) wwo 69 gy
;! = ¢ = @
y OTI=TMH NI9S0I=8V | & \ &, 03052 o] 12
N 030 ¥ G—8

8|Buy feyinuizy

g9

SL

08

8L

08

w

8P "13A31 3WNSS34d ONNOS

83

NASA/CR—2004-213117



o4

"Mo06S1 = 8L ‘'€ = UdN 038/ P8ET = A ‘S6°0=AVIN ‘§'z=4V'S 10100f0 Buo] payzan [eiow wieoy

Pim IOXIW INYO-GD pausije ue 10j (@) sojSue rejod snovLieA e el

ZHY 'AON3ND3YA

1

ZHY ‘'AON3ND3HA

102ds 7IdS JO UOHRLIBA [RYINUNZY [4-]"{ 9INS1]

4 4 | ~_v0 4 1o 500, o1 ! 70 20 10 500,
v v ¥ - v * v v v v vor v g - v Py v S
(0= 1HOI'1 (@) 93006 - ® AVd ALS HY %0L do6S
\ 53059 v—v DLLV.LS (¥ ANITHALS LA3 6291
./ b w :ONﬂ"\m..m »NZH @WOﬁnﬂw<
. 9309 -
) 930 ¥ E—R
Am/ ajfuy [eyinunzy 1a

S.

08

o 08

g9 S

6.8

o

8P “73A31 3HNSSIHd ANNOS

NASA/CR—2004-213117



o
=

00981 = 8L Sy = UdN 998/ TI8C =
PIM JOXTUW InYd-g)) paudi[e ue 10]

ZH 'AON3ND3HL

(g) so[3ue rejod snotreA 3

ZH 'AON3ND3H4

A ‘Co 0=dVIA ‘8 7=dVS§ 103030 Suo[ pajean [ejoul Weoy
e enoads JqS JO UonRLIRA [BYINUNZY ‘7p-] ' om31g

08

o8

06

v,

SR
”a.

oo =8

“» L)
S
30 B
DA it W™

N Ty
VTR

SILVIS ®)

0l z ' ) 20 10 500, Ot z 1 70 20 10 500,
: . —% O — S . : —

o AVA ALS HA %0L 065 530 06 oo

(ze'0=W) LHOI'TH (@) ANITEAIS LA 6791 53059 v—v
LOTI="1H ;NI 9801=8V | 3 .,, . 03052 -4 8

930 ¥ B—&

8jBuy [eyinwizy
(]

06 S8

56

06 001

v

8p “3AT1 auﬁ’ssggd aNnos

NASA/CR—2004-213117



up to a larger distance. Thus, the azimuthal variation of farfield noise becomes significant.
At higher jet velocities the internally radiated noise levels are relatively lower compared to
jet mixing noise. In addition, the jet plume becomes very close to symmetric within a short
axial distance. Thus, the azimuthal variation of farfield noise is small for higher jet velocity
conditions.

4.1.4 Effect of Flight Simulation

Some acoustic and performance related results, showing the effect of flight simulation for
the aligned CD chute mixer of SAR=2.8 and 3.3 with long treated ejector (i.e.,
Configurations #21 and #1, respectively), are presented. While the ejector for mixer of
SAR=2.8 was treated with foam metal, the ejector treatment for mixer of SAR=3.3 was
astroquartz. The effect of flight simulation on acoustic characteristics and the performance
related parameters of the mixer-ejector configurations is obtained from the measurements
made at four flight conditions of Mach 0.0, 0.12, 0.24, and 0.32.

Acoustic Results : Acoustic results showing the flight simulation effects at an azimuthal
angle ¢ = 250 (i.e., the sideline location with respect to major axis) are presented here.
Figures 4.1-43 shows the effect of flight simulation on EPNL and PNLT as function of jet
velocity (Vj) at a sideline distance of 1629°. EPNL levels decrease with increasing flight
Mach numbers for all jet velocities. Significant reduction is observed between Mach 0.12
and 0.24. Except for forward arc angles the PNLT levels decrease with increasing flight
Mach number at all jet velocities.

At four different jet velocities the effect of flight simulation on PNLT directivities are
shown in Figure 4.1-44. The effect of flight simulation is to lower the PNLT levels at
polar angles above 60° and the trend is reversed at lower angles. Significant PNLT
reduction is observed at rear arc. Effect of flight on SPL spectra at various polar angles
(©) for each of the four jet velocities are shown in Figures 4.1-45 through 4.1-48.
Significant SPL reduction is observed at higher polar angles for the entire frequency range.
Major noise reduction took place between Mach 0 and 0,24.

Flow and Performance Related Results : Model pressure data measured for the aligned
CD chute mixer-ejector of SAR=2.8 are analyzed and presented to show the effect of
cycle conditions and simulated flight on various flow and performance related parameters.
Axial static pressure distributions on the ramp and on the chute leading edge on secondary
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Figure 4.1-43. Effect of flight simulation on EPNL and PNLT at various polar angles (8) as
function of jet velocity for aligned CD-chute mixers with treated long ejector at an
azimuthal angle ¢=259; MAR=0.95.
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flow surface are shown in Figure 4.1-49 at a number of LIM cycle conditions. For static
condition the ramp static pressure decreases slightly with increasing nozzle pressure ratio
(NPR) due to suction at chute exit. However, with flight simulation the effect of NPR is
reduced. On the chute surface, for static as well as with flight simulation, the pressure
distribution first decreases and then increases with increasing NPR. The static pressure
increase on the chute surface with increasing NPR after a certain NPR level is most likely
due to choking of secondary flow. The effect of flight simulation on ramp and chute static
pressure distributions are shown in Figure 4.1-50 for different L1M cycle conditions. For
each case the static pressure increases with increasing flight Mach number, both on the
ramp and chute surfaces due to freejet fan pressure rise, indicating lesser loading for the
chutes. This is clearly observed in Figure 4.1-51, where chute loading coefficient due to
chute static pressure distributions is plotted against NPR.

Average total pressure distributions across the inlet width for different LIM cycle
conditions, obtained from total pressure rakes, are shown in Figure 4.1-52. At static
condition very little pressure loss is observed from the vicinity of the ramp surface to
almost 70% in to the inlet width. Closer to the inlet flow guide significant pressure drop is
observed. Most likely the flow separates on the inlet flow guide leading edge at static
condition due to suction and causes this pressure drop. Also, the boundary layer buildup
on inlet ramp could cause total pressure drop. The inlet flow characteristics seem to be
invariant above a certain NPR, indicating flattening out of secondary mass flow rate.
However, with flight simulation, the trend is changed. Closer to ramp surface the total
pressure is lower compared to those at the inlet, since the total pressure increases at the
inlet due to flight. In true flight situation also, total pressure increases with increasing
flight Mach number. The effect of flight on total pressure distributions across the inlet
width is further demonstrated in Figure 4.1-53 at a number of L1M cycle conditions. The
effect of flight on pumping and corrected pumping, computed from the total pressure
distributions across the inlet width, is shown in Figure 4.1-54. With respect to NPR the
pumping decreases. However, the pumping increases with increasing flight Mach number,
since the total pressure at the inlet goes up. Even though, the pumping increases with
flight, the effect is very small on the mixed jet velocity (see Figure 4.1-55).

The static pressure distribution on the inlet flow guide and on the flap along cold and hot
chute flow centerlines are shown in Figure 4.1-56 at different LIM cycle conditions
without flight simulation. A gradual transition from subsonic to supersonic mode with
increasing NPR is clearly observed from this figure, both along hot and cold chute
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Figure 4.1-52. Total pressure distribution across the inlet at different L1M cycle conditions

for an aligned CD chute mixer with treated (by foam metal) long ejector,
SAR = 2.8, MAR =0.95.
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centerline data. Figure 4.1-57 shows similar characteristics with flight simulation of

Mp=0.32.

Figures 4.1-58 and 4.1-59 illustrate the comparison of axial static pressure distributions on
the flap between the hot flow row and cold flow row with and without flight simulation at
a number of NPR. Except closer to mixer exit, there is no appreciable difference in flap
static pressure distributions between hot and cold flow Tows. Thus, static pressure
equalization between primary and secondary streams takes place over a short but finite
axial distance. As the flow exits from the mixer (hot flow stream), it accelerates, which
results in lower pressure near the mixer exit, indicated by pressure taps along hot flow
row. However, with increasing axial distance the pressure level along chute hot flow
centerline increases due to flow deceleration caused by mixing. Mode transition related
interpretations on the basis of flap pressure distributions are the same whether we consider
pressure distributions along hot or cold chute flow directions or an arithmetic average of
these two. Hence, an arithmetic average of these two measurements is computed and
presented in Figure 4.1-60. Figure 4.1-61 shows the effect of flight on the average axial
static pressure distributions at different L1IM cycle conditions. Small amount of pressure
increase due to increasing MF is noted, especially at much higher NPR and in supersonic
mode. The effect of flight on normalized force and normalized moment of force with
respect to flap leading edge due to static pressure difference on flap surface are shown in
Figure 4.1-62. Both the force and the moment seem to decrease slightly with increasing
flight simulation due to increased static pressure. The ftransition from subsonic to
supersonic mode seems to be slightly delayed with respect to NPR due to Mg. The effect
of flight simulation on the flow and performance related results for the mixer of SAR=3.3
are qualitatively similar to the results presented here for the mixer of SAR=2.8 and hence
not included here.

4.1.5 Effect of Suppressor Area Ratio (SAR)

The two aligned CD chute mixers with fully treated (by astroquartz) long ejector are of
different suppressor area ratio (SAR) of 2.8 and 3.3. The influence of SAR, therefore,
briefly described in this section for acoustic characteristics and performance related
parameters.

Acoustic Results: Since the mixers with SAR of 2.8 and 3.3 have different throat areas of
22.16 in® and 19.14 in®, the scaling process in the data analysis to convert model scale
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Figure 4.1-57. Axial static pressure distributions on the inlet and the flap surface at different LIM
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acoustic data into full size nozzle utilized at GEAE might result in slightly inaccurate
comparison. Therefore, before presenting the acoustic results to show the influence of
SAR the possible inaccuracy inherent with the scaling process is outlined. The scaling
process involves the noise level change and corresponding frequency shift. Results of two
slightly different approaches of scaling the scale model acoustic data to full scale using
1/3-octave band data are compared to show the extent of variability in full scale
projections between the two approaches. Both methods have some level of
inaccuracy/imprecision in them.

Scaling Process : Strouhal scaling relationship is utilized in GEAE in scaling model scale

1/3-octave band data to full scale. If the throat areas of the model scale and the full size
nozzles are A, and Ag, respectively, then the noise data for the model scale nozzle in

terms of sound pressure level is increased by 10 logio(Ag/Ay,) dB for full size nozzle.

This correction is applied to the lossless acoustic data at measurement location or at a
standard location (such as 40' arc). Then the noise levels after scaling are projected to
needed farfield sideline/arc distance using the inverse square law. The corresponding scale
model frequencies f, are converted to the full scale size frequency fy, utilizing the

Strouhal scaling relationship and for the same jet velocity, which. reduces to :

The atmospheric absorption to the lossless SPL is then applied at the full scale size nozzle
frequency ff and appropriate farfield distance. The current scaling process utilizes 1/3-

octave band data. In this process the full size nozzle frequency is obtained by shifting the
1/3-octave band frequencies by a factor 5 log1g(Ag/Amy). This factor is rounded to the
nearest integer. This could introduce some imprecision in full scale frequency. The
amplitude levels accrue some imprecision due to its correspondence with the full integer
number shifted frequency and the use of atmospheric absorption at the center frequency of
1/3-octave band for full scale data based on full integer 1/3-octave band number shift
rather than the use of atmospheric absorption based on Strouhal scaling. In PNLT
calculation another error due to inaccurate NOY based on inaccurate frequency and
amplitude is also introduced.
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The acoustic data for two full scale (throat area of 1086 square inches) CD chute aligned
mixer nozzles of SAR 2.8 and 3.3 with fully treated (by astroquartz) ejectors at static and
with a flight simulation of Mp=0.32, scaled from the model scale nozzles using the
conventional GEAE scaling procedure, are shown in Figures 4.1-63 and 4.1-64. These
figures show the effect of SAR on PNLT and EPNL as functions of jet velocity. The conic
nozzle data, obtained under NRA program, is also plotted in these figures. The mixer with
SAR=2.8 is quieter at lower velocities up to about 2350 ft/sec compared to the mixer with
SAR=3.3. The trend is reversed at higher velocities.

The model scale throat areas for the mixers with SAR of 2.8 and 3.3 are 22.16 and 19.14
square inches, respectively. The linear scale factors for these mixers with respect to a full
size area of 1086 square inches are 7.00 and 7.53, respectively. The 1/3-octave band shifts
of 8.45 and 8.77 are required for the mixers of SAR 2.8 and 3.3, respectively to scale the
frequency for a full size area of 1086 square inches. However, the number of 1/3-octave
band shifts are rounded to the nearest integers of 8 and 9 for the mixers of SAR 2.8 and
3.3, respectively in the scaling process.

Next, full scale noise results are evaluated for the mixer with SAR=3.3 by shifting the 1/3-
octave band frequency by 8, but the lossless SPL amplitude increase is maintained the
same with respect to full scale size area of 1086 square inches in the scaling process to
illustrate the effect of rounding the band shift on the noise. This is achieved by applying
the scaling process to the model scale data for a full size area of 938 square inches, which
allows a frequency band shift of § (and the exact shift of 8.45), same as that for the mixer
with SAR=2.8 and applying an additional noise increase due to area change from 938 to
1086 (i.e., 10 log1((1086/938) dB). Various acoustic parameters derived for the mixer of
SAR=3.3 with this approach (called as Approach 2) are compared with those derived
using the full scale area of 1086 directly with a frequency band shift of 9 (called as

Approach 1) in Figures 4.1-65 through 4.1-70. Results for mixer with SAR=2.8 are also
plotted in these figures.

Figure 4.1-65 shows the comparison of PNLT at various polar angles and EPNL as
functions of jet velocity between the two mixers, with two sets of results for SAR=3.3
based on approaches 1 and 2. The PNLT and EPNL are slightly lower when a frequency
shift of 8 bands are applied (approach 2) compared to those with 9 band shift for the mixer
with SAR=3.3 (approach 1). Comparisons in terms of PNLT directivities at four different
velocity conditions are shown in Figure 4.1-66. The effect of reduced band shift is mostly
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a reduction in PNLT, but the trend is reversed at shallow angles to jet axis. This behavior
is based on the spectral content with respect to 1/3-octave band frequencies for each cases
of band shifts and the changed NOY weightings for PNLT calculation. The spectral
comparisons at each of the four velocity conditions are shown in Figures 4.1-67 through
4.1-70 at a number of polar angles. The effect of different band shift alters the SPL and is
mostly lower with 8 frequency band shift situation. For flat SPL spectrum the frequency
band shift does not influence the spectral distribution. However, high frequency peaks
occur at one 1/3-octave band lower for approach 1 compared to approach 2 (see Figure
4.1-67 for 6=130°). This alters PNL and PNLT results.

In either approaches, the absolute noise levels and the corresponding center frequencies
have some imprecision due to the simplification associated with utilizing the integer value
band number shift for 1/3-octave band data. The above exercise, basically demonstrates
the variability of noise levels due to two consecutive band shifts. The actual noise levels ke
with in the limits shown in these figures between the two approaches and the amount of
the maximum possible variations are small. Such imprecision can be reduced if one utilizes
scale model narrowband data of a sufficiently small band width and scales such data using
above scaling process for frequency and then constitutes 1/3-octave band on the basis of
full scale frequencies. Alternately, fractional frequency shift due to scaling can be applied
to lossless 1/3-octave spectral data and then an interpolation/extrapolation can be applied
to construct the SPL at 1/3-octave center frequencies.

Based on the PNLT directivities of Figure 4.1-66, for velocities up to about 2400 ft/sec
the PNLT for SAR=3.3 are slightly higher compared to those for SAR=2.8, when the
results for SAR=3.3 mixer are derived using 9 frequency band shift (i.e., the conventional
method or Approach 1). Insignificant difference between the two mixers is observed when
Approach 2 is applied for mixer of SAR=3.3 in this velocity range. At higher velocities,
the mixer with SAR=3.3 seems to be quieter compared to the mixer of SAR=2.8
irrespective of data analysis approaches. Spectral results, shown in Figures 4.1-67 through
4.1-70, show the similar characteristics with respect to jet velocity.

Flow and Performance Related Results: The measured static and total pressure data for
the models are analyzcd and the performance and flow related results with flight
simulation (MF=0.32) to show the influence of SAR are presented in this section. the
influence of SAR on ramp and chute static pressure distributions are shown in Figure 4.1-
71 for different LIM cycle conditions. For each case the static pressure increases with
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decreasing SAR, both on the ramp and chute surfaces, indicating lesser loading for the
chutes for higher SAR. This is clearly observed in Figure 4.1-72, where chute loading
coefficient due to chute static pressure distributions is plotted against NPR.

Average total pressure distributions across the inlet width for mixers of different SAR for
different L1M cycle conditions are shown in Figure 4.1-73. Slight total pressure drop is
observed for lower SAR of 2.8 compared to SAR=3.3. The influence of SAR on pumping
and corrected pumping is shown in Figure 4.1-74 The pumping as well as corrected
pumping increases with increasing SAR and the mixed jet velocity decreases with
increasing SAR (see Figure 4.1-75), which is a favorable behavior from noise
consideration.

Figure 4.1-76 illustrates the influence of SAR on the axial static pressure distributions on
the flap for different L1M cycle conditions. At lower NPR very little change on flap static
pressure distribution is observed due to SAR. However, the transition from subsonic to
supersonic mode occurs at a lower NPR for SAR=2.8 compared to SAR=3.3. In the
supersonic mode (i.e., at a much higher NPR) the static pressure on the flap is higher for
SAR=3.3 compared to SAR=2.8. The influence of SAR on normalized force and
normalized moment of force with respect to flap leading edge due to static pressure
difference on flap surface are shown in Figure 4.1-77. The transition from subsonic to
supersonic mode is delayed with respect to NPR due to increasing SAR.
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Astroquartz) long ejector with flight simulation (Mp=0.32), MAR = 0.95.
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4.2 ALIGNED CONVERGENT-CHUTE MIXER CONFIGURATIONS:

The acoustic, the flow related, and performance related results for 2D aligned convergent-
chute mixer-ejector configurations of SAR=2.8 with long and short flaps and with and
without acoustic treatment are described in this section. These results include the effect of
flap length, acoustic treatment, and simulated flight of ME=0.32. The long and short
ejectors with flap lengths of 16.055” and 10.935", respectively, with MAR=0.95 were
used for the current configurations. For treated configurations the flaps and sidewalls were
fully treated with nickel based metal foam with a 37% porous facesheet.

The side view of the mixer-ejector configuration with convergent chute is shown in Figure
4.2-1. The ramp, the inlet, and the upper portion of the primary flow sections are identical
to those for the aligned CD chute mixer configuration described in section 4.1. However,
the exit plane for the convergent chute mixer is terminated upstream at the throat plane
compared to the CD chute mixer. For appropriate comparison of the results the origin is
maintained at the same axial location as that of the aligned CD chute mixers (i.e., 0.58"
downstream of the convergent-chute mixer exit plane). Hence, the origin for the
convergent chute mixer does not lie at the mixer exit plane. The plan view of the inlet and
the upper chute rack with 10 convergent chutes is shown in Figures 4.2-2, which indicates
the static pressure tap locations on the ramp, inlet flow guide, and chute surfaces and total
pressure element locations in the secondary flow passage. The instrumentation is identical
to that for the aligned CD chute configuration, except that an additional static pressure tap
(PS138) is placed along the chute hot flow region between the mixer exit plane and the
static pressure tap PS26. The instrumentation on the lower inlet and lower chute rack for
convergent mixer is identical to that of the aligned CD chute case (see Figure 4.1-6).

The instrumentation upstream of the mixer exit is the same for both the long and short flap
configurations. The flap instrumentation is different for short flap configuration. The side
view of the mixer-ejector configuration with convergent chute with short flaps is shown in.
Figure 4.2-3. Figure 4.2-4 shows the plan and side views of a short ejector with static
pressure tap locations. A line of 10 static pressure taps, PS60 through PS65 and PS70
through PS73, are placed on the flap in line with the centerline of a cold flow chute.
Similarly, another 10 static pressure taps, PS74 through PS79 and PS84 through PS87,
are placed on the flap in line with the centerline of a hot flow chute (see Figures 4.2-4).
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Figure 4.2-4.
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(a) Plan and (b) side views of a short ejector of a 2D aligned convergent-chute

mixer-ejector nozzle showing the static pressure tap locations.
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4.2.1 Effect of Acoustic Treatment and Flap Length:

All the results in this section show the simultaneous comparisons between treated and hard
wall configurations and between short and long flaps for static and with flight simulation
condition of Mp=0.32. While the long flap resuits are presented by open symbols, the

same filled symbols show the resuits for short flap configurations.

- Figure 4.2-5 shows the effect of treatment and flap length on PNLT and EPNL as function
of jet velocity (Vj) at an azimuthal angle ¢=259. Noise reductions in terms of EPNdB and

PNLTdB are observed both due to treatment and increased flap length. However, the
effect is reduced with increasing jet velocity. Noise reduction due to acoustic treatment is
higher for the long flap configuration compared to the short flap case. Acoustic benefit of
about 3 EPNdB due to treatment is observed for the long flap configuration with flight
simulation at velocities between 1600 and 2200 ft/sec. At higher velocities the treatment
benefit is not significant due to dominant externally (i.e., external to the ejector) generated
noise. At lower velocities the EPNdB reduction due to treatment as well as due to flap
length is significant at static case compared to flight condition. This is due to the PNLT
increase in the forward angles with flight simulation, since the jet noise increase due to
dynamic amplification is much higher compared to source strength reduction due to flight
simulation. Noise benefit due to increased flap length is the result of better mixing within
the ejector compared to a shorter ejector case. |

At four different jet velocities the effect of treatment and flap length on PNLT directivities
is shown in Figure 4.2-6. Noise suppressions due to treatment and due to flap length are
more significant at lower jet velocities and at lower polar angles. The effect of flight at a
lower jet velocity, as described above, can be seen in this figure for Vj=1 147 ft/sec. Effect
of treatment and flap length on SPL spectra at various polar angles (0) for each of the four
jet velocities is shown in Figures 4.2-7 through 4.2-10. Significant SPL reduction is
observed at higher polar angles for higher frequency range above 700 to 800 Hz. The
acoustic benefit in terms of SPL diminishes with increasing jet velocity. At NPR=3.4
condition the SPL results indicate the possible presence of strong shock in the ejector for
short flap configurations. Shock-associated noise in terms of SPL is dominantly observed
at 60° and in moderate amount at 909 for the short flap configurations.

The static pressure tap locations on the flap surface downstream of the origin (i.e., for
positive X) are normalized with respect to the ejector length associated with the test
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configuration for axial static pressure distribution results. However, the static pressure tap
locations upstream of the origin (i.e., for negative X) are normalized with respect to the
longer ejector length (i.e., 17"), since these instrument locations are identical for both long
and short ejector configurations.

The effect of treatment, flap length and flight simulation on ramp and chute static pressure
distributions is shown in Figure 4.2-11 for different L1M cycle conditions. The effect of
treatment and flap length is insignificant on the static pressure distributions on the ramp
and chute surfaces. However, the static pressure increases due to flight simulation for each
case, both on the ramp and chute surfaces due to freejet fan pressure rise, indicating lesser
loading for the chutes. Figure 4.2-12 shows the effect of treatment and flap length on
chute loading coefficient plotted against NPR. Again, the effects of treatment and flap
length are very small on chute loading coefficient, especially at higher NPR. For lower
NPR conditions the coefficient increases slightly with treatment as well as with increased
flap length. The effect of treatment and flap length on pumping and corrected pumping is
shown in Figures 4.2-13 and 4.2-14, respectively. The pumping is significantly lower for
treated ejector compared to hard wall for short flap configuration at static case for lower
NPRs. This difference is most probably due to the difference in static temperature between
the two configurations and not the effect of treatment. The effect of flap length is very
small. With flight simulation these effects are almost negligible on pumping. The effect of
treatment as well as flap length is almost negligible for corrected pumping for entire NPR
range for static and flight cases. The same is the case with the mixed jet velocity (see
Figure 4.2-15).

Figure 4.2-16 shows the effect of treatment and flap length on the average axial static
pressure distributions on the inlet and the flap surface at different LIM cycle conditions.
Static pressure distributions on the inlet are not influenced by the treatment and by the
ejector length. However, the ejector length influences the flap static pressure distribution
for all conditions. The static pressure is higher on the flap surface for longer ejector
compared to the shorter configuration. The effect of treatment is insignificant on flap
static pressure distributions at lower NPR conditions. However, at higher NPRs, closer to
the transition from subsonic to supersonic mode and above this condition, the flap static
pressure is higher for the treated ejector compared to hard wall configuration. Acoustic
treatment seems to soften shock/boundary-layer interaction which in turn seems to
increase the critical NPR at which the ejector transitions from subsonic to supersonic
mode. This is further illustrated in Figure 4.2-17 by plotting the normalized force on flap
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Figure 4.2-12. Effect of acoustic treatment and flap length on chute loading coefficient with
respect to nozzle pressure ratio of L1IM cycle conditions for an aligned
convergent-chute mixer-ejector; SAR=2.8, MAR=0.95.
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Figure 4.2-13. Effect of acoustic treatment and flap length on pumping with respect to nozzle
pressure ratio of L1M cycle conditions for an aligned convergent-chute mixer-
gjector; SAR=2.8, MAR=0.95.
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Figure 4.2-14. Effect of acoustic treatment and flap length on corrected pumping with respect
to nozzle pressure ratio of LIM cycle conditions for an aligned convergent-
chute mixer-ejector; SAR=2.8, MAR=0.95.
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Figure 4.2-15. Effect of acoustic treatment and flap length on mixed jet velocity with respect
to nozzle pressure ratio of LIM cycle conditions for an aligned convergent-
chute mixer-gjector; SAR=2.8, MAR=0.95.
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Figure 4.2-17. Effect of acoustic treatment and flap length on normalized force due to ejector
flap with respect to nozzle pressure ratio of LIM cycle conditions for an
aligned convergent-chute mixer-ejector SAR=2.8, MAR=0.95.
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surface with respect to NPR, that the transition from subsonic to supersonic mode seems
to be slightly delayed for treated ejector compared to hard wall configuration and for
longer ejector compared to the shorter configuration.

4.2.2 Effect of Simulated Flight and Flap Length :

All the results in this section show the simultaneous comparisons between static and
simulated flight of Mp=0.32 conditions and between short and long flap for treated and
hard wall configurations. While the long flap results are presented by open symbols, the
same filled symbols show the results for short flap configurations.

Figure 4.2-18 shows the effect of flight simulation and flap length on PNLT and EPNL as
function of jet velocity (V;) at an azimuthal angle $=250 for treated and hard wall

configurations. EPNL decreases with flight simulation for all jet velocities for hard wall
configuration and for treated case at velocities 1600 ft/sec and above. The EPNdB
reduction due to flight simulation is higher for treated ejector compared to hard wall case,
since the noise generated internal to the ejector is reduced due to treatment and thus the
reduction of externally generated noise due to flight simulation dominates the observed
noise. The EPNL is lower for longer ejector compared to the short flap case and the noise
reduction is higher with flight simulation. Except for forward arc angles the PNLT
decreases with flight simulation and is lower for longer ejector at all jet velocities.

At four different jet velocities the effect of flight simulation and flap length on PNLT
directivities is shown in Figure 4.2-19. The effect of flight simulation is to lower the PNLT
levels at polar angles above 60° due to source strength reductions and the trend is
reversed at lower angles due to dynamic amplification of jet noise overcoming the source
strength reduction effects. Significant PNLT reduction is observed at the rear arc. PNLT
- 1is lower for longer ejector at all angles and the impaét 1s less realized in the rear arc angles.
Effect of flight simulation and flap length on SPL spectra at various polar angles (8) for
each of the four jet velocities is shown in Figures 4.2-20 through 4.2-23. Significant SPL
reduction is observed at higher polar angles for the entire frequency range due to flight
simulation. The SPL levels are lower for long ejector compared to the shorter
configuration, mostly at higher frequencies.

The effect of flight simulation and flap length on chute loading coefficient plotted against
NPR is shown in Figure 4.2-24. While the effect of flap length on chute loading coefficient
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Figure 4.2-24. Effect of flight simulation and flap length on chute loading coefficient with
respect to nozzle pressure ratio of LIM cycle conditions for an aligned

convergent-chute mixer-ejector; SAR=2.8, MAR=0.95.
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is small, the levels increase significantly with flight simulation. The effect of flight and flap
length on pumping and corrected pumping is shown in Figures 4.2-25 and 4.2-26,
respectively. The pumping increases significantly with flight simulation, since the total
pressure at the inlet goes up. Even though, the pumping increases with flight, the effect is
relatively small on the mixed jet velocity (see Figure 4.2-27).

Figure 4.2-28 shows the effect of flight and flap length on the average axial static pressure
distributions on the inlet and the flap surface at different L1M cycle conditions. Small
amount of pressure increase on the inlet and the flap due to flight simulation is noted at
lower NPR conditions. However, the effect of flight simulation is significant on the flap
surface close to the transition from subsonic to supersonic mode and at supersonic mode
conditions. The effect of flight and flap length on normalized force due to static pressure
difference on flap surface is shown in Figure 4.2-29. The force decreases slightly with
flight simulation due to increased static pressure on the flap surface. The transition from
subsonic to supersonic mode seems to be slightly delayed with respect to NPR due to
flight simulation. Similar is the effect due to the longer ejector compared to the shorter
configuration.
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Figure 4.2-25. Effect of flight simulation and flap length on pumping with respect to nozzle
pressure ratio of LIM cycle conditions for an aligned convergent-chute mixer-
ejector; SAR=2.8, MAR=0.95.
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Figure 4.2-26. Effect of flight simulation and flap length on corrected pumping with respect
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to nozzle pressure ratio of LIM cycle conditions for an aligned convergent-
chute mixer-ejector; SAR=2.8, MAR=0.95.
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Figure 4.2-27. Effect of flight simulation and flap length on mixed jet velocity with respect to
nozzle pressure ratio of L1M cycle conditions for an aligned convergent-chute
mixer-ejector; SAR=2.8, MAR=0.95. '
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Figure 4.2-29. Effect of flight simulation and flap length on normalized force due to ejector
flap with respect to nozzle pressure ratio of LIM cycle conditions for an

aligned convergent-chute mixer-ejector SAR=2.8, MAR=0.95.
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4.3 STAGGERED CONVERGENT-DIVERGENT-CHUTE MIXER CONFIGURATIONS:

Two staggered CD chute mixers with SAR of 2.8 were tested using new lower racks with
the existing SAR 2.8 10 CD chute upper rack. One of the staggered lower chute rack
configuration has 9 full cold chutes, as shown in Figure 4.3-1, which are slightly larger
than the 10 CD chutes on the top in order to keep the hot and cold flow areas the same.
These chutes are partially staggered top to bottom. The center bottom chute mid-plane is
aligned with the hot core mid-plane on the top. However, moving away from the center
toward the sidewall, the degree of stagger becomes smaller. All core widths are identical
except for the two half core side widths on the top. The inlet and upper chute rack
instrumentation for this configuration are the same as those for the aligned CD-chute
mixer configuration (see Figure 4.1-5). The plan view with instrumentation locations on
the inlet and lower chute rack for the staggered chute mixer is shown in Figure 4.3-2.

The second staggered lower chute rack configuration has 9 full cold CD chutes and two
half cold CD chutes, as shown in Figure 4.3-3. The 9 full chutes are offset laterally by
one-half chute-to-chute period, so that the center of the primary stream on the upper rack
is aligned with the center of the secondary stream on the lower rack. A half chute is
placed on each end of the lower rack. This geometry provides uniform stagger of the cold
to hot flow elements while matching the hot and cold flow areas. The inlet and upper
chute rack instrumentation for this configuration are the same as those for aligned CD-
chute mixer configuration (see Figure 4.1-5). Figure 4.3-4 shows the plan view of the
inlet and lower chute rack with 9 and two half CD chutes for the staggered mixer
configuration indicating the locations of the static pressure taps on the chute surfaces and
the total pressure rake in the secondary flow path.

The long ejector of 16.055” and the short ejector of 10.935” with MAR=0.95 were used
for the current configurations. The instrumentation upstream of the mixer exit is the same
for both the long and short flap configurations. The flap instrumentation is different for
short flap configuration and is the same as those shown in Figure 4.2-4 for convergent
chute mixer-ejector configurations with short flap. For the treated configurations, the flaps
and sidewalls were fully treated with nickel based metal foam with a 37% porous
facesheet. Tests were conducted for each of the staggered chute configurations along the
L1IM cycle line for static and simulated flight condition of Mach 0.32 and the acoustic
data were measured at community and sideline planes with respect to the major axis only
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by positioning the microphone tower at 90° and 259, respectively. Acoustic data was also
measured at 45° azimuthal location using the fixed microphone array (see Figure 4.3-3).
The model surface pressure data was measured for each aerothermodynamic condition.

4.3.1 Results for 10 and 9 Full CD-chute Staggered Mixer-Ejector Configurations:

Effect of Acoustic Treatment and Flap Length: All the results in this section show the
simultaneous comparisons between treated and hard wall configurations and between
short and long flaps for static and with flight simulation condition of Mp=0.32. While the
long flap results are presented by open symbols, the same filled symbols show the results
for short flap configurations.

Figure 4.3-6 shows the effect of treatment and flap length on PNLT and EPNL as function
of jet velocity (Vj) at an azimuthal angle ¢=25°. Noise reductions in terms of EPNdB and

PNLTdB are observed both due to treatment and increased flap length. However, the
effect is reduced with increasing jet velocity. Noise reduction due to acoustic treatment is
higher for the long flap configuration compared to the short flap case. Acoustic benefit of
about 2 to 3 EPNAB due to treatment is observed for long flap configuration with flight
simulation at velocities between 1600 and 2200 ft/sec. At higher velocities the treatment
benefit is not significant due to dominant externally (i.e., external to the ejector) generated
noise. Noise benefit due to increased flap length is the result of better mixing within the
ejector compared to a shorter ejector case.

At four different jet velocities of L1M cycle conditions the effect of treatment and flap
length on PNLT directivities is shown in Figure 4.3-7. Noise suppressions due to
treatment and due to flap length are more significant at lower jet velocities and at lower
polar angles, except for Vi=1147 ft/sec. At this condition the effect of treatment as well as
flap length are observed in the mid polar angles. At lower forward angles the effect is
insignificant due to the probable dominant shock noise and noise from the inlet. Effect of
treatment and flap length on SPL spectra at various polar angles (6) for each of the four
jet velocities is shown in Figures 4.3-8 through 4.3-11. Significant SPL reduction is
observed at higher polar angles for higher frequency range. The acoustic benefit in terms
of SPL diminishes with increasing jet velocity. At NPR=3.4 condition the SPL results
indicate the possible presence of shock in the ejector for short flap configurations. Shock-
associated noise in terms of SPL is dominantly observed at 60° and in moderate amount at
900 for the short flap configurations.
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The static pressure tap locations on the flap surface downstream of the origin (i.e., for
positive X) are normalized with respect to the ejector length associated with the test
configuration for axial static pressure distribution results. However, the static pressure tap
locations upstream of the origin (i.e.,k for negative X) are normalized with respect to the
longer ejector length (i.e., 17"), since these instrument locations are identical for both long
and short ejector configurations.

The effect of treatment, flap length, and flight simulation on ramp and chute static
pressure distributions is shown in Figure 4.3-12 for different LIM cycle conditions. The
effect of treatment and flap length is insignificant on the static pressure distributions on the
ramp and chute surfaces. However, the static pressure increases due to flight simulation
for each case, both on the ramp and on the chute surfaces due to freejet fan pressure rise,
indicating lesser loading for the chutes. Figure 4.3-13 shows the effect of treatment and
flap length on chute loading coefficient plotted against NPR. Again, the effects of
treatment and flap length are very small on chute loading coefficient. The effect of
treatment and flap length on pumping and corrected pumping is shown in Figure 4.3-14.
The pumping is lower for treated ejector compared to hard wall for short flap
configuration at static case for lower NPRs. This difference is most probably due to the
difference in static temperature between the two configurations and not the effect of
treatment. The effect of flap length is very small. With flight simulation these effects are
almost negligible on pumping. The effect of treatment as well as flap length is almost
negligible for corrected pumping for entire NPR range for static and flight cases. The same
is the case with the mixed jet velocity (see Figure 4.3-15).

Figure 4.3-16 shows the effect of treatment and flap length on the average axial static
pressure distributions on the inlet and the flap surface at different L1M cycle conditions.
Static pressure distributions on the inlet are not influenced by the treatment and by the
ejector length. However, the ejector length influences the flap static pressure distribution
for all conditions. The static pressure is higher on the flap surface for longer ejector
compared to the shorter configuration. The effect of treatment is insignificant on flap
static pressure distributions at lower NPR conditions. However, at higher NPRs, closer to
the transition from subsonic to supersonic mode and above this condition, the flap static
pressure is higher for the treated ejector compared to hard wall configuration. Acoustic
treatment seems to soften shock/boundary-layer interaction which in turn seems to
increase the critical NPR at which the ejector transitions from subsonic to supersonic
mode. This is further illustrated in Figure 4.3-17 by plotting the normalized force on flap
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Figure 4.3-13, Effect of acoustic treatment and flap length on chute loading coefficient with
respect to nozzle pressure ratio of L1M cycle conditions for a 10 and 9 full
staggered CD-chute mixer-ejector; SAR=2.8, MAR=0.95.
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Figure 4.3-14. Effect of acoustic treatment and flap length on pumping and corrected

pumping with respect to nozzle pressure ratio of LIM cycle conditions for a
10 and 9 full staggered CD-chute mixer-ejector; SAR=2.8, MAR=0.95.
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Figure 4.3-15. Effect of acoustic treatment and flap length on mixed jet velocity with respect
to nozzle pressure ratio of L1M cycle conditions for a 10 and 9 full staggered
CD-chute mixer-ejector; SAR=2.8, MAR=0.95.
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Figure 4.3-17. Effect of acoustic treatment and flap length on normalized force due to ejector
flap with respect to nozzle pressure ratio of L1M cycle conditions for a 10

and 9 full staggered CD-chute mixer-ejector SAR=2.8, MAR=0.95.
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surface with respect to NPR, that the transition from subsonic to supersonic mode seems
to be slightly delayed for treated ejector compared to hard wall configuration and for
longer ejector compared to the shorter configuration.

Effect of Simulated Flight and Flap Length : All the results in this section show the
simultaneous comparisons between static and simulated flight of Mp=0.32 conditions and
between short and long flap for treated and hard wall configurations. While the long flap
results are presented by open symbols, the same filled symbols show the results for short
flap configurations.

Figure 4.3-18 shows the effect of flight simulation and flap length on PNLT and EPNL as
function of jet velocity (Vj) at an azimuthal angle ¢$=25° for treated and hard wall

configurations. EPNL decreases with flight simulation for all jet velocities for hard wall
configuration and for treated case at velocities 1600 ft/sec and above. The EPNdB
reduction due to flight simulation is slightly higher for treated ejector compared to hard
wall case, since the noise generated internal to the ejector is reduced due to treatment and
thus the reduction of externally generated noise due to flight simulation dominates the
observed noise. The EPNL is lower for longer ejector compared to the short flap case and
the noise reduction is higher with flight simulation. Except for forward arc angles the
PNLT decreases with flight simulation and is lower for longer ejector at all jet velocities.

At four different jet velocity conditions the effect of flight simulation and flap length on
PNLT directivities is shown in Figure 4.3-19. The effect of flight simulation is to lower the
PNLT levels at polar angles above 600 due to source strength reductions and the trend is
reversed at lower angles due to dynamic amplification of jet noise overcoming the source
strength reduction effects. Significant PNLT reduction is observed at the rear arc. PNLT
is lower for longer ejector at all angles and the impact is less realized in the rear arc angles.
Effect of flight simulation and flap length on SPL spectra at various polar angles (8) for
each of the four jet velocities is shown in Figures 4.3-20 through 4.3-23. Significant SPL
reduction is observed at higher polar angles for the entire frequency range due to flight
simulation. The SPL levels are lower for long ejector compared to the shorter
configuration, mostly at higher frequencies.

The effect of flight simulation and flap length on chute loading coefficient plotted against
NPR is shown in Figure 4.3-24. While the effect of flap length on chute loading coefficient
is small, the levels increase significantly with flight simulation. The effect of flight and flap
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Figure 4.3-24. Effect of flight simulation and flap length on chute loading coefficient with
‘ respect to nozzle pressure ratio of L1M cycle conditions for a 10 and 9 full
staggered CD-chute mixer-ejector; SAR=2.8, MAR=0.95.
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length on pumping and corrected pumping is shown in Figures 4.3-25 and 4.3-26,
respectively. The pumping increases significantly with flight simulation, since the total
pressure at the inlet goes up. Even though, the pumping increases with flight, the effect is
relatively small on the mixed jet velocity (see Figure 4.3-27).

Figure 4.3-28 shows the effect of flight and flap length on the average axial static pressure
distributions on the inlet and the flap surface at different L1M cycle conditions. Small
amount of pressure increase on the inlet and the flap due to flight simulation is noted at
lower NPR conditions. However, the effect of flight simulation is significant on the flap
surface close to the transition from subsonic to supersonic mode and at supersonic mode
conditions. The effect of flight and flap length on normalized force due to static pressure
difference on flap surface is shown in Figure 4.3-29. The force decreases slightly with
flight simulation due to increased static pressure on the flap surface. The transition from
subsonic to supersonic mode seems to be slightly delayed with respect to NPR due to
flight simulation. Similar is the effect due to the longer ejector compared to the shorter
configuration.

4.3.2. Azimuthal Variation of Farfield Noise

Acoustic data was acquired at sideline (¢=259) and community (¢=90°) locations with
respect to the ejector major axis using traversing microphone array and at an in-between
location of $=45° using the fixed microphone array of Cell 41 facility (see Figure 4.3-5).
Acoustic results are compared between these three locations to examine the azimuthal
characteristics of farfield noise for the four CD 9-chute staggered mixer-ejector
configurations, namely, hardwalled and treated ejectors with short and long flaps.

Figures 4.3-30 and 4.3-31 show the variation of EPNL and peak PNLT for different ejector
configurations with respect to the L1M cycle points at three azimuthal locations. For all
* conditions the noise level in terms of EPNL and peak PNLT is higher at the community
point compared to the sideline for all four configurations. The difference of noise levels
between these two locations generally increases with decreasing jet velocity. Most cases
the noise levels, in terms of EPNL and peak PNLT, at ¢=45° lie between the sideline and
the community point levels, and are very close to the sideline levels. Based on the ¢=45°
location on the mixer-ejector cross section (see Figure 4.3-5), the azimuthal variation of
EPNL and peak PNLT are more dominant on the flap side, closer to the community
location. Figures 4.3-32 and 4.3-33 show the variation of PNLT at polar angles of =600
and 0=900 , respectively for different ejector configurations with respect to the L1M cycle
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Figure 4.3-25. Effect of flight simulation and flap length on pumping with respect to nozzle
pressure ratio of L1M cycle conditions for a 10 and 9 full staggered CD-chute
mixer-ejector; SAR=2.8, MAR=(0.95.
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Figure 4.3-26. Effect of flight simulation and flap length on corrected pumping with respect
to nozzle pressure ratio of LIM cycle conditions for a 10 and 9 full staggered

NASA/CR—2004-213117

CD-chute mixer-ejector; SAR=2.8, MAR=0.95.
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Figure 4.3-27. Effect of flight simulation and flap length on mixed jet velocity with respect to

nozzle pressure ratio of LIM cycle conditions for a 10 and 9 full staggered
CD-chute mixer-ejector; SAR=2.8, MAR=0.95.
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points at three azimuthal locations. For all conditions the noise level in terms PNLT is
higher at the community point compared to the sideline. The difference of noise levels
between these two locations generally increases with decreasing jet velocity. Most cases
the noise levels, in terms PNLT, at ¢=45° Lie between the sideline and the community point
levels, and are relatively closer to sideline levels. Noise level difference between community
and sideline locations in terms of EPNL and PNLT is higher with flight simulation. In
addition, compared to treated configurations the noise level difference is higher for
hardwalled configurations.

Azimuthal variation of PNLT directivities for different ejector configurations are plotted in
Figures 4.3-34 through 4.3-37 for four different LIM cycle conditions. For all
configurations the PNLT levels are higher at the community point compared to the sideline
at most polar angles. The difference of PNLT between the sideline and community, in
general, decreases with increasing jet velocity. At higher velocities the azimuthal variation
of PNLT is small in the forward arc at static condition. However, with flight simulation the
azimuthal variation of PNLT is equally significant at all polar angles. Similar resuits for
SPL spectra for three L1M cycle conditions are plotted for three polar angles in Figures
4.3-38 through 4.3-46. The azimuthal variation of SPL is more dominant in the high
frequency range, above 400 Hz (corresponding model scale frequency being 3000 Hz). The
SPL levels are higher at the community compared to the sideline location. The difference
decreases with increasing jet velocity. With respect to polar angle, the SPL difference
between sideline and community is higher in the rear arc. The impact of treatment is to
reduce the azimuthal noise variation. Similarly, the azimuthal variation in terms of SPL is
lower for long flap compared to short flap. With flight simulation the azimuthal variation of
SPL increases.

One of the reasons for azimuthal variation of noise is the aspect ratio effect of the
rectangular ejector. It is well known that the azimuthal variation of jet mixing noise
increases with increasing aspect ratio. For the mixer-ejector under consideration the aspect
ratio of the ejector is about 1.51, which is significant to introduce azimuthal variation of jet
mixing noise. However, the farfield noise for mixer-ejector type nozzles is not entirely due
to the jet mixing or externally generated noise. Some contribution is due to the radiation of
internally generated noise. This is evident from the fact that the azimuthal variation is
higher for hardwalled ejector, for which most internally generated noise is radiated out. In
addition, the azimuthal variation is higher for flight simulation case, for which jet-mixing

noise is reduced due to dynamic effects, resulting in more dominant internally radiated
noise.

NASA/CR—2004-213117 200



"MoSLIT = 8L ‘0°CT =¥UdN 998/ G661 = LA .S6°0=MVIN ‘8'T=¥VS ‘10100{o-1ox1 9)nyo-() paadders
[N} 6 PUE O © 103 A11A10HP I INd JO UODELIEA [BYINUIIZE UO JUSUIIEan 10303fo pue yiduoj defy 3o 190H pE-¢'p o1y
334930 ‘3TONY BV10d v 334930 ‘I1ONY BV10d

] 001 08 09 o o9 ori 021 001 08 09 oy
3

AV QLS HY %0L do68

ANITIALS L33 6291 VO =
SHHONI DS S801=gy  "SS02) o
(SS09I=N) T & {Rwnwiwo)) Bep 06 w—w ). CHLVHIL /.
LOT1=1R Bep gy @
{sugepis) Bep 62 B—&)
gfuy jeyinwizy

(.S£6'01=""1D
L08="1" ! ﬁ N \ (..S€6'01="D
I \ — L08="11d

o m

~

o m H__

™

<

N

<

¥ E 7 “ m

(.5£6°01="D N

] - .08=1d ® _

& TIVvM HVH \_\ o

P e o m m

& nA\_\u

<

Pz
_ - &

ANm.dumEv LHOI @ DILY.LS (®)

i ) ) 2 w

001



“oS8Y1 = 8L “0°€ = UdN 095/ 00TT = A ‘.56 0=AVIN ‘§'T=VS “10102fo-10x1s )y parasaers

[INj 6 Pue O & 10§ AMABOSIIP L INd JO UOHRLIEA [RYINWIIZE UO U
336930 '31ONV HY10d

084 ork 02 004 08 09 o
@
® Y
A\
& /«/ .
™ / A..mmﬁmmwﬁm -
8 :/ \ dELVAIL =
lll"
\ AN e 4
ol R N e

v

g

(.§50'91="1D
«CI=H

R a o
W
e .
L

® 4

(z€'0=1W) LHOI'd (@]

001

33430 ‘ITONY UYI0d

aunean 10303f0 pue YP3ud| defy Jo 199157 ¢¢-¢ ' 2m31g

091 43 021 001 08 09 ov
AVA ALS HY %0L 06§ 5
ANI'THAIS Lad 6791 o
SHHONI “OS 9801=8Y (.$50°91=""D
— QdLvEil
Bop S¥ -0

eibuy [eyinwizy

(eunepis) Bop 5z @—&

(.$S0'91="

.'ON ﬂ "\.—a

o

TIVM QUVH _J§~

DLLVLS (¥)

S6

001

S01

G6

004

501

80 ‘LINd

202

NASA/CR—2004-213117



“do0651 =8L V'€
1InJ 6 pue Q[ ® 10J

oyl

0ct

004 08

= MdN 998/} V8ET = A
AnAN2211p 1IN JO UOHBLIBA [RINWIIZ

33HOIA "FTONY HY10d

09

0,

w

(.5S091=97)

«OC1=THH

(.$S0°91="27)

LOTI=TH

. 801

(.SE6'01="T)

8

56

00t

501

(.$£601=2D
.08="1(d

“.S6'0=dVIA ‘§'T=aV§ ‘10109
® UO JUSUIIEAI) 10109

-JoxIW A)nyo-q) pereddes
fo pue ySuaj dey 3o 109134 -g¢-¢'y 1n31d

334930 '3TONV HY10d

081 ovi 114! 001 08 09 oy
&
n
VS 9 e o e b e o]
8 AVd ALS HY %0L Ho6s Coc091="]) g7 |7
ANITHAIS LA 6791 * 0z1=11d \(.

o |—— {(Awunuswo)) Bep 06 v—9 | — -} e L 4 8

A Bep 5Y -0 &

2\ (euyepis) 63p 52 B—8 4

A\ aiBuy [eyInwIzZY .
Sl N “ . e i
m .‘ .‘m w o

Vi /
3 E
] " 7 W
| Y ($E601="D
08=1d
= JqaLVHEdL 43
w < \3»\( @
: "
w ..'\Nx.i! B %
2 18
13
JILVLIS ®) |
: &

ap 'L INd 5.

NASA/CR—2004-213117 .



$6

004

S01

0Ll

S6

001

Goi

(1)

“Ho0SLI = 8L ‘0 = UdN 99833 L£9T = (A .S6°0=MVIN ‘8 7=V “10109f>-Iox1w nyd>-qD) parofdums
[N} 6 PUe O] © Joj K31Ano21p 1IN JO UONEBLIEA [BYINWIZE UO Juswiean 10300(5 pue Wdusj dey jo 100y *Lg-¢' 2ImdLd

334930 '31ONY HY10d . 334930 'ITONV HY10d
091 ovi 0ot 001 08 09 oy 091 ovi 0cl 004 08 09 oy

& ‘ | « B
AVA ALS HY %0L da6S _
ANITAAIS LIHd 6791 (.$50'91=""1)
SHHONI OS 9801=8Y
(Aunwwo)) Bep 06 v—-v

Bep ob ©--@
Q1 =it !
(.55091="7) \s\m nw (euyepis) Bep G2 @—r1

_ LOC=1d
aaLvadL e ojfuy jeyinwizy

3

00

a

|

i
S6

g6

(.SS0°91=T) -
LT

001

00!

KU

(.$£6°01="1D

S04

0kl

8P "LINd

O
St

(.5£6'01="D
08=T1rd
QALVEIL

3

00

r"ﬂ -
S
]
P
4
e
00t

S0l

(.s€6°01=1
arow%
TIVAM QIVH
B
—f——4
p--0-9--@--

S04

0L

(ze'0=dN) 1HOIH (@)

13
Sil

204

4-213117

NASA/CR—200



“oSLIT = 8L ‘0T = UdN 9/} 651 = A .6 0=dVIN ‘8'7=4Y
6 PU® O] ® 10} 5(9=9 1B Wnnoads 74§ JO UONBLIBA [RIINWIIZE U0 judUREaN

ZHY ‘AON3ND34d
14 4 b ¥0 4 10

(.§50°91=""D
LOT1=TH ‘ddLvddl

2l

(.$50'91=""D
LOTT=TE "TIVM QIVH

oA

OO “ ¥

‘0414.\‘.. anal ‘./ -
(.$£6°01="1D

L08="13 ‘GALVERIL

(.s£6°01="D
_08="1" “TTV M QUVH

... ©

-

4 o
r 4

N\ Av-e Y (Z50=A) LHOTH @

03 0L

%

S “10309fo-10X1U 9)NYd-(ID) PaIaddels [0}
10309(o pue J3uaj deyy Jo 1oy ¢-¢' i1

24 ‘AON3ND3HA
i ¥0 0 10

S0

A‘

r.

Avd LS HY %0L Ho6$
ANITHAIS LE3 6791
SHHONI "OS 9801=8Y
(Aunuiwo)) Bep 06 v—w

fop S -0
(euyepig) Bep 52 @—H
* eifuy jeyinwizy

(.550'91=""7D
LOTIETE 'qdLvEdL

$5091=""D
L071=1E “TIVM QAVH

(.S€6°01=""D
08=1rd ‘qaLVHEL

(.5£6:01=RD
L08="1f2 “TIVM QVH

JILVLS ®)

]

3]

09 0L
p @ THATT ERZI(%SSHHd aNnos

)

0L

09 =

NASA/CR—2004-213117

gp°



“MoSLIT = 8L ‘07 =ddN 995/} 651 ='A “,S6'0=VIA ‘8 7=V “10303[o-1ox1w aynyo-(1) pareddess |[nJ

6 PUB (] © 10J 506=0 J& wnnoads 74S Jo UOTBLIRA [eYINWUIIZE UO Judwiean) 10303fs pue pdus defy Jo 1095y "6¢-¢'v 2131y

21 'AON3ND3Y4

-

ZHY "ADNIND3H4
I ¥0 <0 10

500

i

ot

(.£50'91=7)

i

LAY 20 10

(.S$S0'91=T)

LOTT=Td .Qm.h.{mmrr

OTI=TE TIVM QUVH

08="(H ‘qd.L

(.S€6'01=""D)

(.S£6:01=D
L08="T3 “TIVM QIVH

(ze'0=dW) LHOI'H (@)

§0°0

(=]

gs

08

08 0L

L

oL

_ﬂ/ .
" o
DILVIS (®) ¥

\‘Q.‘q\\qlvdl..ﬁ.lQ. >

L08=1a TV

AVA ALS HY %0L do6S
ANITAAIS L3494 6291
SHHDNI "OS 9801=8V
(Aunwwo)) Bap 06 v—+

bep ¢ @--@
(suyepig) Bep 62 @—m
ojBuy jeyinwizy

(.$50'91="7)

T~

(..$50°91="1)
LOT1=HH “TIVM QdVH

(.5£6°01="2D
_08=11d ‘qaLVHAEL

J-@\\ >

$€6°01=""D
GSe60I=D o

-t

4 LOTI=1H ‘AALvaYL 7

§

0s

8§

09

89

89

08 0L

59
4P ‘06

NASA/CR—2004-213117

74

SL

6 @ THATT E%IélSSHHd aNNos



“UoSLIT = 8L ‘0T = UdN 098/)] 651 = [A .S6'0=4VIN ‘8'7=¥ V'S “I0100fo-10x111 aInYo-() PasodBess [iny
6 Pue ] ® 10} 507 1= 18 wnnoads 4§ Jo UONBLIBA [RYINWIZE UO Jusuiean 103oafo pue yduoj deyj jo 100)3g “Op-¢' 2indng
,./ ZH4'AON3ND3H 21 ‘AON3ND3IH

¥

’ ’ 10 §0°0, ' y ’ ]
¢ | ] vc‘ 20 99 I ¥'0 ¢0 fc mcom

AVd ALS HY %0L H068
ANTTEAIS L3834 6291
SHHONI ‘0S8 9801=8V
(Aunwwo)) Bep 06 v~

fep 5 -0
(sugepis) Bap 5z @—a1
eiuy jeyinuszy

4 w0
o

w.

09

. (.SS091="D
0TI~ ‘QALVANL

S

(.$50'91="D
Q. .0C1=1(8 ‘QALYHEL |
¥ hh: .

14

0L

e (.5£6'01="1D
QiVH

{90

O

/ \ (.550°91=""D) Z
[#5]

o ® 1

¢ 5

s -

: 43 2

3 =

(.SE6O1=T) 8 80
08="1d 'GALVEYL . la's
- i

o

<

o,

)

oL

sl

v 08T TIVA

964
0L 08

S

— g

207

NASA/CR—2004-213117



00651 = 8L ¥'€ = UdN 995/} 8€T = A

ZHY "AON3IND3HA

w6’
6 PUB ([ € 10J 5(9=0 18 WnNdds JS JO UOHBLIRA [RYINWIZE UO JUSWILI} 10)09

0=UVIN ‘8 7=V ‘J0100fo-19x1W a)nyd-q)) parodde)s jjny

ZH) 'AON3ND3HA

fo pue y3uay degy Jo 10955 “14-¢'p 2m31d

y 2 ' 0 20 Ko Lo 4 1o 507,
AV ALS HY %0L Ho6S 18
ANITEAIS LIFH 6291
SHHONI "OS 9801=8V

(Aunwuio) Bep 06 v~ 18 .,
Bop sy 0@ m
(euyepis) Bep 52 F—) 1o 2
aibuy feyinwizy MR
g
N
, (.SSO'91=17) a|a
\ LOTI=T(H ‘AALVEYL (.$50°91="" 7
i\ OTI=TH ‘AaLVHEL ! <
\ B

a1 o
¥ 5 -
wm / A:mmc.cﬂ“hmd A
{ B LOTI=TE “TIVM QIVH ﬂ
L\ W gl g o AES 40
Y @
,., %\ 3
1\ (.S£6:01=7) 3
a. z 3 - «08=1[H .erm.{mg g .©
LY U o o g E B S M 3 e
Ve O e AT O VY L ¥

\ I S e

\
\ (.S£6°01=""D .
\ O8FUTTIVMAEVE g o b,
N\ A Dy D
e (2€'0=4) THOI'L (@) .
-

208

NASA/CR—2004-213117



Uo06ST = 8L V'€ = UdN 095/} y8E€T = ‘A WS6'0=4VIA ‘8'7=dV'S “I030alo-1ox1ur aynyo-37) pareddess [y
6 Pue Q] © 10J 506=0 J& Wnndads 4§ Jo UoneLIRA [EINWIZE UO Judunear J0)0alo pue PFual deyy Jo 1003H ‘zp-¢'p omSiy

ZH) ‘AON3INDIYA ZHY 'AON3IND3IHA
o, 4 ¢ AN A N—1 lo___ 500, 0 y 4 ! vo 20 o 0,
k % ] %
- AVA QLS HA %0L 065
lg ANITHAIS L35 6291 o
: SAHDNI "OS 9801=8V 1o
i (Aunwuwo)) bap 06 v—v
1 & fep o¥ - i3
_ _. (euyepis) Bep G2 @—&
ajfuy jeyinwizy
(.£5091=57) i3 ” {3
3\ LOTI=TH ‘QaLVEYL
a8 dy ~J \
# 4] o \ ..::-w' it Sl B ) 7 m
3 ¥ \ ..N S < if ,@.\ ] N:..
A:mmc.wﬁnawﬂ R @ L // W T A:mm@.onuhmdv v
« )T N~ W - R~ G :ONﬂl...I\HHm Aéa %m i « e ~smm v@...r . j M.u - :Oﬂﬂ"\m‘ﬂm q«H{B Q%: )
.ﬂu/ Y] 2y 5 N : g \ ~, W s - wﬂ.c!n.mv Reemp. R P ., M.n\\ )
N\, e..nmv. A i - N~ \ o /;@\ o ¥ tH e \e.. 3 % )
N Ao ol T b \ ’ 7 A I O ) i
G G gO Y e a
(.SE601=""D @ wSTo 01 X
L08="14 ‘q9.LVadL | < Y . N LO8=1rH ‘qdLVHIL . _.“.\.\\ N
A \ . .L...mod.m B e~ . I AR ......nm,vu .
3 R T i R =~ P ol
% (.$£6'01=""D |
3 \ _ L08=T0H “TIVM QUVH A
# 5t W o e a Bom o 18
N ... h.-. W\@.ﬁ.@ﬂ@:@:.@.\m /m% =BT o ® A.W
JLLV.LS (®) . -
eo=tw) LHoIrd @) 18 &

h 2t

o

0 ® TIATT TINSSTA ANNOS

€p .06

NASA/CR—2004-213117

209



00651 = 8L ‘v’ = UdN 098/} #8¢C = (A £.S6°0=MVIN ‘§'7=dVS “I010afo-1ox1u a)nyd-(1) paroddess [y
6 PU® O] ® 10 07 1=0 18 wnnoads 7[4S Jo UONBLIBA [RYINWIZE UO JUsujedn 1030305 pue YFuaj defj J0 1091 ‘¢H-¢'p 2B

ZH) 'AON3ND3YA ZH4 "ADN3ND3YA
14 ¢ | ¥ g0 10 50q,, 04 w p. i v'0 . ¢0 p“o i mc.nW

. 4 v T pee—p—y T— o
b

(ze'0=4W) LHOT'L (@)

(.$50'91=""D

(.$50'91="D
~TI=1H

0L

8L

AVd ALS HY %0L 406
INITHAIS L339 6791
SHHONI "0S 9801=8V
(Ayunwuio) Bep 06 v—vw

Bep S @0
(euepis) Bop 52 @—&
~  ojfuy jeyinwizy

(.$S0'91=5D

(.S€6°01=)
08114

JLLVLS (®)

€9

0L

7

08

S8

gpP ,0C1 = 0 ® THATT HANSSHId ANNOS

NASA/CR—2004-213117

08 06

8

08 06

58

210



"o0SLY = 8L ‘0 = UdN “998/) LEIT

[A .$6°0=MVIA ‘8'7=4V'S ‘10100fo-1ox1w aynyo-1) pasosTus [ny
6 PUe (] ® 10J o09=@ J& wnnoads 4S JO UoNeLIBA [RYINIIIZE UO JusWlean) 101030 pue ydusy deyy Jo 10039 vh-¢'+ 2y

ZH4 'AON3ND3YS 1 ZHY ‘AON3IND3H4
0l ¥ 2 ! 70 20 10 50, 04 Lo Z } 0 20 Ko 50
(g 0=2W) 1HOI'H (9) ,
i _ .
(Awunwwo)) Bep 06 v~

Bep 5% @0 AVA ALS HI %0L do6S
(aunepis) Bep Gz @—r1 1% ANITHAIS LHH 6291 |

ejBuy jeyinwzy _ SHHONI OS 9801=8Y

(.550'91="7)
LOT1="14 'AALVEYL

A:mmo.fnawc
LOZI=TE "TIVM QEVH .
- .J £ mm LR .‘ww\“/-,r. A.S
-.f. ‘I-q\.q{l“\ AarWﬂ@.CM“de
\ Y O8=1H ‘AELYTIL o

0L

a
|3
>

ey

JLLVLS (@)

(.550°91=""7
0TI ‘aaLvadL

%,

g

08

99

(.$50°91=""D e
LTI “TIVM QIVH s

LN BB e
W reeg g L1 g 1 g -

o SV Al

3 e s ¢ £ OV
Rt~

(.s€601="7 o )
L08="1f9 ‘QALVHIL
.Hw-..mv:a T O o ke

R :al;mwn\.s o Pt o o .n 0 i

(.S€6:01="37)
«O8="I(H “TIVM QAVH

09 = 0 @ THAST BINSSTId ANNOS

‘

gp

211

4-213117

NASA/CR—200



Uo0SLI = 8L ‘0'p = UdN ‘098/1}) L£9T =
6 PUe Q] ® 10J 06=@ 1& Wwnnoads 4s J

A CWS6'0=4VIN ‘§'T=4V'§ ‘10j0fa-1ax1ur aInyd-q) para3gess [y

O UOTJBLIBA [BUINWUIZE UO JUSWIIE

a1 10393f0 pue yuoj deyy jo 100335 ‘Sh-€p omdiyg

\ ZH3 'AON3ND3H4 ZH "AONIND3Y
04 b2 S 4 1 o 59 0 p 4 ; 4" 20 ko S0,
(@€ 0=4W) LHOI' (@) |
\ 18 ” 18
— (Ayunwiwod) 6ap 06 v—v ) AVA ALS HY %0L H06$
Bep ¢ @--© i HNI'THAIS 38 6791 13w
(suiepis) Bep 52 @—m SHHONI "OS 9801=8V o
i3 aibuy jeynuizy S
& ~
\ = a U
) g
LR ‘ 9
B\ 3 & &
[ (.550°91=""D (.£50°91=""D %
b ¢ OTI=TE ‘QALVAIL , LOTI=TE ‘QELYEYL m
—— 3 1 .
\ \ T 3 8 & m
g rTt e e 1 (.S50°01=17) % 5
IR (.550'91="D P LOTI=T(H “TTV M QAVH e
[\ A OUEUETIVMQIVE #1 Vg ®
—.a /9; 3t g1 o B sm.»l'-r\\“ wnc“.... N /4 m 400' - ;... 9 .h e 5 ﬂ.\,,.s o %"
A _.. ./ /ov- . g o :|| P> l:@\\ & b8 ¥ :re\\evc BOF 2 TV R o.@\ i <D
Ny e - (.$£601="D <
AN (.SE6:01=""1) A ~O8~IfH GELVERIL 2 &
W R\ O8=UA'QALVAIL _ o wg o oM | il = o
3y B = i = " -t x
\ NE @B | (.S£6°01=""T
A_ «O8=TH “TTVM QIVH -
o
JLLVLS (¥)
8

212

NASA/CR—2004-213117



"Mo0SLT = 8L ‘0 = UdN 998/ LE9T ='A .S6'0=IVIN ‘8'7=4V§ ‘10100fa-1ox1W ANYo-(17) para3gels [iny
6 Pue ([ ® I0J 50Z1=0 Je wninoads "J4S JO UOHBLIBA [RYINUIIZE UO JUSWIeRaI) 10303[0 pue YFua| deyy jo 10059 ‘gp-¢'p 2mIg

ZHX ‘AON3ND3A

// 14 [ i ¥0 20 10 mc.aW

1=

i)

(.550°91=

ZHY 'ADNINO3uS
! LAY 4 10

DLLVLS ()

AV ALS HY %0L H06$
ANITAAIS 1384 6791
STHONI "OS 9801=8V

(Aunwwo) Bep 06 v—--v
Bep 5y @--@

(euyepis) Bop 52 @—&
eifuy feyinwzy

(.$50'91="1D
«T1=1d

.,

-.@:f@\.@on‘.»a

i mo.#

s
g |

74

0 @ TIAHT TANSSHId ANNOS

gp ,0T1

NASA/CR—2004-213117

213



4.3.3 Resulits for 10 Full & 9 Full and Two Half CD-chute Staggered Mixer-Ejector
Configurations:

Effect of treatment, flap length, and flight simulation on the performance related results
for staggered chute configurations with 10 full and 9 and 2 half CD-chute mixer is almost
identical to those observed for the staggered chute configurations with 9 full CD-chute
lower rack mixer. For acoustic results the effect of treatment, flap length, and flight
simulation for 9 and 2 half CD-chute mixer are not identical, but qualitatively similar, to
those observed for the staggered chute configurations with 9 full CD-chute lower rack
mixer. Hence, for brevity, a few typical acoustic results for the 9 and 2 half CD-chute
staggered mixer are included in this section.

Effect of Acoustic Treatment and Flap Length: All the results in this section show the
simultaneous comparisons between treated and hard wall configurations and between
short and long flaps for static and with flight simulation condition of Mp=0.32. While the
long flap results are presented by open symbols, the same filled symbols show the results
for short flap configurations.

Figure 4.3-47 shows the effect of treatment and flap length on PNLT and EPNL as
function of jet velocity (Vy at an azimuthal angle ¢=250. Noise reductions in terms of

EPNdB and PNLTdB are observed both due to treatment and increased flap length.
However, the effect is reduced with increasing jet velocity. Noise reduction due to
acoustic treatment is higher for the long flap configuration compared to short flap case.
Acoustic benefit of about 2 to 3 EPNdB due to treatment is observed for long flap
configuration with flight simulation at velocities between 1600 and 2200 ft/sec. At higher
velocities the treatment benefit is not significant due to dominant externally (i.e., external
to the ejector) generated noise. Noise benefit due to increased flap length is the result of
better mixing within the ejector compared to a shorter ejector case.

At four different jet velocities of L1IM cycle conditions the effect of treatment and flap
length on PNLT directivities is shown in Figure 4.3-48. Noise suppressions due to
treatment and due to flap length are more significant at lower jet velocities and at lower
polar angles, except for Vj=1 147 ft/sec. At this condition the effect of treatment as well as
flap length are observed in the mid polar angles. At lower forward angles the effect is
insignificant due to the probable dominant shock noise and noise from the inlet. Effect of
treatment and flap length on SPL spectra at various polar angles (8) for two jet velocities
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is shown in Figures 4.3-49 and 4.3-50. Significant SPL reduction is observed at higher
polar angles for higher frequency range. The acoustic benefit in terms of SPL diminishes
with increasing jet velocity. At NPR=3.4 condition the SPL results indicate the possible
presence of shock in the ejector for short flap configurations. Shock-associated noise in
terms of SPL is dominantly observed at 600 and in moderate amount at 90© for the short
flap configurations.

Effect of Simulated Flight and Flap Length : All the results in this section show the
simultaneous comparisons between static and simulated flight of Mp=0.32 conditions and
between short and long flap for treated and hard wall configurations. While the long flap
results are presented by open symbols, the same filled symbols show the results for short
flap configurations.

Figure 4.3-51 shows the effect of flight simulation and flap length on PNLT and EPNL as
function of jet velocity (Vj) at an azimuthal angle ¢=25° for treated and hard wall

configurations. EPNL decreases with flight simulation for all the jet velocities for hard
wall configuration and for treated case at velocities 1600 ft/sec and above. The EPNdB
reduction due to flight simulation is slightly higher for treated ejector compared to hard
wall case, since the noise generated internal to the ejector is reduced due to treatment and
thus the reduction of externally generated noise due to flight simulation dominates the
observed noise. The EPNL is lower for longer ejector compared to the short flap case and
the noise reduction is higher with flight simulation. Except for forward arc angles the
PNLT decreases with flight simulation and is lower for longer ejector at all jet velocities.

At four different jet velocity conditions the effect of flight simulation and flap length on
PNLT directivities is shown in Figure 4.3-52. The effect of flight simulation is to lower the
PNLT levels at polar angles above 60° due to source strength reductions and the trend is
reversed at lower éngles due to dynamic amplification of jet noise overcoming the source
strength reduction effects. Significant PNLT reduction is observed at the rear arc. PNLT
is lower for longer ejector at all angles and the impact is less realized in the rear arc angles.
Effect of flight simulation and flap length on SPL spectra at various polar angles (0) for
two jet velocities is shown in Figures 4.3-53 and 4.3-54. Significant SPL reduction is
observed at higher polar angles for the entire frequency range due to flight simulation. The
SPL levels are lower for long ejector compared to the shorter configuration, mostly at
higher frequencies.
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Figure 4.3-52. Effect of flight simulation and flap length on PNLT directivities at different
L1M cycle conditions for a 10 and 9 full & two half staggered CD-chute
mixer-ejector at an azimuthal angle ¢=25%; SAR=2.8, MAR=0.95.
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4.4 IMPACT OF MIXER DESIGN:

Acoustic, flow related, and performance related results for the treated long ejector
configurations comparing between the four mixer designs, namely, aligned CD chute,
staggered 9 and 2 half CD chute, staggered 9 full CD chute, and aligned convergent
chute, are presented in this section.

4.4.1 Acoustic Results at Static Condition:

Figure 4.4-1 shows the comparison of pseudo EPNL, peak PNLT, and PNLT at various
polar angles (0) as functions of jet velocity (V) at a slant distance of 1629°, and at sideline
(¢=25°) and community (¢=90°) azimuthal locations relative to major axis at static
condition for the above mentioned four mixer configurations with treated long ejector.
The pseudo EPNL levels are with in a spread of about 1 EPNdB to one another for these
configurations at velocities above 1600 ft/sec. In this velocity range, the staggered 9 full
CD chute configuration seems to be performing acoustically best among these
configurations. At lower velocities (i.e., below 1900 ft/sec) the aligned convergent chute
configuration generates the lowest EPNL level. EPNL for this configuration is about 4 dB
lower at 1147 ft/sec compared to the staggered 9 full CD chute configuration. Similar
behavior is also observed with respect to peak PNLT and PNLT at other polar angles.
This behavior of convergent chute compared to CD chute is discussed later in this section.

PNLT directivities at jet velocities of 1147, 1920, 2384, and 2637 ft/sec are compared for
the four mixer configurations in Figure 4.4-2. At 1147 ft/sec (i.e., for NPR=1.5) the 9 and
two half chute configuration is the noisiest and the convergent chute configuration is the
quietest at all angles. The same trend is observed at 1595 ft/sec case (NPR=2.0), except
the PNLT levels for all these configurations are much closer to each other (not shown
here). The trend changes at higher velocities, as observed in Figure 4.4-2, for 1920, 2384,
and 2637 ft/sec conditions. At these conditions, the convergent chute configuration is the
noisiest and 9 full chute staggered configuration is the quietest at all angles. Spectral
comparisons at various polar angles (6) for each of the four jet velocities are shown in
Figures 4.4-3 through 4.4-6. At 1147 ft/sec the three CD chute configurations generate
SPL humps peaking around 2 kHz, which is possibly due to shock associated noise.
Although NPR=1.5 is a subcritical pressure ratio, locally supersonic flows can exist inside
the CD chutes due to overexpansion. Thus, shock noise is possibly generated across the
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shocks for pressure equalization in side the divergent portion of the chutes. Acoustic data
at this NPR confirms this behavior indicating higher shock-associated noise for CD chute
configurations compared to convergent chute case. Static pressure distributions on the
flap and on the mixer walls will be examined to assess the relative shock strengths between
CD and convergent chute configurations in the ejector. In this frequency range the
convergent chute configuration exhibits noise levels without any significant hump
indicating minimal shock structures within the confines of the ejector flaps for the |
convergent chute case. For 1595 ft/sec the spectral distributions for all four configurations
are closer to each other. However, the high frequency humps for CD-chute configurations
are still observed (not shown here). For higher velocity conditions (see Figures 4.4-4
through 4.4- 6) the spectral levels for all the conﬁgurations are closer to each other for
frequencies up to about 2 kHz. At higher frequency a hump is observed for convergent
chute configuration in the forward arc indicating potentially larger contribution of shock-
associated noise by aligned convergent chute design for this underexpanded case. As NPR
increases, CD chutes tend to operate closer to the design case of shock-free situation
compared to convergent chutes and hence lower forward quadrant high frequency noise
levels.

4.4.2 Acoustic Results with‘ Flight Simulation (My=0.32):

Figure 4.4-7 shows the comparison of EPNL, peak PNLT, and PNLT at various polar
angles (0) as functions of jet velocity (Vj) at a distance of 1629’ at sideline and community -
locations with respect to major axis with a simulated flight Mach number of 0.32 between
the four mixer configurations with treated long ejector. The EPNL levels are with in a
spread of 2 to 3 EPNdB to one another for these configurations at velocities above 1600
ft/sec. In this velocity range, the staggered 9 full CD chute configuration seems to be
performing acoustically best among these configurations. At lower velocities (i.e., below
1900 ft/sec) the aligned convergent chute configuration generates the lowest EPNL level.
EPNL for this configuration is about 4 dB lower at 1147 ft/sec compared to the staggered
9 full CD chute configuration. Similar behavior is also observed with respect to peak
PNLT and PNLT at other polar angles.

PNLT directivities at jet velocities of 1147, 1920, 2384, and 2637 ft/sec are compared
between the four configurations in Figure 4.4-8. At 1147 ft/sec (i.e., for NPR=1.5) the 9
and two half chute configuration is the noisiest and the convergent chute configuration is
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the quietest at all angles. The same trend is observed at 1595 ft/sec case, except the PNLT
levels for all these configurations are much closer to each other (not shown here). The
trend changes at higher velocities. In these conditions, the convergent chute configuration
becomes the noisiest and 9 full chute staggered configuration becomes the quietest at all
angles. Spectral comparisons at various polar angles (0) for each of these four jet
velocities are shown in Figures 4.4-9 through 4.4-12. At 1147 ft/sec the three CD chute
configurations generate SPL humps peaking around 2 kHz, which is possibly due to
shock associated noise. In this frequency range the convergent chute configuration
exhibits noise levels without any significant hump indicating minimal shock structures
within the confines of the ejector flaps for the convergent chute case. For 1595 ft/sec the
spectral distributions for all four configurations are closer to each other (not shown here).
However, the high frequency humps for CD chute configurations are still observed . For
2384 ft/sec the spectral levels for all the configurations are closer to each other for
frequencies up to about 2 kHz. At higher frequency a hump is observed for convergent
chute configuration indicating potentially larger contribution due to shock-associated
noise by aligned convergent chute design for this underexpanded case.

In general, the 9 full chute staggered chute configuration seems to be acoustically the
optimum design among the four cases studied in this section for higher velocities.
However, the convergent chute configuration performs better acoustically at lower
velocities.

4.4.3 Flow and Performance Related Results:

The 2D mixer-ejector models are instrumented for static and total pressure measurements
at various locations to evaluate a number of flow and performance related parameters. The
model instrumentation and the related results for 2D mixer-gjector nozzles with SAR=2.8
are compared between different mixer configurations, namely, aligned CD chute,
staggered CD chute, and aligned convergent chute mixers, and are described in this
section. Tests for all the four mixer-ejector configurations were conducted along the L1IM
cycle line for static and simulated flight conditions of Mach 0.32. Model pressure data
measured in these tests are analyzed to show the effect of cycle conditions and the mixer
geometry on various flow and performance related parameters.

The effect of mixer geometry on ramp and chute static pressure distributions are shown in
Figures 4.4-13 and 4.4-14 for different L1M cycle conditions, at static condition and with
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Figure 4.4-13. Effect of mixer geometry on the static pressure distributions on the inlet ramp and
on the secondary flow side of chute surface at different L1IM cycle conditions for
2D long treated mixer-ejector nozzle at static condition.
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Figure 4.4-14. Effect of mixer geometry on the static pressure distributions on the inlet ramp and
on the secondary flow side of chute surface at different L1M cycle conditions for
2D long treated mixer-ejector nozzle with flight simulation (Mp=0.32).
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flight simulation, respectively. For each case the effect of mixer geometry on ramp static
pressure distributions is insignificant. The static pressure distributions on the chute surface
is more or less the same for the three CD chute mixers. However, it is significantly
different for convergent chute mixer, especially at lower NPRs. The static pressure levels
for convergent chute are much lower compared to those for CD chute configurations. The
location of mixing plane of secondary and primary streams for convergent chutes is
upstream compared to the CD chutes. This may be contributing to a more rapid
acceleration of secondary flow (reduced static pressure) for convergent chutes. The
secondary flow paths for CD chute mixers get narrower due to divergent primary stream
flowpath imposes relatively higher back pressure for CD chutes. This would allow higher
acceleration for convergent chutes compared to CD chutes. Again, for the same reason,
the deceleration process is also higher for CD chutes compared to convergent ones closer
to the exit plane. At higher NPR the chute static pressure distributions between CD and
convergent chutes are almost the same, most likely, due to the higher back pressure at the
throat plane for both chute configurations.

The chute loading coefficients due to chute static pressure distributions showing the effect
of mixer geometry are plotted against NPR in Figure 4.4-15. For static as well as flight
cases the convergent chutes exhibit lower chute loading force at lower NPR. Between the
CD chute mixer configurations the aligned chutes exhibit higher loading due to chute
static pressure distribution..

The effect of mixer geometry on pumping and corrected pumping is shown in Figures 4.4-
16 and 4.4-17 for static and flight cases, respectively. With respect to NPR the pumping
decreases. However, the pumping is higher for convergent chute mixer compared to CD
chute mixers at static and at flight conditions. There is very little pumping difference
between CD chute mixers with flight. At static condition, the aligned CD chute mixer
seems to have higher pumping compared to staggered ones. It should be noted that the
location of the total pressure rack on lower inlet with respect to the aligned CD chutes is
some what different for staggered configurations. Hence, the pumping estimations for
staggered configurations may be inconsistent with respect to aligned cases. Even though,
the pumping is higher for convergent chute mixer, the mixer geometry effect is very small
on the mixed jet velocity, computed on the basis of 1-D ejector flow (see Figure 4.4-18).

Figure 4.4-19 illustrates the comparison of axial static pressure distributions on the flap
between various mixer configurations at static condition at different L1M cycle conditions.
Insignificant difference in pressure distributions between mixer configurations is observed
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Figure 4.4-15. Effect of mixer geometry on chute loading coefficient, computed by measured static
pressure distributions on secondary flow side chute leading edge, with respect to
nozzle pressure ratios of L1M cycle conditions for 2D long treated mixer-ejector
nozzle, (a) at static condition and (b) with flight simulation (Mp=0.32).
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Figure 4.4-16. Effect of mixer geometry on pumping, computed by measured rake total pressure
distributions at the inlet, with respect to nozzle pressure ratios of L1IM cycle
conditions for 2D long treated mixer-ejector nozzle at static condition.
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Figure 4.4-17. Effect of mixer geometry on pumping, computed by measured rake total pressure
distributions at the inlet, with respect to nozzle pressure ratios of L1IM cycle
conditions for 2D long treated mixer-ejector nozzle with flight simulation (Mp=0.32).
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at lower NPRs. At higher NPR the static pressure distribution on the flap is higher for
convergent chute mixer in subsonic flow mode. The 9 and two half Staggcred chute
configuration exhibits lowest static pressure distribution on the flap. In supersonic mode
the trend is reversed at the initial portion of the flap. Figure 4.4-20 shows the effect of
mixer geometry on force and moment of force with respect to flap leading edge due to
static pressure difference on flap surface as a function of nozzle pressure ratio. Both the
force and the moment are slightly lower for convergent chute mixer and the levels are
higher for the 9 and 2 half CD chute mixer configuration. The transition from subsonic to

supersonic mode seems to be slightly delayed with respect to NPR for convergent chute
mixer.

Similar results with flight simulation are plotted in Figures 4.4-21 and 4.4-22. The static
pressure distributions between the mixer configurations clearly indicate that the mode
switch is delayed for convergent chute mixer and is relatively early for 9 and 2 half
staggered chute configuration. Similar conclusions are deduced from the force and
moment of the force results, as shown in Figure 4.4-22.

4.4.4 Effect of Chute Design at Lower Jet Velocity Conditions:

The impact of chute designs, namely, convergent compared to convergent-divergent (CD),
on acoustic characteristics of mixer-ejector nozzles are examined for lower velocity
conditions (i.e., velocities between 700 and 1900 ft/sec). In this study, the convergent
aligned and 9 CD-chute staggered mixers with long hardwalled ejector configurations
were tested statically at lower NPR and nozzle total temperature conditions by
extrapolating the L1M cycle line. The nozzle pressure ratio (NPR) is varied between 1.2
and 2.5. The corresponding nozzle total temperature is varied between 880°R to 1325°R.

Figure 4.4-23 shows the OASPL directivity comparisons between the above mentioned
mixer configurations at seven different jet velocity conditions. The corresponding PNLT
results are shown in Figure 4.4-24. The OASPL and PNLT levels are significantly higher
for the CD-chute mixer compared to convergent chute at lower velocity conditions. The
difference in these noise levels are much higher in the forward arc indicating strong shock
associated noise for CD chute mixer. The noise levels become comparable with increasing
velocity conditions and the trend begins to reverse at about 1600 ft/sec condition (i.e.,
NPR=2.0 and T8=1175°R). The SPL comparisons between these two mixers at four polar
angles, namely, 60°, 90°, 110°, and 130°, for the corresponding seven velocity conditions
are shown in Figures 4.4-25 through 4.4-28, respectively.
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Figure 4.4-25. Comparison of SPL spectra at a polar angle (8) of 60° for different low nozzle pressure
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Indication of a strong shock (or screech) is observed for the CD-chute mixer at lower
NPR conditions. The frequency of the noise peak increases with increasing NPR.
However, the frequency change with respect to polar angle is not apparent from these
results, since the band width is relatively higher on 1/3-octave band basis. Peak frequency
shift with respect to polar angle would have positively identified whether the peak is due
to shock or screech. However, the probability of strong shock generation in the CD chute
is much higher at lower NPR. The static pressure distribution on chute surface, as shown
in Figure 4.4-29, indicates lower static pressure at the CD chute exit compared to
convergent mixer. This behavior increases the local NPR by certain amount. Based on the
pressure and temperature conditions the flow in the CD chutes does not attain critical level
for lower NPR cases. However, the flow overexpands in the divergent portion of the
chute and creates strong shocks, across which static pressure increases. There is a region
of supersonic flow ahead of the shock with choked throat. Behind the shock, the flow is
subsonic, hence the Mach number decreases towards the exit and the static pressure
increases to the exit static pressure.

This is further illustrated in Figure 4.4-30 by plotting the static pressure distributions
inside the CD chute at different flow conditions. As shown in Figure 4.1-4, static pressure
taps are placed within a chute in the hot core flow segment from the throat to the exit
plane, at mid-span height. Static pressures were measured at these taps for some flow
conditions, which are plotted in Figure 4.4-30. Static pressures for flow conditions not
measured are shown in Figure 4.4-30 by interpolation of the measured data in a qualitative
manner and calculating the static pressures at the throat for choked condition. It should be
noted that the minimum area (i.e., actual throat) is apparently formed slightly upstream of
the physical throat due to boundary layer formation. Therefore, the measured (as well as
the interpolated) static pressures at the throat are slightly lower than the pressures
corresponding to choked conditions. From this figure it is clear that a normal shock was
formed in the divergent portion of the chute at NPRs of 1.2 and higher. The location of
the shock moves towards the exit and the shock strength diminishes with increasing NPR.
The flow remains subsonic in the CD chute with acceleration in convergent section and
deceleration in the divergent section at NPR=1.08 without any shock formation.

The higher noise level and the noise peak observed at lower NPR conditions are most
likely the contribution of strong shock associated noise in the CD chutes. For convergent
chutes the flow remains subsonic up to the chute exit for local subcritical NPR conditions.
At higher NPR condition the flow becomes sonic at the convergent chute exit and
generates some amount of shock associated noise in the confinement of the ejector by
creating diamond type shock structures.
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5.0 INFLUENCE OF OFF-CYCLE AEROTHERMODYNAMIC CONDITIONS
ON ACOUSTIC AND PERFORMANCE RELATED RESULTS FOR 10 AND 9
FULL CD-CHUTE STAGGERED MIXER-EJECTOR CONFIGURATIONS

The acoustic, the flow related, and performance related results at L1M cycle conditions
for various 2D mixer-ejector configurations are examined in the previous section to
determine acoustically best performing mixer geometry. The staggered chute mixer-ejector
with 10 full CD chutes in upper rack and 9 full CD chutes in lower rack with SAR=2.8
seems to be the quietest among all the mixers tested under this program. It is important to
optimize the acoustic performance of the mixer with respect to the aerothermodynamic
conditions at takeoff and cutback. It is also important to determine the relative strength of
noise generated internal to the ejector compared to the jet mixing noise, generated in the
freefield, at least, in a qualitative manner. This knowledge would help in further noise
optimization process, including the design of acoustic liners for the ejector.

Additional tests were conducted to-achieve these objectives for two 2D staggered chute
mixer-ejector configurations with 10 full CD chutes in upper rack and 9 full CD chutes in
lower rack, one with fully treated (with nickel based metal foam with a 37% porous
facesheet) long ejector and the second with hardwalled short ejector. These tests include
(1) flight simulation tests for LIM cycle conditions at flight Mach numbers of 0.24 and
0.36, (2) tests at fixed jet velocities by varying the nozzle pressure ratio and total
temperature at static and simulated flight Mach numbers of 0.24, 0.32, and 0.36, and (3)
tests at fixed nozzle pressure ratios by varying the total temperature at static and simulated
flight Mach numbers of 0.24, 0.32, and 0.36. The higher flight Mach number of 0.36 is
selected for these tests to obtain the maximum flight effect on noise to qualitatively
evaluate the internal and external noise components.

5.1 EFFECT OF SIMULATED FLIGHT :

Figure 5-1 shows the effect of flight simulation on PNLT and EPNL as function of jet
velocity (V;) for the fully treated long ejector configuration at an azimuthal angle $=250.
EPNL decreases with increasing flight Mach number for all jet velocities. Except for
forward arc angles the PNLT also decreases with increasing flight Mach Number at all jet
velocities. Similar results for the hardwalled short ejector configuration are plotted in
Figure 5-2. The influence of flight on these results are qualitatively similar to those for the
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long treated ejector. The Noise reduction due to flight between static and at Mg=0.24 is
somewhat the same for both configurations. However, with further increase in flight Mach
number, the noise reduction for hardwalled short ejector configuration is much lower
compared to the long treated ejector configuration. This indicates that the internally
generated noise for the hardwalled configuration is higher and that the impact of this noise
is dominant at and above Mp=0.24, so that the further increase in flight is ineffective in
reducing the farfield noise. It should be noted that a sudden noise increase is observed at
a jet velocity of about 2350 ft/sec for the hardwalled configuration, especially with flight
simulation. This is due to transition of ejector flow from subsonic to supersonic mode, at
which additional internal noise is being generated. While the impact of mode switch
related noise is observed in the farfield for hardwalled configuration, its impact is minimal
for treated long ejector. This is another indication of dominant internally generated noise
for hardwalled short ejector compared to treated long ejector configuration.

At five different jet velocities the effect of flight simulation on PNLT directivities for long
treated ejector are shown in Figure 5-3. The effect of flight simulation is to lower the
PNLT levels at polar angles above 60° and the trend is reversed at lower angles. The
levels increase at forward angles (<60°) due to dynamic amplification of jet noise after
overcoming source strength reduction due to flight effect. Significant PNLT reduction is
observed at the rear arc. The PNLT directivities at lower NPR values, namely at 1.75 and
2.0, exhibit two humps. The first hump in the forward arc could be the result of dominant
internal noise (i.e., at lower NPR jet mixing noise level is relatively lower) radiated to
farfield, noise radiated from the secondary inlet for unchoked secondary flow at lower
NPR conditions, and the shock-associated noise in the forward arc angles. Similar results
for the hardwalled short ejector are presented in Figure 5-4.

Effect of flight simulation on SPL spectra at various polar angles (8) for both
configurations at four different jet velocities are shown in Figures 5-5 through 5-8.
Significant SPL. reduction is observed at higher polar angles for the entire frequency range
with increasing flight Mach number. Major noise reduction took place between Mach 0
and 0.24. Noise reduction due to further flight Mach number increase is relatively higher
for long treated configuration, especially at higher jet velocities.

The effect of flight simulation on ramp and chute static pressure distributions for the long
treated ejector configuration are shown in Figure 5-9 for different L1M cycle conditions.
For each case the static pressure increases with increasing flight Mach number, both on
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the ramp and chute surfaces due to freejet fan pressure rise, indicating lesser loading for
the chutes. This is clearly observed in Figure 5-10, where the chute loading coefficient due
to chute static pressure distributions is plotted against NPR. The effect of flight on
pumping and corrected pumping for this configuration is shown in Figure 5-11. The
pumping increases with increasing flight Mach number, since the total pressure at the inlet
goes up. Even though, the pumping increases with flight, the effect is relatively small on
the computed mixed jet velocity (see Figure 5-12). Similar results for the short hardwalled
ejector are almost identical to those for treated long ejector, indicating insignificant
influence of the ejector configuration on upstream flow related parameters.

Figure 5-13 shows the effect of flight on the average axial static pressure distributions on
the inlet and the flap surface at different L1M cycle conditions for the treated long ejector.
Small amount of pressure increase due to increasing Mg is noted at lower nozzle pressure
ratio conditions. However, the effect is significant at higher NPRs (particularly closer to
mode switch NPR) and in supersonic mode. The effect of flight on normalized force and
normalized moment of force with respect to flap leading edge due to static pressure
difference on flap surface are shown in Figure 5-14. Both the force and the moment seem
to decrease slightly with increasing flight simulation due to increased static pressure. The
transition from subsonic to supersonic mode seems to be slightly delayed with respect to
NPR due to M. Similar results for the short hardwalled ejector are shown in Figures 5-15
and 5-16. The transition from subsonic to supersonic mode for this configuration is
relatively abrupt compared to the long treated ejector.

S.2 EFFECT OF NOZZLE PRESSURE RATIO (NPR) AND TOTAL
TEMPERATURE AT FIXED Vj:

Tests were conducted at fixed jet velocities by varying the nozzle pressure ratio and total
temperature at static and simulated flight Mach numbers of 0.24, 0.32, and 0.36. Results
presented in this section include the data for static and for flight simulation Mach number
of 0.36 only. The acoustic results are normalized with respect to a reference ideal thrust of
60,000 1b to illustrate the effect of aerothermodynamic conditions at fixed jet velocity for
the same ideal thrust.
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5.2.1 For Long Treated Ejector Configuration:

Figure 5-17 shows the variation of EPNL with respect to NPR and nozzle total
temperature at five jet velocities. The EPNL increases with increasing jet velocity. With
respect to aerothermodynamic conditions the EPNL increases with increasing NPR and
with decreasing nozzle total temperature. The trend is reversed at lower jet velocities,
especially, with flight simulation. The EPNL levels are significantly lowered due to flight
simulation of Mach 0.36. These results are presented in a form of fixed EPNL contours
between NPR and nozzle total temperature in Figure 5-18. In general EPNL increases
with increasing NPR and nozzle total temperature. However, it is interesting to note that
the fixed EPNL can be achieved by lowering the NPR and nozzle total temperature

together at a lower NPR conditions, as observed in Figure 5-18 (b) for flight simulated
case.

Normalized PNLT directivities at fixed jet velocities are plotted in Figure 5-19 for static
condition as well as for flight simulation case with Mach 0.36. At lower jet velocities (i.e.,
at 1400 and 1590 ft/sec) and at lower NPR values (i.e., at 1.5 and 1.75) the PNLT
increases in the forward arc and decreases in the mid arc. However, the levels decrease in
the forward arc and increase in the rear arc by increasing NPR above 1.75, as observed for
Vi=1590 ft/sec. The ejector internal noise is most likely dominant at lower jet velocity
conditions. Hence, the influence of varying NPR and nozzle total temperature on internal
noise and its radiation pattern to the freefield may be the reason for the type of PNLT
variation observed at lower jet velocities, since the externally generated jet mixing noise is
relatively lower due to near complete mixing in the long ejector, resulting in a lower
uniform exit velocity. In addition, sound radiated from the unchoked secondary inlet may
be the reason for such forward arc noise increase. At higher jet velocities the normalized
PNLT levels monotonically increase with increasing NPR associated with decreasing
nozzle total temperature for all polar angles. At higher velocities, the externally generated
jet mixing noise is most likely the dominant component to influence the PNLT directivity.
Since, the mixed jet velocity (shown later in Figure 5-31) increases with increasing NPR
for fixed jet velocities, the PNLT (normalized for thrust) should increase with NPR, as
observed in Figure 5-19 at V; of 1920, 2200, and 2384 ft/sec. The SPL spectra at various
polar anglés for fixed jet velocities of 1400, 1590, 1920, 2200, and 2384 ft/sec conditions
are shown in Figures 5-20 through 24, respectively. Similar conclusions can be drawn
from these results.
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The chute static pressure distributions are predominately the functions of NPR. The effect
of increasing NPR with decreasing nozzle total temperature at fixed Vj on ramp and chute

static pressure distributions are shown in Figure 5-25 for Mgp=0.0 and 0.36 cases. For each
V; the static pressure decreases with increasing NPR, both on the ramp and chute

surfaces. However, at higher NPR the trend on chute static pressure distribution is
reversed. The chute loading coefficient decreases and then increases with increasing NPR
with decreasing nozzle total temperature as shown in Figure 5-26. The fixed chute loading
coefficient contours are plotted with respect to NPR and nozzle temperature in Figure 5-
27. Fixed jet velocity lines are superimposed on these plots. An optimum NPR and
temperature combination seems to be possible for a desired chute loading coefficient.

The effect of increasing NPR with decreasing nozzle total temperature at fixed Vj on

pumping and corrected pumping is shown in Figures 5-28 and 5-29, respectively. With
respect to increasing NPR and with decreasing total temperature the pumping decreases.
The fixed pumping contours plotted in Figure 5-30 also indicates the similar behavior.
Since, the pumping decreases with increasing NPR (i.e., with decreasing nozzle
temperature), the computed mixed jet velocity increases (see Figure 5-31). It should be
noted that the computed mixed jet velocity is higher with the flight simulation of Mach
0.36.

Figure 5-32 shows the effect of increasing NPR with decreasing nozzle total temperature
at fixed Vj on the average axial static pressure distributions on the inlet and the flap
surface. Significant amount of pressure drop on the inlet and the flap surface closer to
mixer exit is observed with increasing NPR with decreasing nozzle total temperature.
Small amount of pressure increase due to increasing NPR with decreasing temperature is
noted on the flap towards the ejector exit. For V; =2384 ft/sec the transition between
subsonic to supersonic mode occurs when NPR increases from 3.4 to 4.0 with decreasing
nozzle temperature from 1590 to 1438°R. The effect of increasing NPR with decreasing
nozzle total temperature at fixed V; on normalized force due to static pressure difference
on flap surface are shown in Figure 5-33. The force on the flap decreases first and then
increases with increasing NPR along with decreasing nozzle total temperature.

5.2.2 For Short Hardwalled Ejector Configuration:

Figure 5-34 shows the variation of EPNL with respect to NPR and nozzle total
temperature at five jet velocities. The EPNL increases slightly with increasing jet velocity
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NOZZLE TOTOAL TEMPERATURE , T8 (°R)
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Figure 5-27. Chute loading coefficient contours with respect to nozzle pressure ratio and total
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Figure 5-30. Contours of pumpi

NOZZLE PRESSURE RATIO

treated long ejector; SAR=2.8, MAR=0.95.
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Figure 5-31. Effect of nozzle pressure ratio and total temperature on mixed jet velocity at

different jet velocities (V;) for a 10 and 9 full staggered CD-chute mixer with fully
treated long ejector; SAR=2.8, MAR=0.95.
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B NOZZLE PRESSURE RATIO
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Figure 5-33. Effect of nozzle pressure ratio and total temperature on normalized force on ejector
flap surface at different jet velocities (V;) for a 10 and 9 full staggered CD-chute
mixer with fully treated long ejector; SAR=2.8, MAR=0.95.
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Figure 5-34. Effect of nozzle pressure ratio and total temperature on normalized EPNL at fixed
jet velocities (Vj) for a 10 and 9 full staggered CD-chute mixer with hardwalled
short ejector at an azimuthal angle ¢=259; SAR=2.8, MAR=0.95.
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at static condition and is much less with flight simulation. This is in contrast to the
behavior observed for long treated ejector, for which, the EPNL increases significantly
with increasing velocity (see Figure 5-17). With respect to aerothermodynamic conditions
the EPNL increases with increasing NPR and with decreasing nozzle total temperature.
The trend is reversed at lower jet velocities, especially, with flight simulation. The EPNL
levels are lowered due to flight simulation of Mach 0.36, but not as much as observed for
long treated ejector (see Figure 5-17). These results are presented in a form of fixed
EPNL contours between NPR and nozzle total temperature in Figure 5-35. In general
EPNL increases with increasing NPR and nozzle total temperature. However, it is
interesting to note that the fixed EPNL can be achieved by lowering the NPR and nozzle
total temperature together at a lower NPR conditions, as observed in Figure 5-35 (b) for
flight simulated case. EPNL with respect to NPR and T8 is relatively higher for this
configuration compared to treated long ejector (see Figure 5-18).

Normalized PNLT directivities at fixed jet velocities are plotted in Figure 5-36 for static
condition as well as for flight simulation case with Mach 0.36. Unlike the long treated
ejector the PNLT does not increase significantly in the forward arc at lower jet velocities
(i.e., at 1400 and 1590 ft/sec) and at lower NPR values (i.e., at 1.5 and 1.75). The ejector
mternal noise is most likely dominant at lower jet velocity conditions and is not
significantly effected by NPR and T8. At the same time, the jet mixing noise is also higher
due to lack of mixing in the short ejector and is increased due increasing NPR. Thus, the
resultant PNLT levels in the farfield are relatively less effected by NPR and T8. At higher
jet velocities the normalized PNLT levels monotonically increase with increasing NPR
associated with decreasing nozzle total temperature for all polar angles, similar to long
treated ejector (see Figure 5-19). At higher velocities, the externally generated jet mixing
noise is most likely the dominant component to influence the PNLT directivity. Since, the
mixed jet velocity increases with increasing NPR for fixed jet velocities, the PNLT
(normalized for thrust) should increase with NPR, as observed in Figure 5-36 at Vj of
1920, 2200, and 2384 ft/sec. The SPL spectra at various polar angles for fixed jet
velocities of 1400, 1590, 1920, 2200, and 2384 ft/sec conditions are shown in Figures 5-
37 through 5-41, respectively. At higher velocities of 1920 and 2200 ft/sec, significant
increase of SPL in the forward arc, resulting in humps, are observed when the nozzle
pressure ratio exceeds 3. Strong shocks inside the ejector are most likely the cause for
such SPL hump.
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The flow and performance related results, derived from the measurements made upstream
of the mixer exit plane, are almost identical to those for the long treated ejector. Hence,
those results are not included for the short hardwalled ejector configuration.

Figure 5-42 shows the effect of increasing NPR with decreasing nozzle total temperature
at fixed Vj on the average axial static pressure distributions on the inlet and the flap
surface. Significant amount of pressure drop on the inlet and the flap surface closer to
mixer exit is observed with increasing NPR with decreasing nozzle total temperature.
Small amount of pressure increase due to increasing NPR with decreasing temperature is
noted on the flap towards the ejector exit. For Vj =1920 ft/sec the transition between
subsonic to supersonic mode occurs when NPR increases from 2.5 to 3.4 with decreasing
nozzle temperature from 1325 to 10389R. Similar transitions between NPR Of 3.0 and 3.4
are observed for Vj =2200 and 2384 ft/sec. The transition seems to be earlier with respect

to NPR for this configuration compared to long treated ejector (see Figure 5-32).

Although it seems beneficial to go for higher temperature from noise consideration on a
constant thrust basis, higher T8 will require a larger A8, which has large implications on
nozzle envelope and weight.

5.3 EFFECT OF NOZZLE TOTAL TEMPERATURE AT FIXED NPR :

To evaluate the effect of nozzle total temperature on acoustic and flow related results the
test data for fixed NPR conditions are examined. The acoustic results are normalized with
respect to a reference ideal thrust of 60,000 Ib to illustrate the effect of
aerothermodynamic conditions at fixed nozzle pressure ratio for the same ideal thrust.

5.3.1 For Long Treated Ejector Configuration:

Figure 5-43 shows the normalized PNLT directivities at a number of fixed NPR conditions
with different nozzle total temperatures for static and for a flight case of Mach of 0.36.
Except for the lowest NPR of 1.5 the PNLT level increases at all angles for all NPR
conditions with increasing nozzle total temperature. At NPR=1.5 the PNLT level is lower
in the forward arc due to increasing temperature. This could be the result of dominant
internally generated noise at lower jet velocity conditions, where, the radiation directivity
of the internal noise could have caused the observed directivity at NPR=1.5.
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The effect of nozzle total temperature on SPL spectra for three fixed NPR conditions of
1.5, 2.5, and 3.4 is shown in Figures 5-44 through 5-46. In general, the normalized SPL
increases with increasing temperature for the entire frequency range and at all polar angles
for static case, except for the lowest NPR of 1.5. At this case the SPL is lower at some
frequencies with increasing nozzle temperature. The variation of normalized SPL with
nozzle total temperature at Mp=0.36 is similar to those of static case for lower and mid
frequency ranges. At higher frequencies the normalized SPL decreases with increasing
nozzle total temperature.

The effect of increasing nozzle total temperature at fixed NPR on ramp and chute static
pressure distributions are shown in Figure 5-47 for Mp=0.0 and 0.36 cases. For each NPR
the static pressure remains unaffected on the ramp and increases on the chute surfaces
with increasing nozzle total temperature. Figure 5-48 shows the effect of increasing nozzle
total temperature at fixed NPR on the average axial static pressure distributions on the
inlet and the flap surface. There is no effect on inlet static pressure distribution due to
nozzle temperature variation. However, significant amount of pressure drop on the flap
surface is observed with increasing nozzle total temperature for higher NPR conditions.

5.3.2 For Short Hardwalled Ejector Configuration:

Figure 5-49 shows the normalized PNLT directivities at a number of fixed NPR conditions
with different nozzle total temperatures for static and for a flight case of Mach of 0.36.
Except for the lowest NPR of 1.5 the PNLT level increases at all angles for all NPR
conditions with increasing nozzle total temperature. This could be the result of dominant
internally generated noise at lower jet velocity conditions, where, the radiation directivity
of the internal noise could have caused the observed directivity at NPR=1.5.

The effect of nozzle total temperature on SPL spectra for three fixed NPR conditions of
1.5, 2.5, and 3.4 is shown in Figures 5-50 through 5-52. In general, the normalized SPL
increases with increasing temperature for the entire frequency range and at all polar angles
for static case, except for the lowest NPR of 1.5. At this case the SPL is lower at some
frequencies with increasing nozzle temperature. The variation of normalized SPL with
nozzle total temperature at Mp=0.36 is similar to those of static case for lower and mid
frequency ranges. At higher frequencies the normalized SPL decreases with increasing
nozzle total temperature.
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Figure 5-53 shows the effect of increasing nozzle total temperature at fixed NPR on the
average axial static pressure distributions on the inlet and the flap surface. There is no
effect on inlet static pressure distribution due to nozzle temperature variation. However,
significant amount of pressure drop on the flap surface is observed with increasing nozzle
total temperature for higher NPR conditions closer to and above the transition NPR.
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6.0 EJECTOR INTERNAL DYNAMIC PRESSURE MEASUREMENT

It is important to measure the dynamic pressure field inside the ejector for the 2D mixer-
ejector nozzles to assess internal noise component, to develop internal noise source
models, and to design acoustic treatment panels for the ejector. However, it is difficult to
measure internal pressure fluctuation due to the high temperature environment, where the
conventional probes can not be used. Recently, fiber optic microphone technique is being
developed at a few research organizations, including the NASA Langley Research Center.
A few prototype fiber optic microphones were built at NASA Langley, which could be
used at higher temperature environment, up to a temperature of 1000°F, to measure
dynamic pressure. A few of such microphones were loaned to GE at no cost and were
used to measure the dynamic pressures inside an ejector, with and without acoustic
treatment, of a scale model 2D 9 vs 10 staggered CD-chute mixer-ejector exhaust nozzle.
Relevant results for the configurations, for which the internal dynamic pressure
measurements were made, are presented in this section.

6.1 HiGH TEMPERATURE FIBER OPTIC MICROPHONE :

Figure 6-1 shows a fiber optic microphone with optoelectronic amplifier. The
optoelectronic amplifier transmits light to a mirror on the underside of the microphone
membrane, receives the reflected light in a photodiode, and provides an output voltage
proportional to the membrane motion. The optical fiber, protected by nichrome coil
spring, connects the microphone to the amplifier. The optical fiber looses its transmission
capability when bent sharply (i.e., the bending radius must not be less than 2"). The
diameter of the active membrane for the microphone is 0.072" and can withstand
temperature up to 1000°F. The dynamic range and the frequency response of this
miérophone are 130 to 190 dB and 20 Hz to 50 kHz, respectively. Figure 6-2 shows the
frequency response of the fiber optic microphone at room temperature and at 1000°F. The
frequency response is reasonably flat up to about 40 kHz. All internal dynamic
measurements were made up to 40 kHz, since the microphone diaphragm seems to
resonate slightly above this frequency. |

6.2 DATA ACQUISITION AND ANALYSIS:

The fiber optic microphone was used to measure the dynamic pressures inside the ejector
of a model scale 2D mixer-ejector nozzle with staggered CD chute racks of nine and ten
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Figure 6-1. Fiber optic microphone with optoelectronic amplifier for dynamic pressure

measurement at high temperature conditions up to 1000°F (Loaned from NASA
Langley Research Center - Model H Fiber Optic Lever Microphone [FOLM]).
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full chutes. The nine full chute rack provides non-uniform chute stagger in the span wise
direction. The side view of the mixer-ejector is shown in Figure 6-3. The suppressor area
ratio (SAR) for the staggered mixer is 2.8 and has a throat area of 22.16 square inches
(A8). The long ejector of 16.055” with. MAR=0.95 is used for the current configurations.
For the treated configurations, the flaps and sidewalls were fully treated with nickel based
metal foam with a 37% porous facesheet.

Internal dynamic pressures were measured at two flap locations, as shown in Figure 6-3,
one closer to the mixer exit plane and the other closer to the ejector exit plane. These
measurements were made for hard wall as well as for fully treated configurations. Figure
6-4 shows the fiber optic microphone mounted on the flap surface at the ejector exit plane
for the treated 2D Mixer-ejector nozzle in Cell 41. All the results presented in this section
were acquired at a fixed primary stream total temperature of 900°F (i.e., 1360°R) without
any flight simulation. Flight simulation was not possible due to the short length of the
optical fiber connecting the microphone and the amplifier (about 1 meter), and also the
amplifier was located across the tertiary flight simulation stream. Internal dynamic
pressure is acquired up to a frequency of 40 kHz (i.e., bandwidth of 100 Hz) at a number
of nozzle pressure ratios ranging from 1.4 to 4.7.

The farfield noise was measured at community and sideline azimuthal locations by
positioning the microphone tower at 90° and 259, respectively. However, farfield acoustic
results only at the sideline position (i.e., tower at 259) are presented in this section.
Spectral results for internal dynamic pressure and farfield acoustic pressure are presented
in narrowband frequency scale. Farfield spectral results are presented up to 40 kHz, to be
consistent with the internal dynamic pressure data, even though, the farfield data was
acquired up to 100 kHz (i.e., bandwidth of 250 Hz). Overall sound pressure levels
(OASPL) and overall sound power levels (OAPWL) in the farfield are evaluated using the
data up to 100 kHz. Since, this is a unique set of results acquired at fixed temperature
condition (unlike the L1IM cycle simulation, where the nozzle pressure ratio and total
temperature are varied along a typical throttle line), the aerodynamic results based on
static and total pressure data on the model are also included in this section.

6.3 RESULTS BASED ON MODEL STATIC AND TOTAL PRESSURE DATA :

Axial static pressure distributions on inlet ramp, secondary side of chute surface, and on
the inlet and flap surfaces are presented at various primary stream nozzle pressure ratios
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(NPR) in terms of normalized pressure and distance. The pressure is normalized with
respect to ambient pressure and the axial distance is normalized with respect to the length
between the mixer exit plane and the ejector exit plane (Xy ). This length is about an inch
longer than the actual flap length (see Figure 6-3). Figure 6-5 shows the axial static
pressure distributions on inlet ramp and secondary side of chute surface for hard wall and
treated ejector configurations. The effect of treatment is insignificant in these distributions.
The static pressure decreases with increasing NPR up to an NPR (i.e., 3.4 in this case), at
which the transition from subsonic to supersonic mode begins. With further increase of
NPR, the static pressure increases slightly. The flow accelerates down the inlet ramp and
then decelerates in the secondary flow passage through the chutes due to axial turning of
the secondary flow. An integrated coefficient, called chute loading coefficient, is
computed using the static pressure distributions on the chute leading edge of secondary
flow side. Effect of treatment on chute loading coefficient is shown in Figure 6-6 with
respect to NPR. This parameter decreases first and then increases with NPR, indicating
better performance at higher nozzle pressure ratio. The effect of treatment on chute
loading coefficient is insignificant at higher NPR but improves the thrust performance
slightly at lower nozzle pressure ratios. The presence of treatment on the ejector modifies
the boundary layer growth and hence alters the effective MAR slightly. Hence, at lower
NPR (i.e., for subsonic flow in the ejector) the pumping gets effected until the ejector flow
transitions to supersonic mode.

The secondary mass flow rate is estimated from the total and static pressure distributions
across the inlet, which were measured by a set of 3 total pressure rakes. The pumping is
thus evaluated as the ratio of secondary to primary mass flow rates. The corrected
pumping is calculated by multiplying the square root of the secondary to primary absolute
total temperature ratio with the mass flow rate ratio (i.e. pumping). Figure 6-7 shows the
effect of treatment on pumping with respect to NPR. Pumping decreases with increasing
NPR and is further reduced due to treatment. The probable cause of this effect is the
effective MAR change caused by boundary layer growth for the treated ejector, which is
likely to be different compared to hard wall configuration.

Figures 6-8 and 6-9 show the axial static pressure distributions on the inlet and the flap
surfaces for hard wall and treated configurations, respectively. In each case the axial
pressure distributions along the centerlines of cold and hot flow chutes are evaluated and
shown. Some differences between the hot and cold flow rows are observed at the vicinity
of the mixer exit as static pressure equalization between primary and secondary streams
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takes place over a finite axial distance. Once this happens, very little difference exists
further downstream, which is the portion experiences the transition of mode from subsonic
to supersonic. Mode transition related interpretations on the basis of flap pressure
distributions are the same whether we consider pressure distributions along hot or cold
chute flow directions or the arithmetic average of these two. Hence, an arithmetic average
of these two measurements is computed and presented in Figures 6-8 and 6-9. In both the
cases we see gradual transition of flow from subsonic to supersonic mode with increasing
NPR. However, Figure 6-10 shows the effect of treatment on axial static pressure
distributions at a number of NPR. At lower NPR the axial pressure distributions between
hard wall and treated configurations are identical. For higher NPR values treated
configuration seems to be delaying the mode transition with respect to NPR compared to
hard wall case until the mode transition is completed. Thus at very high NPR again the
axial pressure distributions between treated and hard wall configurations are identical.

To identify the impact of mode switch the force and the moment about the flap leading
edge (i.e., X=0.945") of the force due to the ejector flap are evaluated by utilizing the
static pressure distributions on the flap. Figure 6-11 shows the effect of treatment on these
parameters with respect to NPR. Force as well as the moment with respect to NPR
indicate slightly delayed initiation of mode switch for the treated configuration. During the
transition period the force and the moment, both increase rapidly with NPR and change
directions. In general, the mode transition is gradual with respect to NPR and not abrupt
as noted in cold flow model tests at NASA Langley. This indicates the effect of
temperature on mode transition. In addition, treatment seems to delay the mode transition
by increasing the critical NPR.

6.4 DYNAMIC PRESSURE FIELD INSIDE THE EJECTOR :

The internal dynamic pressure field results presented in this section were acquired by using
two different fiber optic microphones. One of these microphone was generating strong
tones at a number of frequencies and also generating very high level noise at lower
frequencies, up to about 2 kHz, as shown in Figure 6-12. A numerical smoothing is
applied to the measured spectra to eliminate these tones and to smooth out the small
pre‘ssure fluctuations caused by limited sample averaging, as shown in Figure 6-12.
Internal dynamic pressure field consists of acoustic as well as hydrodynamic pressure
fluctuations. It is difficult to separate these components to identify only the acoustic
portion of the fluctuation to correlate with the farfield noise in a quantitative manner. Two
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Figure 6-11. Effect of treatment on normalized (a) force and (b) moment of force due to ejector flap
with respect to nozzle pressure ratio for a 2D mixer-ejector nozzle configuration with

staggered CD chutes, T8=1360°R.
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point cross-correlation (of two closely spaced points) technique can be utilized to separate
hydrodynamic and acoustic pressures, provided the speed of sound and flow velocity are
distinctly different. Such techniques are not. utilized here. However, qualitative
understanding of internal noise field can still be achieved from the measured dynamic
pressures. It should be noted that the noise levels were measured at isolated locations and
hence the variation of pressure fluctuations along span and vertical directions are not
accounted for.

6.4.1 Hardwalled Ejector Configuration :

Figure 6-13 shows the effect of NPR on the dynamic pressure spectrum close to the
ejector exit plane. The dynamic pressure levels increase gradually with increasing NPR.
For this location, the microphone stays in the subsonic flow region for all pressure ratios
(for supersonic mode, this microphone is downstream of the strong shock). Figure 6-14
shows the similar results at a location, X/X] =0.378, closer to the mixer exit. In this
- location, the microphone experiences a mode transition from subsonic to supersonic at an
NPR between 3.4 and 3.6 (see Figure 6-8). In the subsonic mode and across the shock
(i;e., transition between subsonic to supersonic mode) the dynamic pressure levels increase
with NPR (i.e., up to NPR=3.6). With further NPR increase the shock moves downstream
of the microphone (i.e., downstream of X/X7=0.378). For such cases, the dynamic
pressure levels at X/Xy =0.378 variedj slightly without clear trend with increasing NPR. At
higher frequencies, the levels decreased with NPR and no clear trend is noted at other
frequencies; This type of unsteady pressure spectral behavior upstream of a shock is
- measured by GEAE in previous investigation of shock boundary layer interaction using
rectangular nozzles at room temperature.

, The major components responsible for the acoustic field inside an ejector for a mixer-
ejector nozzle, in a very simplistic way, are the noise generation due to shear layer growth
or turbulent mixing as the primary jet elements mix with entrained secondary flows and the
convection of noise sources. The noise sources evolve within the ejector are characterized
by different length scales along the axial distance of the ejector. At the mixer exit the
length scale associated with the noise generation mechanism is very small and hence, more
high frequency noise is generated in this region. The length scale increases along-the
ejector length and gradually the source frequency reduces. In addition; noise is convected
by the mean flow in the downstream direction. In subsonic mean flows, noise could still
propagate upstream. The mixing process between the two flows begins at the mixer exit,
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which reduces noise by lowering the mixed velocity. While the mean flow parameters, like
velocity, temperature, etc., become uniform relatively faster along the gjector length, the
first and second order moments which contribute to the shear stress tensor and hence to
noise generally take more distance to damp out. It is expected that for very low NPR the
mixing and noise generating processes reach completion within a shorter distance from the
mixer exit, while for very high NPR these processes continue even outside the ejector.
With the help of this plausible physical mechanism we will try to explain the dynamic
pressure data measured inside the ejector.

Dynamic pressure level spectra measured at fixed NPR are compared between the two
axial locations in Figure 6-15. At NPR=4.6 dynamic pressure is higher at the exit plane
compared to X/Xy =0.378 for lower frequencies and a very moderate reduction at higher
frequencies. With decreasing NPR the dynamic pressure levels are lowered at ejector exit
plane compared to those at X/X| =0.378. With further lowering of NPR the difference of
dynamic pressure levels between these two locations gradually diminished and finally
showed no difference. At lower NPR the mixing process between primary and secondary
streams and thereby, the internal noise generation continues for a shorter distance from the
mixer exit due to lower flow velocity. For higher NPR (i.e., with higher flow velocity) the
noise generation continues for a longer distance in the ejector. In addition, mixing process
between primary and secondary flows, which reduces the internal noise level, follows the
same trend, that the mixing becomes complete in a shorter distance for lower NPR and for
very high NPR only partial mixing is possible inside the ejector. It should be noted that the
noise measured by the microphone at the ejector exit plane includes the noise source
convection effects by the mean flow. Thus, the noise generation term utilized here includes
turbulent mixing and source convection effects. On this basis the noise generation and
mixing, both must have been completed before X/Xj =0.378 for NPR=1.4 and hence there
is no significant change in dynamic pressure levels axially further downstream. For a
slightly higher NPR (like 2.4) the dominant noise generation might have been complete
before X/X1=0.378, but the mixing process to reduce noise levels continues further
downstream. Thus gives a reasonably lower dynamic pressure level spectrum at the ejector
exit compared to X/X1 =0.378. At an intermediate NPR (like 3.2) the noise generation and
mixing processes possibly continue even after X/Xy =0.378, so that the microphone at this
location measures relatively lower dynamic pressure levels compared to the levels further
downstream. Most of the noise reduction due to mixing at this condition must have taken
place between X/X1 =0.378 and the ejector exit plane to give maximum noise reduction.
Hence, the dynamic pressure difference between these two locations is very high. With
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further increase in NPR (i.e., at 4.0), the microphone at X/Xj =0.378 measures lower
dynamic pressure levels due to incomplete noise generation process. The noise generation
and mixing processes continue downstream of this location. At the ejector exit plane the
noise reduction due to mixing might have been slightly higher than the noise generated
between X/X1,=0.378 and the exit plane. Hence, the microphone at the ejector exit plane
sees slightly lower dynamic pressure level compared to X/X| =0.378 location. For very
high NPR (i.e., 4.6 in this case) the noise generation and mixing processes are most likely
be incomplete within the ejector. Hence the relative contributions of noise generation and
reduction at these two locations are such that the dynamic pressure levels seem to be
higher at the ejector exit plane compared to X/X7 =0.378.

Overall sound pressure levels are computed using the dynamic pressure levels for
frequencies between 2.4 kHz and 40 kHz. Since one of the fiber optic microphone was
generating low frequency noise, the data for frequencies lower than 2.4 kHz are not
included in OASPL calculation The results are plotted with respect to jet velocity and
NPR in Figure 6-16. The comparison of OASPL between the two axial locations follows
the trend as explained above.

6.4.2 Fully Treated Ejector Configuration :

Figures 6-17 and 6-18 show the dynamic pressure level spectra for the fully treated ejector
at X/X1,=0.987 and X/X| =0.378, respectively, at different nozzle pressure ratios. While.
the absolute levels for these spectra are different from those for hard wall configuration
(see Figures 6-13 and 6-14) the trends with respect to NPR are similar and can be
explained in the same manner as explained earlier.

Dynamic pressure level spectra measured at fixed NPR are compared between the two
axial locations in Figure 6-19. Compared to hard wall configuration (see Figure 6-15)
dynamic pressure level differences between X/X1=0.378 and ejector exit plane are
relatively higher. The dynamic pressure level reduction at ejector exit plane compared to
that at X/X1 =0.378 is higher compared to hard wall case due to the additional attenuation
of dynamic pressure by acoustic treatment between these two locations. At NPR=1.4 most
attenuation might have been achieved by X/Xj =0.378. Hence we note small amount of
benefit due the treatment downstream of this location. However, the treatment
effectiveness between these two locations increases with increasing NPR due to lesser

noise interaction with the treatment closer to mixer exit and relatively higher noise levels.
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Figure 6-19. Effect of flap measurement location on dynamic pressure level spectra for different
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For very high NPR the effectiveness of treatment is less since the noise propagates at
much higher speed and get less interaction duration with the treatment. In addition, at
higher NPRs the convected noise interacts with small area of the treatment closer to the
ejector exit if any. Thus the attenuation due to treatment first increases and then decreases
with increasing NPR. Noise difference between the two locations shown in Figure 6-19 is
the sum of the differences due to mixing process (see Figure 6-15) and the attenuation due
to treatment. Maximum attehuation seems to be attained at NPR=3.2. This is further
demonstrated in Figure 6-20 by plotting the OASPL with respect to jet velocity and NPR.

6.4.3 Impact of Ejector Treatment : _

Figure 6-21 shows the comparison of dynamic pressure level spectra at X/Xj =0.987
between hard wall and fully treated configurations. The amount of dynamic pressure
attenuation due to treatment first increases slightly at higher frequencies and then
decreases for entire frequency range with increasing NPR. For lower NPR the interaction
between the dynamic pressure and the treatment surface begins closer to the mixer exit
and hence substantial dynamic pressure attenuation is achieved. It should be noted that for
very low NPR the maximum possible suppression is most likely achieved and since the
noise level is relatively lower at higher frequencies for lower NPR the attenuated levels
might have fallen below the instruments lower dynamic measurement limits. This may
explain why the high frequency attenuation increases with NPR at the beginning. For very
high NPR the noise interacts only with the downstream portion of the treatment and hence
a small amount of dynamic pressure attenuation is achieved. This is further shown in
Figure 6-22 in terms of OASPL with respect to jet velocity and NPR. It should be noted
that the acoustic attenuation due to treatment is a function of its acoustic impedance,
which varies with the grazing flow (i.e., with NPR). Hence, some of the attenuation
variation with respect to NPR could be due to acoustic impedance variation of the
treatment.

The above explanation is further confirmed by comparing the dynamic pressure level
spectra at different NPR and OASPL with respect to jet velocity and NPR at X/Xj =0.378
between hard wall and fully treated configurations in Figures 6-23 and 6-24, respectively.
The amount of dynamic pressure attenuation due to treatment at X/X1=0.378 is lower
compared to what was observed at the ejector exit plane. This is due to the lesser
treatment area responsible for the attenuation measured at X/Xp=0.378 location
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(a) jet velocity and (b) nozzle pressure ratio for a 2D mixer-ejector nozzle with fully
treated ejector and with staggered CD chutes, T8=1360°R.
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compared to the exit plane location. However, the treatment upstream of X/Xj =0.378
does attenuate dynamic pressure noticeably at all NPR but less effective at higher NPR.

6.5 FARFIELD NOISE ;

Narrowband farfield noise for the model scale mixer ejector nozzle at 40 feet arc location
at standard day conditions are presented in this section. Figure 6-25 shows the pseudo
sound power level (PWL) spectra at different NPR for hard wall and treated ejector
configurations. These results are termed pseudo PWL, since they are evaluated by
assuming azimuthal symmetry. However, the trends are of interest. The summations are
performed accounting their polar variations. For both the configurations the PWL
increases with increasing NPR. The levels are constant at higher frequencies above 15
kHz.

The effect of ejector treatment is examined by comparing SPL spectra between hard wall
and treated configurations at different NPR for various polar angles in Figures 6-26 -
through 6-28. At each angle the SPL suppression first increases and then decreases with
increasing NPR. With respect to polar direction, higher SPL suppression is observed at
polar angles between 80° and 1200. Very little SPL suppression is noted for higher NPR.
At 6=150° the SPL seems to be higher for treated configuration compared to hard wall
ejector for NPR=4.6. Spectral comparisons of PWL between hard wall and treated ejector
configurations at different NPR are shown in Figure 6-29. Again, the PWL suppression
increases first and then decreases with increasing NPR. At NPR=4.6 treated case yields
slightly higher PWL than hard wall configuration. A possible explanation for this behavior
is given below.

Farfield noise is the sum of the noise radiated out of the ejector and the noise generated
outside the ejector. The radiation directivities for both the noise components influence the
farfield noise characteristics. One of the important factors which influences the effect of
ejector treatment in the farfield is the relative contribution of internal and external noise
components. If the internal noise component is higher than the externally generated noise
at a measurement location, then any modification of the internal noise component will
influence the farfield noise. In this situation the noise suppression due to ejector treatment
will reduce the farfield noise compared to hard wall configuration. Again, this will be
noted until the internal noise component is sufficiently lower compared to the external
component. Further reduction of internal noise component will have limited effect on the
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Figure 6-28. Effect of ejector treatment on sound pressure level spectra in the farfield for different

nozzle pressure ratio for a 2D mixer-ejector nozzle with staggered CD chutes at 6=
1500, T8=1360°R.
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farfield noise. Hence, the benefit of treatment would depend on the relative magnitudes of
noise components and their directivity patterns.

A small increase in farfield noise is noted for treated case at higher NPRs (above 4.0)
compared to hard wall configuration. A plausible physical mechanism for this could be the
reduction of turbulent level due to treatment in the ejector which slows down the mixing
process outside the ejector and hence the external noise levels become higher for treated
case compared to hard wall. Another mechanism could be the increased boundary layer
thickness for treated ejector compared to hard wall case, which would increase the mixed
jet velocity at the exit. This will increase the external noise. For lower NPRs the internal
noise component is comparable to external noise and hence the internal noise attenuation
due to treatment overcomes any small external noise increase. However, for very high
NPR the external noise seems to be much higher than internal noise component and its
attenuation due to treatment does not influence the total farfield noise. On the other hand,
any increase in external noise due to turbulence reduction and increased mixed jet velocity
due to increased boundary layer thickness, caused by ejector treatment, are likely to
increase the total farfield noise level. This may be the reason, why we see higher noise
levels for treated configuration at NPR above 4 compared to hard wall case.

Farfield results shown in Figures 6-26 through 6-29 can be interpreted with the above
explanation. At lower NPR the internal noise component is most likely dominant
compared to external noise, since the mixed velocity of the jet at the ejector exit is low. At
this situation any internal noise reduction due to treatment will most likely influence the
farfield noise level. At higher NPR both the noise components are increased and most
likely the external noise component becomes dominant due to reduced mixing within the
gjector. In addition, at higher NPR the internal noise attenuation due to treatment is
relatively smaller, as observed in the internal dynamic pressure data due to high grazing
flow Mach numbers. At this situation the effect of treatment is not likely to be noticed in
the farfield noise. This is clearly observed in the SPL and PWL spectra (see Figures 6-26
through 6-29).

Figure 6-30 shows the OASPL directivities at different NPR for hard wall and treated
ejector configurations. For both configurations the OASPL increases with increasing NPR
at all polar angles. However, comparison of these directivities between hard wall and fully
treated configurations, as shown in Figure 6-31 for a number of NPRs, indicate noise
suppression at lower NPR values, predominantly in the forward arc. At higher NPR, as

NASA/CR—2004-213117 361



130

AB=22.16 in® , Lg=16.055" NPR V;, /s

40 FEET ARC , B8 14 1226

590F 70%RH STD DAY = —j
]

1 o0 16 1436

(2) HARD WALL | i } ‘ a—a18 1503
— | +—+ 20 1718
%-—X 2.2 1820
>—o 24 1907
+—= 26 1981
X—X 28 2046
Z—7 30 2104
Y—Y 32 2155
—x 34 2201
¥—X 36 2243
%X 38 2282
— 40 2317
e—® 42 2350
@ 44 2380
©—0 46 2408

125

120

115

110

105

100

95

90

NPR V,, f/s
(b) TREATED OB 14 1226
OO 1.6 1436
a&—a 18 1593

s +——t 20 1718

f G— ~
g & %X 22 1820
3

130

125

OVERALL SOUND PRESSURE LEVEL, dB

120

115

—o 24 1907
226 1981
2 | = %—X 2.8 2046
| T~ Z—7 30 2104
- ¥—¥ 32 2155
/, /’/,4,,-—--&""“‘“\ S+ 3 3.4 2201
2 ¥—X 36 2243
%X 38 2282
—i 40 2317
@—a 42 2350
©—& 44 2380
05060 70 8 9 100 110 120 130 140 150 160 |o @46 2408

POLAR ANGLE, DEG Aa—aA 47 2425

10
1

105
!
%
i

100

P o “"”Q’ —F
i ©
(%) T

i -
— o prd p—— X7
% f”"ll" - '/,«" 3
P ;,—’—g.-.--a"_-.»@z'/s
S——— e i v },'

- 95

90

Figure 6-30. Overall sound pressure level directivities in the farfield for different nozzle pressure
ratio for a 2D mixer-ejector nozzle with staggered CD chutes for (a) hard wall and (b)
fully treated ejector configurations, T8=1360°R.

NASA/CR—2004-213117 362



135

G—& HARD WALL] | A8=22.16 in’ , Lgy=16.055"
©-©® TREATED 40 FEET ARC
599F 70% RH STD DAY AR

130

125

120

115

110

OVERALL SOUND PRESSURE LEVEL, dB

105

100

95

90

4 50 60 70 80 90 100 110 120 130 140 150 — 160
POLAR ANGLE, DEG
Figure 6-31. Effect of ejector treatment on overall sound pressure level directivities in the farfield for

different nozzle pressure ratio for a 2D mixer-ejector nozzle with staggered CD chutes,
T8=1360°R.

NASA/CR—2004-213117 363



explained above, there is very little noise suppression due to treatment in the farfield. For
NPR=4.6, the OASPL directivity with treatment is higher compared to the hard wall
configuration. The possible reasons for this behavior is given above. The effect of ejector
treatment is summarized in Figures 6-32 and 6-33 by plotting OASPL with respect to jet
velocity at different polar angles and overall sound power level (OAPWL) with respect to
jet velocity and NPR, respectively. Again, these results indicate the noise benefit of
treatment, which is more at lower NPR and at forward angles.

Conclusions : The ejector treatment attenuates internal noise and is more effective at
lower NPR (or jet velocity). Treatment closer to the mixer exit is also effective in flap
dynamic pressure attenuation, but relatively less compared to a similar treatment area
closer to ejector exit, especially for very high NPR. Ejector treatment is important,
especially on entire surface, when the externally generated noise component is lower or of
the same magnitude compared to the internal noise component.
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7.0 ACOUSTIC TREATMENT STUDY

Based on the study on mixer geometry, it has been established that the 10 and 9 full
staggered CD-chute mixer with long ejector performs acoustically the best. Any additional
acoustic benefit could be obtained by suppressing noise internal to the ejector by treating
the ejector appropriately with proper acoustic treatment. While such an elaborate study to
optimize the treatment effectiveness is out of scope for this program, a few selected
parametric variation of ejector treatment were conducted. Acoustic treatment study
includes the effect of (1) ejector treatment area, (2) treatment thickmess, (3) treatment
location on the ejector, (4) flaps only treated configuration compared to full ejector
treatment, and (5) the bulk material type used in the ejector treatment on the farfield noise
characteristics and on the flow and performance related parameters. For these studies the
tests were conducted for the 9 and 10 full CD-chute mixer with the long ejector
configuration.

7.1 EFFECT OF EJECTOR TREATMENT AREA

For this study the treatment area on the ejector is varied and the acoustic, flow related,
and performance related parameters are evaluated from experimental data. Results,
showing the effect of ejector treatment area, include four configurations, one without any
treatment (i.e., configuration #12) and three treated configurations. For the treated
configurations (i.e., #11, 23, and 16 ), the flaps and sidewalls are fully treated, realistically
treated on the basis of boat tail limitation (which covers approximately 7/9th of fully
treated area), and partially treated (which covers approximately 4/9th of fully treated
area), respectively, with 0.5”-thick nickel based metal foam with a 37% porous facesheet
(designated as FM). Figures 7-1 through 7-3 show the exact location of the treatment and
the exact area covered by the treatment for these three configurations. The treatment areas
are shaded in these figures. The acoustic treatment areas for the three treated
configurations are listed in the following table:

Configuration . Ejector Treatment % wrt Ejector % wrt Full
Definition Area (in®) Area (in) Area treatment
Hard wall Configuration 529.65 0 100 144.3
Fully Treated 529.65 366.985 69.3 100
7/9th Treated 529.65 269.670 50.9 73.5

4/9th Treated 529.65 145.980 27.6 39.6
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Since the % of actual treatment for the partially treated configurations with respect to fully
treated case are 73.5% and 39.6%, which are close to 7/9 and 4/9, these configurations
are identified as 7/9 treatment and 4/9 treatment.

7.1.1 Acoustic Results:

The farfield acoustic results for the sideline azimuthal location relative to major axis (i.e.,
at $=25), at a slant distance of 1629°, at static and with flight simulation (Mp=0.32) are
presented in this section. Figure 7-4 shows the effect of ejector treatment area on EPNL,
peak PNLT, and PNLT at various polar angles (8) as functions of jet velocity (Vj). At jet
velocities at and below 2400 ft/sec the EPNL levels are lower for treated configurations
compared to the hard wall configuration. The effect of treatment area is observed more
distinctly at lower velocities, especially below 1900 ft/sec, that the EPNL levels decrease
with increasing treatment area. Similar trends are observed with respect to PNLT.

Effect of ejector treatment area on PNLT directivities at jet velocities of 1147, 1400,
1920, 2384, and 2637 ft/sec are shown in Figure 7-5. The PNLT levels decrease with
increasing treatment area at most polar angles and at all the velocities. However, the effect
is more significant at lower velocities and at mid polar angles. Effect of ejector treatment
area on SPL spectra at various polar angles (8) for each of the above mentioned five jet
velocities are shown in Figures 7-6 through 7-10. Noise suppression due to acoustic
treatment in terms of SPL is observed at higher frequencies for most polar angles and the
suppression level increases with increasing treatment area. The effect of treatment area on
SPL seems to be less significant at higher velocities (see Figures 7-9 and 7-10).

In general, the noise suppression, as measured in the farfield, due to acoustic treatment on
the ejector increases with increasing treatment area. However, the effect is insignificant at
higher velocities above 2400 ft/sec. The noise measured in the farfield is the sum total of
noise propagated out of the ejector (i.e., internal noise) and the noise generated exterior to
the ejector (i.e., external noise). If the external noise level is much higher compared to
internal noise propagating out of the ejector, then the total noise measured in the farfield
will be less influenced by changes in the internal noise. The results shown here are
indicative of the fact that the internal noise is higher or comparable to the external noise at

lower velocities. Hence, the increasing internal noise suppression due to increasing
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treatment area is observed from the farfield results for lower jet velocities. However, at
higher velocities, the external noise seems to be higher compared to internal noise, and
hence the influence of treatment area is insignificant in the farfield results.

7.1.2 Flow and Performance Related Parameters:

The effect of ejector treatment area on ramp and chute static pressure distributions are
insignificant for static as well as with flight simulation. The chute loading coefficients due
to chute static pressure distributions showing the effect of ejector treatment area are
plotted against NPR in Figure 7-11. Again the effect is insignificant. The effect of ejector
treatment area on pumping and corrected pumping is shown in Figures 7-12 and 7-13 for
static and flight cases, respectively. With respect to increasing NPR the pumping
decreases. However, the pumping increases slightly with reduced treatment area.

Figure 7-14 illustrates the effect of ejector treatment area on axial static pressure
distributions on the flap at static condition at different L1M cycle conditions. Insignificant
difference in pressure distributions with respect to treatment area is observed at lower
NPRs. At higher NPRs the static pressure distribution on the flap indicates delayed mode
switch with increasing treatment area. Figure 7-15 shows the effect of ejector treatment
area on force and moment of force with respect to flap leading edge due to static pressure
difference on flap surface as a function of nozzle pressure ratio. Both the force and the
moment are lower for fully and 7/9th treated ejector at higher NPRs. The transition from |
subsonic to supersonic mode seems to be slightly delayed with respect to increasing
treatment area. Similar results with flight simulation are plotted in Figures 7-16 and 7-17.
The static pressure distributions between the mixer configurations clearly indicate that the
mode switch is delayed for 7/9th treated ejector configuration. Similar conclusions are
deduced from the force and moment of the force results, as shown in Figure 7-17.

7.2 EFFECT OF TREATMENT THICKNESS:

Results, showing the effect of ejector treatment thickness, include four configurations, one
without any treatment (i.e., configuration #12) and three treated configurations. For the
treated configurations (i.e., #23, 18, and 20), the flaps and sidewalls were realistically
treated on the basis of boat tail limitation (which covers approximately 7/9th of fully
treated area) with nickel based metal foam of thickness 0.5” (i.e., 100% thick), 0.3 (i.e.,
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Figure 7-12. Effect of treatment area on pumping with respect to nozzle pressure ratio for a 10

and 9 full staggered CD-chute mixer with long ejector for L1M cycle conditions at
static condition.
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Figure 7-13. Effect of treatment area on pumping with respect to nozzle pressure ratio for a 10
and 9 full staggered CD-chute mixer with long ejector for LIM cycle conditions
with flight simulation Mp=0.32).
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Figure 7-14. Effect of treatment area on axial distribution of average static pressure on the inlet
and the flap surface at different L1M cycle conditions for a 10 and 9 full staggered

0.1

02 03 04 05 06 07 08 09

CD-chute mixer with long ejector at static condition.
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Figure 7-15. Effect of treatment area on normalized (a) force and (b) moment of force due to
ejector flap with respect to nozzle pressure ratio for a 10 and 9 full staggered CD-
chute mixer with long ejector for L1M cycle conditions at static condition.
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Figure 7-16. Effect of treatment area on axial distribution of average static pressure on the inlet
and the flap surface at different L1M cycle conditions for a 10 and 9 full staggered
CD-chute mixer with long ejector with flight simulation (Mp=0.32).
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Figure 7-17. Effect of treatment area on normalized (a) force and (b) moment of force
due to ejector flap with respect to nozzle pressure ratio for a 10 and 9 full
staggered CD-chute mixer with long ejector for L1IM cycle conditions with
tlight simulation (Mp=0.32).
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60% thick), and 0.2” (i.e., 40% thick), respectively, with a 37% porous facesheet
(facesheet thickness=0.025" and hole diameter=0.045"). The original foam metal of 0.5”
thick was cut into two, with thickness of 0.3” and 0.2”. A stainless steel sheet metal was
used between these two parts of the foam metal treatment while mounted on the ejector
surfaces. Based on the foam metal piece exposed to the ejector flow acoustic data was
obtained for 0.3” and 0.2” thick treatments.

7.2.1 Acoustic Resuits:

The normal impedance spectra for the nickel based foam metal of different thicknesses
(with 37% porous facesheet) were measured at room temperature by using 0.6” diameter
samples and are compared in Figure 7-18. The actual levels of resistance and reactance
would be different at the operating condition of the ejector. In general, the specific
resistance is likely to increase and the reactance is slightly to decrease due to grazing flow.
At the same time, some decrease in resistance is expected due to temperature increase.
However, the impedance results of Figure 7-18 is a relative comparison between the same
treatment with different thickness at the same condition. At low frequencies, below 5 kHz
the resistance decreases with bulk thickness. The reactance increases with increasing bulk
thickness up to about 10 kHz. Beyond this frequency 0.5”-thick treatment shows a sudden
decrease of reactance. Also, the resistance for 0.5” treatment increases with frequency up
to about 10 kHz and then decreases with a peak at about 11 kHz. This is due to the anti-
resonant frequency of the 0.5” deep cavity at room temperature. For (.3” treatment the
anti-resonance occurs at about 18 kHz, at which a resistance peak is observed. Based on
the reactance variation with the frequency the thicker treatment attains the desired level of
zero at a lower frequency. For thinner bulk samples, the zero reactance is attained at a
much higher frequency. A resistance level of about 1.5 to 2.0 with a reactance level
between -0.5 and 0 is the optimum condition for better acoustic suppression. Based on the
normal impedance results, the 0.5”-thick foam metal was expected to perform better for
lower (i.e., 3 to 6 kHz) and at higher (i.e., 9 to 17 kHz) frequency ranges due to its near
koptimum reactance levels. In the same manner, the 0.3” and 0.2” treatments were
expected to perform better at frequency ranges of 7 to 10 and 8 to 12 kHz, respectively.

It should be noted that the scale model frequency is plotted in Figure 7-18, whereas, the
full scale frequencies to be compatible with the acoustic results, will be 1/7-times of these
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values. The farfield noise level is relatively higher and crucial in terms of EPNL in the
frequency range of 2 to 3.5 kHz. To achieve a better acoustic suppression at this
frequency range the 1/7-scale treatment should be effective at a frequency range of 14 to
24 kHz. Based on the impedance results of Figure 7-18, 0.5” treatment is expected to
perform slightly better than the other two in the farfield noise suppression in terms of
EPNdB.

The farfield acoustic results for the sideline azimuthal location relative to major axis (i.e.,
at $=25°), at a slant distance of 1629’, ) at static and with flight simulation (Mp=0.32) are
presented in this section. Figure 7-19 shows the effect of ejector treatment thickness on
EPNL and PNLT at various polar angles (8)as functions of jet velocity (Vj). The effect of
treatment thickness is distinctly observed at lower velocities, especially below 2400 ft/sec,
that the EPNL levels decrease with increasing treatment thickness. For higher jet velocities
the effect of treatment is not apparent, since the farfield noise is dominated by external
noise (i.e., jet mixing noise). Similar trends are observed with respect to PNLT levels also.

Effect of ejector treatment thickness on PNLT directivities at jet velocities of 1147, 1920,
2384, and 2637 ft/sec are shown in Figure 7-20. The PNLT levels decrease with
increasing treatment thickness at most polar angles for lower jet velocities. Effect of
gjector treatment thickness on SPL spectra at various polar angles (8) for each of the
above mentioned four jet velocities are shown in Figures 7-21 through 7-24. Noise
suppression due to acoustic treatment in terms of SPL is observed at higher frequencies
for most polar angles, especially, for lower jet velocities and the suppression level
increases with increasing treatment thickness.

In general, the noise suppression, as measured in the farfield, due to acoustic treatment on
the ejector increases with increasing treatment thickness. However, the effect is
insignificant at higher velocities above 2400 ft/sec. The noise measured in the farfield is
the sum total of noise propagated out of the ejector (i.e., internal noise) and the noise
generated exterior to the ejector (i.e., external noise). If the external noise level is much
higher compared to internal noise propagating out of the ejector, then the total noise
measured in the farfield will be less influenced by changes in the internal noise. The results
shown here are indicative of the fact that the internal noise is higher or comparable to the
external noise at lower velocities. Hence, the increasing internal noise suppression due to
increasing treatment thickness is observed from the farfield results for lower jet velocities.
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