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Progress Summary 

During the period December 23,1997 and December August 31,2004, we accomplished 

the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade 

flows, namely LESTool and UNCLE. LESTool is a structured code making use of Sth 

order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured 



code. LESTool has both Dynamic SGS and Sparlart’s DES models and UNCLE makes 

use of URANS and DES models. The current report provides a description of 

methodologies used in the codes. 

1. Introduction 

Flow transition plays an important role in turbomachinery applications. The majority of 
boundary layer flows in turbomachines involve flow transition under the effects of 
freestream turbulence, diverse pressure gradients, wide range of Reynolds numbers, flow 
separation, and unsteady wake-boundary layer interactions. 

Prediction of this type of complex flows is an important element in analysis and 
performance evaluation of gas turbine engine components and ultimately in the design of 
more efficient jet engines. Especially, in low pressure turbine applications prediction of 
transition becomes pivotal in terms of efficiency. For low pressure turbines the flow is 
mostly turbulent at the high Reynolds number conditions encountered at take off and the 
efficiency is at its design maximum. However, at high altitudes and cruise speeds which 
correspond to lower Reynolds number conditions, unpredicted losses and substantial 
drops in efficiency have been observed. These losses are attributed to flow separation on 
the suction surface of the turbine blades. At low Reynolds numbers, the boundary layers 
on the airfoil surface have a tendency to remain laminar and hence the flow may separate 
before it becomes turbulent, causing increase in fuel consumption and drop in efficiency. 
The impact of such losses is directly felt on the operation costs. It has been estimated that 
a 1 % improvement in the efficiency of a low pressure turbine would result in a saving of 
$52,000 per year on a typical airliner. 

In order to calculate the losses and heat transfer on various components of gas turbine 
engines, and to be able to improve component efficiencies and reduce losses through 
better designs, accurate prediction of transitional boundary layers is essential. When one 
deals with a complex fluid phenomena like a transition, separation and turbulence, 
several hundred millions grid points are needed to resolve boundary layers and other flow 
structures correctly. We have started to develop technology to make such large scale 
simulations not only possible at supercomputing centers like NCSA or NAS but on 
inexpensive, high-performance clusters of PCs, or “Beowulfs”. These clusters are 
specialized for CFD applications, using the novel approach that the hardware, operating 
system, and application code are optimized together rather than separately. A Honorable 



Mention in the PricePerformance Category of the Gordon Bell Prize was awarded for 
this approach at IEEEIACM SC2000 Conference on High-Performance Networking and 
Computing. 

Several turbulence test cases have been computed and an overview of the results is given. 

2. Code Descriptions 

(1) A description of LESTool is give in Appendix 1. 
(2) A description of UNCLE is given in Appendix 2. 
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4. PARALLELIZATION 

Figure 4.1: Partitioning of tbe data along the k-axis 
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Figure 4.2: Smep along the zz-planes 
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Figure 43: Communication pattern for the dishiiuted approach 
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Figure 5.1: Contourlinesofvorticitymagnitu~ atthree timeintemals ofENOPade 
method 

Figure 52: Swirl velocities of the vortac along y=O at T = 12 
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5.23 Parallel performance 

In order to achive a reasonable throughput the wall time for our computations with 
LESTool mustbe at most on tbe order of 1Os/ time step. A comparision of the wall 
times for the three different test cases follows 

Comparison of wall times 

In figure 5.4the wall times are compared for =AT2 and KFC1. The p e d o m c e  
of KFCl is obviously better than that of KLAT2 because of the higher clock fre- 
quency. Tbe clock frequency of KFCl is double than that of U T 2  but the speed 
of LESTool on KFCl is obviously not twice compared to that on KLAT2. Hat, 
the memory system plays an important role as well-KFC 1 has a PC2 1000 memory 
systaq whereas U T 2  has a PClOO memoly sytem. Our goal to reach a time 
of less than 10s / time step is aheady reached on two processors on KFC1, while 
for =AT2 it takes about six processors tD come into the same total perfomnot 
range 

Figure 5.4: Wall clock time on KL.Al2 and KCFl for the 64’ case 

The lB3 case is much more demanding. In this case it takes about ten nodes 
or twenty processors on OUT dual pmcasor machine KFCl to obtain a Wan clock 
time under 10s. For KLAT2 forty processors are needed to obtain the desired 
oomputational sped. Note that for this exanq~le KFCl does achieve twice the 

case severely stresses OUT cluster computers. Here we cannot reach 
the 10s mark on e i k  of the clusters. For KFCl, we can achieve less than 20s I 
time step on 36pmcessars, or twice the desire speed. With KLAT2 thebest wall 
time achievable is 22.7s. 

speed ofIUAl-2. 
The 
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Figure 5.5  Wall clock time on KLAl2 and KCFl for the 128% case 

Figurc 5.6 Wall clock time on KL.Al2 and KCFl for the 196% case 
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Speednp on dilferent network architectures 

KFCl has a three-way channelbonded network as d e s m i d  in section ??. The 
code scales -11 for all thm test cases as shown in figm 5.7. Note that we could 
nm the singk processor version for the 1283 but the performance was so low be- 
cause of swapping that we decided to scale the larger cases to the minimum number 
ofpmxsors  on which the case a d d  resonable run. Note that the sizeable dmp 
in Mormance for 34 processors in all three cases. This is related to poor load 
balance. The only way we can divide o w  grid is in two slices in j-direction and 
swenteen slices in the kdirection. G h n  the cubical symmehy of this problem, 
thebest subdivision is a equal number of cuts in the i, j, k direction. An example 
for an optimal partitioning is the case for 16 processors. Each subblock consists 
of 163 grid points. This ample shows the importance of the partitioning on the 
parallel performance of LESTool. 

F, , , . , . , . , 

figure 5.7: Speedup on KFCl for the M3, 1283 and the lN3 cases 

KLAT2 has a Fh" netmurk architecture which is optimized for next neighbor 
communication as descriidin section ??. LESTool scales even better on KLATZ 
than it does on KFCl for all three test cases as shown in figure 5.8. Note that a 
similar effect caused by uneven load splitting can be seen on this machine as well. 
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Figure 5.8: Speedup on KLAl2 for the M3, 1283 and the is3 cases 
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Figure 7.2: Comparison of RTVLS values 
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“Inoue, 0. and Yamazaki, T., “Secondary vortex 
streets in two-dimensional cylinder wakes,” Fluid 
Dynamics Research, vol. 25, 1999, pp. 1-18. 
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Fig. 1 Schematic diagrams for integration areas. (a) 
convective fluxes, and (b) diffisive fluxes. 
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Fig. 2 A schematic diagram of cell-centered partitioning 
approach 

Fig. 3(a) Partitioned triangular mesh for 2D flow over a 
circular cylinder 

Fig. 3(b) Load-balance distribution on each node in 
parallel computation 
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Fig. 'b) The v-velocity contour plot for 
dimensional driven cavity flow at Re400.  

X 

Fig. 8(c) Streamline plot for two-dimensional driven 
cavity flow at Re=400. 

Figure 9(a) The u-velocity profile at the horizontal 
centerline of ~ 0 . 5  plane with present results in 
hexahedral and tetrahedral meshes, and also Ku's and 
Shu's results. 
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Figure 9(b) The v-velocity profile at the vertical 
centerline of d . 5  plane with present results, Ku's and 
Shu's results. 



Figure IO(a)-(c) The velocity vector and (d)-(f) pressure 
contours from present results with hexahedral mesh at 
z=O.5, x=0.5, and y=0.5 planes respectively. 
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Fig. 1 1  Schematic diagram of flow over a circular 
cylinder with dimensions and boundary conditions 
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Fig. 12 CL and Co history plots of two-dimensional 
simulation for (a) Re=100, (b) Re=200, (c) Re=300, and 
(d) Re=l000. X 
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Fig. 14 Vorticity component contours for three- 
dimensional simulation at y=O plane, where (a)-(c) ox, 
my, and o, for Re=100 and (d)-(f) ox, my, and o, for 
Re=200. 
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Fig. 13 Vorticity contours for two-dimensional 
simulation. (a)Re=lOO, (b)Re=200, (c)Re=300, and 
(d)Re=1000. 

Fig. 15 The iso-surface of vorticity magnitude for Re = 
200 from present three-dimensional simulation result. 
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A Center Pressure Based Method for Twomhree-Dimensional Unstructured 
Incompressible Navier-Stokes Solver 

H. Chen, P. G. Huang, and R P. LeBeau 
University of Kentucky 

Dept. of Mechanical Engineering 
Lexington, KY 40506 

Abstract 

A center pressure based method is presented in 
this paper, and which has been implemented into a new 
two/three-dimensionaI parallel unstructured CFD code, 
UNCLE, which is developed at the University of 
Kentucky to meet the challenges of physical problems 
with complex geometries and complicated boundary 
conditions while maintaining high computational 
efficiency. Good load balancing across computational 
nodes is achieved by using METIS. In order to 
demonstrate the accuracy and performance of center 
pressure based method, several test cases are presented 
for validation such as two-dimensional incompressible 
flow past a flat plate, two/three- dimensional driven 
cavity flow, and twolthree- dimensional flow over a 
circular cylinder. Notably, an extensive qualitative and 
quantitative study of two-dimensional flow over a 
circular cylinder for low Reynolds number is also 
presented in this paper. 

1 Introduction 

Continual improvements in computer 
technologies and computational fluid dynamics (CFD) 
algorithms have established CFD codes as a reliable 
tool for fundamental research or industrial applications. 
To deal with increasing grid sizes and demands for 
faster output, parallel computation of CFD has become 
a standard approach. To deal with the different 
challenge presented by some physical problems with 
complex geometries and complicated boundary 
conditions is now approached through unstructured 
CFD grids due to their ability to smoothly conform to 
complicated boundaries. However, combining 
unstructured grids with a parallel code presents still 
other challenges, such as achieving well-balanced grid 
decomposition on a distributed system and efficient 
parallel performance. In order to meet these challenges, 
a center pressure based method has been implemented 
into a new parallel unstructured CFD code called 
UNCLE, which has been developed at the University of 

Kentucky. UNCLE is designed to meet the challenges 
of using unstructured grid codes on high-performance 
parallel computers. It is a two/three-dimensionaI finite 
volume unsteady incompressible Navier-Stokes solver 
with center pressure based SIMPLE algorithm with 
second order accuracy in both time and space. To 
increase flexibility in complex geometries, center 
pressure based method is extended to use a variety of 
grid types, such as triangular, quadrilateral, tetrahedral, 
and hexahedral meshes. To obtain good load balancing 
across computational nodes, METIS [l] is applied for 
domain decomposition. METIS is a set of programs for 
partitioning graphs and finite element meshes, and for 
producing fill-reducing orderings for sparse matrices. 
The algorithms implemented in METIS are based on 
multilevel graph partitioning schemes. The key features 
of METIS include extremely fast partition, high quality 
partitions, and low fill orderings. The parallel 
construction of UNCLE is based on message passing 
interface (MPI) protocols and has worked successfully 
on systems ranging fiom commodity PC clusters up to 
traditional supercomputers. In order to demonstrate the 
accuracy and performance of center pressure based 
method, several test cases are presented for validation 
such as two-dimensional incompressible flow past a flat 
plate, two/three-dimensional driven cavity flow, and 
two/three-dimensional flow over a circular cylinder. 

2 Numerical Methods 

A center pressure based method for twolthree- 
dimensional finite volume unstructured incompressible 
Navier-Stokes solver for steadyhnsteady flow fields is 
presented in this paper. It is center pressure based 
SIMPLE algorithm with second order accuracy in both 
time and space. In order to compute numerical flux on 
interfaces, a second order upwind scheme is adopted to 
compute advection terms and second order central 
difference scheme is used for diffusion terms. Non- 
staggered grids with the Rhie and Chow momentum 
interpolation method [2] is employed to correct the 
checkerboard solution in the SIMPLE scheme. 



2.1 Governing euuations L L 

The gradients at the nodal points (cell centers) are 
evaluated by the Gauss's divergence theorem as below. The governing equations for unsteady incompressible 

viscous flow under the assumption of no body force and 
heat transfer are as below. 

Conservation of Mass 

Conservation of Momentum 

a 
- Jp u a I' 

= -$ pu, n, u , d~ - 8 pn, d~ + 8 T,, n, d~ (*) 
Conservation of Energy 

where p i s  density, p is pressure, uj is component of 

velocity vector, nj is unit normal vector of the interface, 

qj is tensor of shear force, and specific internal energy 

E = e + +(a2 + v2 + w2). Notably, density is constant for 

incompressible flow. 

2.2 Convective and diffusive fluxes 

Figure 1 (a) shows the schematic diagram for integration 
area for convective fluxes. By using Taylor series 
expansion, flow properties on the interface can be 
obtained by Eq. (3). 

(3) 

where 4 stands for the velocity components and 
pressure, the superscript RHS and LHS denote the 
approximation from the right-hand side and left-hand 
side of the interface respectively, and HOT represents 
higher order terms. By substituting Eq. (3) into Eq. (4), 
interfacial flow properties bean be obtained. 

a, V 
where N&e is the total number of interfaces of the cell 
and V denotes the volume of the control volume cell. 

The schematic diagram for diffusive fluxes is shown in 
Fig l(b). The gradients at the interface can be evaluated 
by using Chain rule as Eq. (6). 
a4-a424 +--+-- a4av W a c  
ax a g a  ao ax ay ax 

-=--+--+-- 34 a4a4 a437 
m a g m  a? az ag m 

where the local coordinate system (c,r,~,<) is defined by 
the type of mesh separately. 
For triangular mesh in Fig. l(b), < is the vector form 
nodal point PI to P2, 7 is the vector fkom vertex VI to 
V2, and R is the integration area for diffusive fluxes. 
The diffusive fluxes can be approximated by Eq. (7). 

(7) 
where denotes the properties at nodal points and hi 
denotes the properties at vertices. 
The values of vortices are obtained by averaging 
surrounding nodal value, in which inverse distances 
from all surrounding nodal points are considered as 
weighted function. 

2.3 Center Dressure based SIMPLE algorithm 

By using an initial pressure field, P", we can obtain u", 
v", and W" by solving the momentum equations in an 
uncoupled form. The momentum equations can be 
written in the form as Eq. (8). 
a, Au = 1 anb Au + RHS,, 

acAv = c anb Av + RHS, 

a,Aw = c a , A w  + RHS, 

where the coefficients a,b and a, are 

( 8 )  
nb 

nb 

nb 



, = I  

. .  

where subscript c denotes the cell we are solving, 
subscript nb denotes the neighbor cells, and A denotes 
the interfacial area. In this paper, we solve Eq. (8) by 
using Gauss-Seidel method. Then, we can obtain u', v , 
and w* by Eq. (9). 
u * = u n + A u  
v* =v" +Av (9) 

w*=w"+Aw 
Although at this stage u*, Y*, and W* satisfy the 
momentum equations, they do not necessarily satis@ 
the continuity equation. In order to satisfy the mass 
conservation, one has to interpolate the velocity to the 
interface. 
However, this interpolation will lead to the 
checkerboard solutions. In order to avoid the 
checkerboard solutions, one has to allow the interfacial 
velocity to be driven solely by the pressure difference. 
To achieve this aim without sacrificing the accuracy, 
one can divide the interpolated interfacial velocity into 
two components: one is the velocity component without 
the pressure contribution and the other is solely the 
pressure contribution. The former, which is at the cell 
center, can be written as: -. . ap" v, 
u = u + - -  

-. . ap" v, 
ay a, 

v =v+-- 

-. . ap" v, 
ai, a, 

w = w  +-- 
The latter is obtained directly from the pressure 
difference of the two adjacent nodal points, PI and P2 
such that the interfacial velocity can be expressed as: 

Where 5 and af are obtained by interpolation to the 
interface. 
We fkther assume that there are corrections to uf , vf , 
and w;, such that the continuity equation can be 
satisfied by using Eq. (12). 

* .  

~ p ( ( u ; + f l u ; ) n , + ( v ; + A ~ ; ~ ~ + ( w ; + A w ; ) n , ] A = O  ,=I  

(12) 
We can rewrite Eq. (12) as 
N P  NJ- 

C p [ A u ; n ,  +Av;n, +w;n3]A=-Xp[u;n,  +vi,, +w;n,]A 

where the right-hand side in Eq. (13) represents the 
mass imbalance in the control volume cell. 
One assumes there is a corresponding pressure 
correction field, p :  which drives the velocity 
corrections according to: 

,=I ,=I  

(13) 

By substituting the velocity correction equations into 
the equation for the mass imbalance, we can obtain the 
equations of the pressure correction: 

nb 

were a,b and a, in the continuity equation are 

and 
b=-Cp( ufn, +v;n,+w;n,]A. 

pnil = p" +a,p' (16) 

nb 

Once the pressure correction is obtained, one can 
update the pressure field by: 

where 9 is the under-relaxation factor for pressure and 
is generally with a value of 0.5-0.8. Then the velocity 



correction on the interfa 
be updated. 

2.4 Partitioning avproach 

es as well as nodal points will 

Figure 2 shows the schematic diagram of partitioning 
approach for center pressure based method, which is 
also implemented into UNCLE. In Fig. 2, blue points 
indicate vertices, red points indicate nodal points, and 
white points indicate the boundary points. By using this 
approach, the control volumes on the boundary are not 
split. Only communication of nodal values is needed for 
parallel computation which makes the implement of 
MPI in an unstructured grid more straightforward. 

Excellent load balancing between the subgrids on 
each node is achieved through using METIS for domain 
decomposition. METIS can partition an unstructured 
grid into any integer number of zones without losing 
load balance. It is compatible with many platforms, 
convenient for running CFD codes on a variety of 
supercomputer to cluster architectures. Present 
partitioning approach has been tested by a number of 
twoithree-dimensional geometries. All results show 
good load balances. In order to demonstrate the 
capability of this partitioning approach, this paper will 
present two cases-one is the grid for two-dimensional 
flow over circular cylinder in triangular mesh, and the 
other is the grid for three-dimensional flow over a 
circular cylinder in tetrahedron mesh. The definition of 
load-imbalance rate L I M ~  and load-balance rate LE in 
this paper is defined as Eq. (17) and (1 8). 

"g 
,. 

L, = I - L m  (18) 
where N d  is grid size of the node and Novg is the 
average grid size. By using load balance rate, we can 
compare the load balance quantitatively. 
Figure 3(a) shows the partitioned grid for 2D flow over 
a circular cylinder in triangular mesh. The number of 
total grid points is 5 1,363 and the number of total cells 
is approximately 0.1M. The grid is partitioned to 16 
zones for parallel computation. The cell distribution is 
not uniform, denser near the cylinder and coarser away. 
The load-balance distribution on each node is shown in 
Fig. 3(b). The x-axis indicates the node number and the 
y-axis indicates load-balance rate. The resulting load- 
balance rates are very close to 100% on every node 
with an average load balance rate of 98.37%. Figure 
3(c) shows a partitioned grid for three-dimensional flow 
over circular cylinder with the internal grid distribution 
visible in a cut-away. The number of total grid points is 
approximately 0.3M and the number of total cells is 
approximately 1.3M. In this case, the grid is partitioned 
to 32 zones. The average load-balance rate is 97.9%. 
Our test results show that present partitioning approach 

has excellent load balance in two/three-dimensional 
grids with various types of meshes by using METIS for 
domain decomposition. 

2.5 Time discretization 

In this paper, a second-order fully implicit scheme is 
employed for the temporal discretization. In here, we 
take a one-dimensional equation example: 
34"+' - 4QY + f-l +--0 8f@"+') - (19) 

2At ax 
where 4 is primitive variable, f is interfacial flux, and 
the superscript n indicates the index in time. A deferred 
iterative algorithm is employed to obtain 6" by 
substituting (20) into (19), 

where the subscript m stands for the sub iteration level. 
The final equation is 

(y')"+l =(("+I)" +(A#)" (20) 

(4" -4" -y3 ( (4"+9"  -4"pY-( (#"+T7 
2At 2At ax 

The right-hand-side of Eq. (21) is explicit and can be 
implemented in a straightforward manner to discretize 
the spatial derivative term. The deferred iterative 
algorithm is strongly stable, and the solution $ + I  is 
obtained by using inner iterations to reach the 
convergent solution of the right-hand-side of Eq. (21), 
which means A( is approximate to zero. A sub-iteration 
is performed at every time step so that this method is 
fully implicit. 

3 Results 

3.1 Two-dimensional laminar incomvressible flow vast 
a flat date 

In this case, two-dimensional laminar incompressible 
flow past a flat plate is simulated. The schematic 
diagram including geometry and boundary conditions is 
shown in Fig. 4. A uniform free stream boundary 
condition is imposed on the inlet. Because of the 
viscous effect, the laminar boundary layer begins to 
grow at the position x=O on the plate. The initial 
condition for the entire computational domain is 
uniform free stream. A quadrilateral mesh of 600x200 
is used for both Reynolds number (Re) at 5,000 and 
50,000 based on a non-dimensional length scale of 
unity. The minimum distance fiom the wall is 5x10' 
(corresponding to y'=O.l) which is fine enough to 
capture the phenomena within the boundary layer. In 
this case, the computational domain is divided into 16 
zones. The parallel computation is performed on 
KFC3a, a 16 nodes PC cluster with Pentium 1V 2.4 



GHz CPU and gigabit network developed at the 
University of Kentucky. The results of this computation 
are compared to the standard Blasius solution for a 
laminar flat-plate boundary layer. Figure 5(a) shows the ,, = yJRe,/x versus u/U plot at x 4 . 5  from present 
results for Re=5,000 and 50,000 in comparison with 
Blasius solution. Both present results are good 
agreement with Blasius solution. Figure 5(b) shows the 
plot of momentum thickness (Rq) versus coefficient of 
skin friction (c,) with present results and Blasius 
solution. Good agreement is obtained by comparing our 
present results with Blasius solution. 

3.2 Two-dimensional driven cavity flow 

In this section, two-dimensional incompressible flow in 
a square cavity rd a Reynolds number of 400 is 
simulated. The fluid in the cavity is driven by a moving 
top with constant speed. Because driven cavity flow 
lacks an exact solution, an existing accurate numerical 
solution for this problem is used as a benchmark for 
comparing our results. Ghia et al. [3] presented 
numerical studies using the vorticity-stream function 
formulation for solutions up to Re=lO,OOO with 
257x257 grid points, and these simulation results have 
been widely used as a benchmark for the driven cavity 
problem. The schematic diagram of this case with 
geometry and boundary conditions is shown in Fig. 6. 
The initial condition for the entire computational 
domain is stationary everywhere. In order to compare 
Ghia’s results, the number of grid points used is 
257x257 or 66,049 and 65,536 cells are used in a 
quadrilateral mesh. For a triangular mesh, 66,546 cells, 
which is approximately the same as quadrilateral mesh, 
and 33,618 grid points are used in our computation. 
Figure 7(a) shows the u-velocity profile along the 
horizontal center line for both present results with 
quadrilateral and triangular mesh and Ghia’s result. 
Both present results are in good agreement with Ghia’s 
result. It also shows the present solution is identical and 
is independent of mesh types. Figure 7(b) shows the u- 
velocity profile along the horizontal center line; again, 
the results match. Figure 8 presents the u- and v- 
velocity contours and streamline plot from the present 
results on the quadrilateral mesh. In Fig. 8(a), the u- 
velocity contours ranges from -0.33 to 1.0 with 100 
intervals. Solid lines indicate the positive values and 
dashed lines negative ones. In Fig. 8(b), the v-velocity 
contours ranges from 0.64 to 0.31 with 100 intervals. 
The flow structures including the location of the major 
vortex center, the bubble in the right bottom comer, and 
a small bubble in the left bottom comer are shown 
clearly in Figure 8(c), and are in good agreement with 
the results of Ghia. 

3.3 Three-dimensional driven cavity flow 
The threedimensional version of the preceding 
problem is also a standard case for a new flow solver. 
In 1987, Ku et al. [4] simulated three-dimensional flow 
in a cubic cavity by using pseudospectral methods to 
solve the Navier-Stokes equations for Re = 100, 400, 
and 1000. In 2003, Shu et al. [5] repeated this problem 
by using the SIMPLE algorithm with the differential 
quadrature (DQ) method. They simulated the three- 
dimensional driven cavity flow at Re = 100, 200, 400 
and 1000 and compared their results with Ku’s results. 
In this section, we simulated this problem at Re = 400 
and compared our results with those of Ku and Shu. In 
order to validate the results with different meshes, two 
grids are used to study this problem. One is a 
hexahedral mesh with 67x67~67 grid points and 
287,496 cells, and the other is a tetrahedral mesh with 
79,951 grid points and 446,953 cells. The geometry of 
this problem is a unit cube. The boundary condition at 
the y = 1 plane is uniform flow with u=l, v=O, and 
w=O, and all other boundary conditions are no-slip 
walls. The initial condition for the entire computational 
domain is stationary. Figure 9(a) shows the u-velocity 
profile at the horizontal centerline of the z = 0.5 plane 
for the present hexahedral and tetrahedral mesh results 
as well as those of Ku and Shu. Figure 9(b) shows the 
v-velocity profile at the vertical centerline of z = 0.5 for 
the same set of simulations. Both present simulations 
show essentially identical solutions, and both are in 
good agreement Ku and Shu. Figure 10 shows the 
velocity vectors and pressure contours taken from the 
present simulation using the hexahedral mesh on the 
~ 0 . 5 ,  ~ 4 . 5 ,  and y=OS planes respectively. As before, 
for the pressure contours dashed lines mean negative 
values. The established flow structures including the 
locations of the vortex center and the positive and 
negative regions in each plane are clearly visible and in 
good agreement with Ku’s and Shu’s results. 

3.4 Two/Three-dimensional incompressible flow over a 
circular cylinder 

Flow over a circular cylinder is a standard unsteady test 
problem. Many two-dimensional numerical studies 
have been done on this flow. In 1990, Rogers and Kwak 
[6] studied flow over a circular cylinder for Re = 200 
using an upwind differencing scheme to solve the 
incompressible Navier-Stokes equations. They 
compared their results, which were obtained using 3rd 
order and 5th order upwind differencing schemes, with 
computational and experimental results. In 1995, Ku [A 
studied this problem for Reynolds numbers 100, 250, 
500, and 1,000 using a pseudospectral element method. 
Alonso et al. [SI studied the vortex shedding over a 
circular cylinder at Re = 500 with a multigrid unsteady 
Navier-Stokes solver with a flux-limited dissipation 



scheme in 1995. In 1998, Liu et al. [9] used 
preconditioned multigrid methods to study unsteady 
incompressible flows. They investigated flow over a 
circular cylinder at Re = 200 and their results was in 
good agreement with other computational and 
experimental results. In 1999, Ronald et al. [lo] 
reported their results for this problem at Re = 300 using 
the NASA FUN2D code. A final example of two- 
dimensional cylinder flow simulation is the work of 
Qian and V e n a  [ll] studied flow over a circular 
cylinder problem at Re = 1000 with a vorticity-based 
method in 2001. 
Examples of threedimensional numerical studies of 
flow over a circular cylinder are the studies of Braza 
and Persillon [12] and Henderson [13]. There are also 
many experimental studies of flow over cylinder 
problems such as Roshko [14], Wille [ls], and 
Williamson [16], [ l q .  According to Williamson [16], 
the phenomena of flow over a circular cylinder can be 
classified by Reynolds number. Williamson found the 
laminar vortex shedding region to occur for Reynolds 
numbers between 49 and 140-194. The three- 
dimensional wake transition region occurs for Re - 190 
to 260. For the range between Re= 260 - 1000, the 
three-dimensional disorder of the wake begin to 
increase in at the fine scales. This evolves into the 
shear-layer transition regime for Reynolds numbers 
1,000 up to 20,000. He also noted that three- 
dimensional effects occur for Re > 190. Further detailed 
explanations of the remaining regimes are reported in 
Williamson [16]. To date, most numerical studies about 
this problem only focused on a single Reynolds number 
and either two-dimensional or threedimensional 
simulations exclusively. The current results encompass 
Reynolds numbers 100,200,300,500, 1,000, and 1500 
for two-dimensional simulations and 100 and 200 for 
three-dimensional simulations. These results are 
compared with the appropriate previous studies as well 
as current results cross-comparisons to examine the 
dimensional and flow regime effects. 
Figure 11 shows a schematic diagram for flow over a 
circular cylinder with dimensions and boundary 
conditions. For threedimensional simulation, the span 
of the cylinder is lOD, with D representing the 
reference length equal to the diameter of the cylinder. 
The boundary conditions at z = 0 and z = -10D are 
periodic, eliminating end effects. The initial condition 
for the entire domain is uniform flow as inflow for all 
simulations and the time step is 0.005 for all cases. The 
grid for two-dimensional simulations is a quadrilateral 
mesh with 22705 cells and 22925 grid points; for three- 
dimensional simulation, a hexahedral mesh with 1.13M 
cells and 1.17M grid points is used. Both grids are 
densely distributed near the cylinder and wake region 
and coarser near the outer region. All of the two- 
dimensional simulations are performed on the KFC3a 

cluster with 16 nodes, and all three-dimensional 
simulations are performed on KFC2, a 48 node 
commodity cluster with AMD Athlon 2000+ CPU and 
a channel-bonded network. It is noted that each three- 
dimensional simulation took approximately one week 
with 32 nodes on KFC2. Figure 12 presents the 
coefficient of Lift (CL) and the coefficient of drag (CD) 
unsteady histories of the present two-dimensional 
simulations for Re = 100, 200, 300, and 1,000 
respectively. The Strouhal number (S,) for these data 
sets is derived from the frequency of CL. In our 
simulations, higher Reynolds number cases achieve 
steady Strouhal numbers faster than lower Re cases, 
consistent with other computational results. Table 1 
presents the summary of our present two- and three- 
dimensional results along with other computational and 
experimental results. As shown in Table 1, our current 
results show good agreement with previous data by 
comparing St, CL, and C,. Fig. 13 shows the two- 
dimensional vorticity contours for Re = 100, 200, 300 
and 1000. In Fig. 13, the contours are range from -0.3 
to 0.3. The three-dimensional o, contours from the 
current simulations are similar to those generated by the 
two dimensional test cases. As seen in Fig. 13, the 
vortex shedding frequency increases as Re increases. 
For Re = 100, the vortices decay in the downstream. 
Because of the limited computational domain, we do 
not see the vortex structures merge to large scale 
vortices in our simulation. For Re = 200,500 and 1000, 
not only does the vortex strength decay, but also the 
vortex structures collapse in the far downstream and 
start to merge to large scale vortices. This same 
phenomenon is reported by Inoue and Yamazaki [IS]. 
Figure 14(a)-(c) show the present threedimensional 
results of ox, my and o, for Re = 100 and (d)-(f) for Re 
= 200 in the y = 0 plane. The contours of ox and oy 
range from -0.0005 to 0.0005 for Re = 100 and from - 
0.02 to 0.02 for Re = 200, and the contours of o, range 
from -0.3 to 0.3 for both cases where bright regions 
correspond to positive values and dark regions 
correspond to the negative values. Obviously, the 
magnitude of a, is much larger than the magnitudes of 
w, and oy. For Re = 100, we can see that the magnitude 
of o, decreases in the upstream and the local minimum 
appears at the position of 5th “roll” in Fig. 14(a). After 
that, the magnitude of ox begins to grow. In Fig. 14(b), 
the magnitude of wy grows after the flow past the 
cylinder. The thickness of the vortex “roll” increases 
downstream. From Fig. 14(c), the magnitude of 61, 
decays after the flow past the cylinder due to the energy 
dissipation. Because the three-dimensional effects are 
very weak at Re = 200, the three-dimensional outcome 
is very similar to two-dimensional case. For Re = 200, 
as seen from Fig. 14(d), the magnitude of ox decreases 
in the beginning and the local minimum also appears 



near the 5th “roll”. In the far downstream, a transition 
zone is observed, after which the vortex scales transit 
from small to large scales. In Fig. 14(e), unlike Fig. 
14(b), wavy vortex structures are observed. Figure 14(f) 
shows that o, decays after the flow past the cylinder. 
Figure 15 shows the iso-surface of vorticity magnitude 
for Re = 200 from the present three-dimensional 
simulation result. The flow structures, especially the 
vortex streets in the wake regions, observed in our 
present results are in good agreement with other 
simulation results. 

4 Conclusions 

A center pressure based method is presented in this 
paper, and which has been implemented successfilly to 
a new two/three-dimensional parallel unstructured 
incompressible Navier-Stokes solver, UNCLE, which 
has been developed at University of Kentucky. 
Implementation of using different types of meshes with 
center pressure based method is feasible and 
straightforward. In order to increase flexibility in 
complex geometries, center pressure based method has 
been extended to use a variety of grid types, such as 
triangular, quadrilateral, tetrahedral, and hexahedral 
meshes. Mesh independent tests are also made to prove 
that current method can generate identical solutions for 
different mesh types. By using METIS for domain 
decomposition, excellent parallel load balance is 
achieved. In this paper, several test cases are 
presenteblaminar incompressible flow past a flat 
plate, steady two/three-dimensional driven cavity flow, 
and unsteady two/three-dimensional flow over a 
circular cylinder for low Reynolds numbers. All these 
test cases yielded good agreements in comparison with 
previous computational or experimental results. A 
complete qualitative and quantitative study of two- 
dimensional flow over a circular cylinder for low 
Reynolds number is presented in this paper, which can 
be further used as a benchmark solution set for the 
development of new unsteady Navier-stokes solvers. 
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Fig. 5(a) Plot of 7 versus u/U at x 4 . 5  with present 
results and BIasius solution 
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Fig. 5(b) The plot of Ree versus CJ with present results 
and BIasius solution 

Fig. 6 The schematic diagram of two-dimensional 
driven cavity flow with boundary conditions 
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Fig. 7(a) The u-velocity profile along the horizontal 
center line for present results and Ghia's result. 
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Fig. 7(b) The v-velocity profile along the vertical center 
line for present results and Ghia's result. 
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Fig. 8(a) The u-velocity contour plot for two- 
dimensional driven cavity flow at Re=400. 



Table 1 Summary of present results and other computational and experimental results 

49 


