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Progress Summary
During the period December 23, 1997 and December August 31, 2004, we accomplished
the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade
flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5t

order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured




code. LESTool has both Dynamic SGS and Sparlart’s DES models and UNCLE makes
use of URANS and DES models. The current report provides a description of
methodologies used in the codes.

1. Introduction

Flow transition plays an important role in turbomachinery applications. The majority of
boundary layer flows in turbomachines involve flow transition under the effects of
freestream turbulence, diverse pressure gradients, wide range of Reynolds numbers, flow
separation, and unsteady wake-boundary layer interactions.

Prediction of this type of complex flows is an important element in analysis and
performance evaluation of gas turbine engine components and ultimately in the design of
more efficient jet engines. Especially, in low pressure turbine applications prediction of
transition becomes pivotal in terms of efficiency. For low pressure turbines the flow is
mostly turbulent at the high Reynolds number conditions encountered at take off and the
efficiency is at its design maximum. However, at high altitudes and cruise speeds which
correspond to lower Reynolds number conditions, unpredicted losses and substantial
drops in efficiency have been observed. These losses are attributed to flow separation on
the suction surface of the turbine blades. At low Reynolds numbers, the boundary layers
on the airfoil surface have a tendency to remain laminar and hence the flow may separate
before it becomes turbulent, causing increase in fuel consumption and drop in efficiency.
The impact of such losses is directly felt on the operation costs. It has been estimated that
a 1% improvement in the efficiency of a low pressure turbine would result in a saving of

$52,000 per year on a typical airliner.

In order to calculate the losses and heat transfer on various components of gas turbine
engines, and to be able to improve component efficiencies and reduce losses through
better designs, accurate prediction of transitional boundary layers is essential. When one
deals with a complex fluid phenomena like a transition, separation and turbulence,
several hundred millions grid points are needed to resolve boundary layers and other flow
structures correctly. We have started to develop technology to make such large scale
simulations not only possible at supercomputing centers like NCSA or NAS but on
inexpensive, high-performance clusters of PCs, or “Beowulfs". These clusters are

specialized for CFD applications, using the novel approach that the hardware, operating

system, and application code are optimized together rather than separately. A Honorable




Mention in the Price/Performance Category of the Gordon Bell Prize was awarded for
this approach at IEEE/ACM SC2000 Conference on High-Performance Networking and
Computing.

Several turbulence test cases have been computed and an overview of the results is given.
2. Code Descriptions

(1) A description of LESTool is give in Appendix 1.
(2) A description of UNCLE is given in Appendix 2.
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CFD code. In C. Lin and et. al, editors, Parallel computational fluid dynamics,
evelopment and applications of parallel technology, proceedings of the Parallel CFD'98
Conference, pages 145-152. 1999. Elsevier Science B.B.

(11) R. Savaram, T. Hauser and P. Huang. DNS and LES of homogeneous turbulence.
24th Annual Dayton-Cincinnati Aerospace Science Symposium, 1999.

(12) Th. Hauser and P. Huang. Shared Memory Parallelization of an implicit ADI-type
CFD code. Technical report, NASA-CR-208688, NASA, 1998.

4. Award received by the PI

A Honorable Mention in the Price/Performance Category of the Gordon Bell Prize was
awarded for this approach at IEEE/ACM SC2000 Conference on High-Performance
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Chapter 2

Turbulence Models

2.1 LES

Filtered equations

is based on the definition of a filtering operation: a
solved) quantity, denoted by an overbar, is defined as

Gix, x')dx , 2.DH

ntire domain and G is the filter function, which determines the

: f the small scales. For compressible flow the large-scale equa-

tions are operationally simplerif Favre filtered quantities are used. A Favre filtered

variable is defin f = of/7 Applying the spatial filter G to the governing
equations leads to
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term is similar to the heat flux and can be modelled accondingly

5. This term is neglected because of the same reasons as 2

6. This term is the viscous SGS work and is neglected
» summarize the following quantities will be be medeled in our implementation

Smagrosinsky Turbulence Model

Dynamic SGS model

t-hand side a trace-free Smagorinsky eddy viscosity model is used for

Ascosity coefficient will be a function of the instantan-

Ca

is the trace-free rate of the strain tensor

3 2.14)
The isotropic part of the SGS Reynolds stress tensor ¢° = 7. has to be mod-
using Yoshizawa’s [?], [?

To compute C;, the tace of eq. ?? together with 2.12 is used:

IR e Y

Germano et. al. [?] showed that expressions similar to the ones multiplying
Therefore an averaging procedure is needed to make the
determinaton of the SGS coefficdients well conditioned. It is assumed that C; is

C: can become zero
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independent of the directions in which the fic

leads to

C we also use the

= pio|

AN

Contracting eq. ?? with M:; which was recommended by Lilly is cutlined

below. Since eq. 22 represents six independent equations in one unknown, its error
can be minimized by applying a lesat squares appreach. Define G as

AL g

2CM; ;)

where < >denotes a spatial averaging operation

2.2 DES model

The DES tutbulence model isbased on the blending of RANS and LES to provide a
model that can accurately predict unsteady flows without requiring high-precision
grids near the w A RANS turbulence model is used to simulate the turbulence

he boundary layer, gradually subsumning into the LES model as one moves

within the b




turbulence model used in LESTool is the cne-eq

03, en—2 623 x—041 O —|V

s the distance to the nearest wall. Note that this formulation does not include
the trip functions. Large values of  can be truncated at 10 or so. The turbulent
viscosity for the momentum equations is found from 1, = ¥f,;. For the DES
approach the length scale 4 is changed into

d* = min(d, max{Az, Ay, Az "'.’.'_!

= (1,65, This gives the turbulence model behaviour near the wall and
chavior away from the wall
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11s easily paralielizable because we loop trough a three dimen-

ane by plane. The outline of the algorithm is the following

ve equations (2) and (3) in independent i+ planes
1§: solve equations {4) and (2) in independent k-i planes

ve equations (3) and (4) in independent j-k planes
T fier completion of the above algorithin we have already completed
iteratior

From our experience three to four iterations are needed f
op to reach the required accuracy

was chosen as the programming language for this project becan
owerful amray X, the addition of

[ derived types and the module
leveloped based on object-oriented methode 3
m the Cartesian implementation to an implementa-
inates and chimera-type overlapping grids. The new feat

catures
ibstract data types of generic programming support an object-

=
ansition fror
oordir

style even thongh it is not designed to be an object-orien




Chapter 3

Numerical method

The compressible Navier-Stokes equations are discretized using an iterative diage-
nal dominant ADI (DD-ADI) algorithm that can be written in the following form:

D% + ALY + AtLE — AiLE| U = ARHS¥ 3.1

The righi-hand side is approximated by the newly develop ENO-Pade methed
[?] for the convective fiux and sixth-order central for the diffusive terms. The basic
algonithm is the following. First the flux at each cell face is computed as shown

below

Quantities with the superscript H are computed using a Sth-order central in-
terpolation method. For the quantities with the superseript R or L the standard
ENO-interpolation [?]. Than the flux is differentiated using a cell centered Pade
formula [?]:

(R

oy + ¢ — oty =0

The left-hand side is approximated by a lower<order method. The high order
solution can be achieved by performing inner iterations since the order of accuracy
is not affected by low order treatment of the left-hand side.

The proposed algorithm has the following form:

DL 1'(‘5[,'5)1-,:.—1 _ 1'5[‘71:"--._1_




Chapter 4

Parallelization

Shared Memory parallel approach

was parallelized in a straightforward manner: The code was
i with the -mp option to enable parallelism in the compile phase. This was
combined with placing OpenMP compiler directives, which instruct the compiler

code that will execute in parallel.
hese directives were placed at key spots within the code for the greatest par-
fiiciency. This resulted in a decomposing of the 3D problem into groups of

3 ich group assigned to a dedicated processor.
cy of the parlie]l decomposition was enhanced by the use of the
y which is specific to the SGI Origin 2000. This means that mem-
physically placed on the processor which touches the memory lo-
) first. This means that all large three dimensional blocks of memory where
ized in planes of constant & to get a memory distribution which is favorable
or our algorithmic design (see figure 4.1).

Since we target shared memory computers there is no explicit data redistribu-
tion needed. Instead we splitup the k-sweeps among the processors by partitioning

~

work along the y-axis (fig. 42). This is much simpler and easier to implement

comparad to the distributed memory concept

4.2 Distributed memory approach

to achiever better portability and performance on a wider range of com-
putational platforms a distributed approach was also implemented. The paraliel
structure of the distributed version of LESTool is based on splitting the compu-
tational grid into sub-blocks, which are then distributed to each processor (figure

10




Chapter 4

Parallelization

4.1 Shared Memory parallel approach

The LESToo! code was paralielized in a straightforward manner: The code was
compiled with the -inp option to enable parallelism in the compile phase. This was
combined with placing OpenMP compiler directives, which instruct the compiler
to gemerate code that will execute in parallel.

These directives were placed at key spots within the code for the greatest par-
allel efficiency. This resulted in a decomposing of the 3D problem into groups of
1D lines, with each group assigned to a dedicated processor.

The efficiency of the pamllel decomposition was enhanced by the use of the
first touch policy which is specific to the SGI Origin 2000. This means that mem-
oty allocated is physically placed on the processor which touches the memory lo-
cation first. This means that all large three dimensional blocks of memory where
initialized in planes of constant & to get a memory distribution which is favorable
for our algortithmic design (see figure 4.1).

Since we target shared memory computers there is no explicit data redistribu-
tion needed. Instead we splitup the k-sweeps ameng the processets by partitioning
work along the y-axis {fig. 4.2). This is much simpler and easier to implement
compared to the dismibuted memory concept.

4.2 Distributed memory approach
In order to achiever better portability and performance on a wider range of com-
putational platforms a distributed approach was also implemented. The paralle]

structure of the distributed version of LESTool is based on splitting the compu-
tational grid into sub-blocks, which are then distributed to each processor (figure

10
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Figure 4.1: Partitioning of the data along the k-axis

nj

nk

ni

Figure 4.2: Sweep along the z2z-planes




mplex geometry, this is 2 nontrivial exercise where an uneven load-
different processors could significantly reduce the computational
overall code. The partitioning of the grid into sub-blocks is per-
ently of the grid generation, using virtual partitions to define the
domains corresponding to each processor. The current algorithm govemning the par-
tition process is based on spectal recursive bis sction in conjunction with a small
database of the computational speeds associated with each node. The splitting 1s
ssing task, generating a file that maps the grid sub-blocks
onto the processon is file is the only difference between performing a serial
computation and a parall
Communications between the grid sub-blocks occurs when the sub-tlocks ex-

change data about the flow variables at the boundaries. As show in figure 4.3 | the

ige of one grid block are communicated to the dummy points

ock, and vice versa. LESTool requires such a communi-

cation step after each update, or subiteration, of the flow variables The low-lewel

implementation of the communication between the sub-blocks uses a MPI-based

communicatic -stem. The communication model is 2 mailbox algotithm where
ible




CHAPTER 4. PARALLELIZATION 13

Grid block

!.\ ~—~ virtual block bomndaries
/
Pt |

data exchange

O
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§
<=
o
]
L

data exchange

data exchange

Figure 4.3: Communication pattern for the distributed approach




Chapter

Accuracy and Performance of
LESTool

Accuracy of the ENO-Pade method

sosal a fifth-order upwind scheme has been proposed to simulate

ssure turbine. This method showed to much numerical damp-

ion and separation on the low- -pressure turbine couldn’t be

to develop a code suitable for frans and mb»xkn-e new

od - the ENOPade method - was developed [2]. This method com-

; of the ENO scheme with the high-order accuracy of the Pade

stcases have been computed and the damping of the new scheme

ou can see below from one fest case. This case consists of the

on of a vortex in a uniform flow. Here the capabilities of the differ-

ent numerical schemes to acarately advect the vortex structures are tested which

3

is critical to LES/DNS simulations.

3.2 Performance Results

5.2.1 Single processor performance tuning

The key point on cache based architectures to achieve high floating point perfor-
mance is cache-awa s of the algorithm. This stage of tuning is very important
because efficient utilization of the cache architecture assures good overall perfor-
mance. Single processor performance is the basic step to get good overall perfor-
mance for the g el computation.

ment of the code special care was taken by placing variables

14
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Figure 5.1: Contour lines of vorticity magnitude at three time intervals of ENOPade
method
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§ 8

Swirl veloci
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Figure 5.2: Swir velocities of the vortex along y=0at T = 12
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the index for a va mv*L 1S noTm: ai‘ ad-
The data is copied into one-dimensional

W ).M’ fit into the second level cache. The 1 algorithm is per-

mance of 60 MFLOPS.
speedup of the code, the main bottle necks idar tﬁcd were
:-tridiagonal matrix solvers. To i
metic operations in\‘c-’:\ing e 5x35 block r;i,xxrﬂ'c-’\.
1 and periodic block mid solvers, were unrolled
and less desirable code, but the performance resul
LESTool code achieves : i i
MHz Origin 2(

gle processor performance

or Tun times for a single test case sufficiently large so
cache of all our CPUs has been chosen. The runtime of the code

=d in table 5.1. The LosLobos results (733 MHz Pentium III} are
Athlon results - this is probably related to (2 computations/’2
data transf - 1e). However, we are not absolutely confident that this is the

«'x;_\ mal §
S5l 1( wi
Table 5.1: Execution time in ssconds on different Linux platforms for a single time

step for the 64° test case

Compiler | double predsion | COSERTOGESSOT

700 MHz Athlon | gee32 s $625

733 MHz Pentium I | eges-2.91.66 s $2,930
1.4 GHZ Athlon MP :.“':V“
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OpenMP performance tuning
ure 5.3, the same test case with the improved fine-grain parallelization is
The removal of the barriers gives a much better speedup and provides a
in parallelization. The program scales better for

atter performance of the fine
seems to have a limit

number of shared processors. However, there stl
r used for the fine-grain parallelization. Since the

the number of the processo
mstant & over the available processors using
geous. By choosing a much large
5.3 by the dashed line, it can
nance

w1y is dismibuted in planes of co
ors is no longer adva

6° grid points, as alse shown in figure

ause of a larger computational load per processor the perfor

r this case, the program performs well up to 64 proce
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5.2.3 Parallel performance

In order to achive a reasonable throughput the wall time for our computations with
LESTool must be at most on the order of 10s/ time step. A comparision of the wall
times for the three different test cases follows

Comparison of wall times

In figure 5.4the wall times are compared for KLAT2 and KFC1. The performance
of KFC1 is obviously better than that of KLAT2 because of the higher clock fre-
quency. The clock frequency of KFC1 is double than that of KLAT2 but the speed
of LESTool on KFCl1 is obviously not twice compared to that on KLAT2. Here,
the memory system plays an important role as well-KFC1 has a PC21000 memory
system, whereas KLLAT2 has a PC100 memory sytem. Our goal to reach a time
of less than 10s / time step is already reached on two processors on KFC1, while
for KLAT2 it takes about six processors to come into the same total performance

range

wall time / time step

Figure 5.4: Wall clock time on KLAT2 and KCF1 for the 643 case

The 1283 case is much more demanding. In this case it takes about ten nodes
or twenty processors on our dual processor machine KFC1 to obtain a wall clock
time under 10s. For KLAT2 forty processors are needed to obtain the desired
computational speed. Note that for this example KFC1 does achieve twice the
speed of KLAT2.

The 196° case severely stresses our cluster computers. Here we cannot reach
the 10s mark on either of the clusters. For KFC1, we can achieve less than 20s /
time step on 36 processors, or twice the desire speed. With KLAT2 the best wall
time achievable is 22.7s.
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wall time / time step
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Figure 5.5: Wall clock time on KLAT2 and KCF1 for the 128° case
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Figure 5.6: Wall clock time on KLAT2 and KCF1 for the 196° case
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Speedup on different network architectures

KFCI1 has a three-way channel-bonded network as described in section 2?. The
code scales well for all three test cases as shown in figure 5.7. Note that we could
Tun the single processor version for the 128% but the performance was so low be-
cause of swapping that we decided to scale the larger cases to the minimum number
of processors on which the case could resonable run. Note that the sizeable drop
in performance for 34 processors in all three cases. This is related to poor load
balance. The only way we can divide our grid is in two slices in j-direction and
seventeen slices in the k-direction. Given the cubical symmetry of this problem,
the best subdivision is a equal number of cuts in the i, j, k direction. An example
for an optimal partitioning is the case for 16 prooessors. Each subblock consists
of 16° grid points. This example shows the importance of the partitioning on the
parallel performance of LESTool.

o [oTiwese

|60 puedep 196196156

Figure 5.7: Speedup on KFC1 for the 643, 128° and the 196 cases

KLAT?2 has a FNN network architecture which is optimized for next neighbor
communication as described in section ??. LESTool scales even better on KLAT2
than it does on KFC1 for all three test cases as shown in figure 5.8. Note that a
similar effect caused by uneven load splitting can be seen on this machine as well.
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Figure 5.8: Speedup on KLAT? for the 643, 128 and the 196° cases




Chapter 6

DNS of homogeneous turbulence

6.1 Creation of initial conditions




Chapter 7

DNS of turbulent channel flow

is paper were based on a direct numerical ulation
oped channel flow reported in [?]. The flow has two penodic
y direc-
s number based on the wall shear velc 5 — i p
= 150, where H is half the channel width. The streamwise
ons of the channel are 47 H and 27 H, respectively. The
ed out on a grid using 200x121x200 grid points in 2,
ow field is initialized with a laminar solution and r
perimposed on the pressure field. The governing equations are
od in time until a statistical equilibrium is reached (Z 2./ H > 30)
velocity, u* = u/u., plotied against di-
y v/, Also shown in this figure is the com-
1 of the predicted mean velocity profile against the data cited in [?] for
the same Revnolds number. The dotted line represents the desirable profi
the viscous sublayer, 4™ = 7, and the dashed line denotes the lo
ut =k )/0.41 + 5.2. The figure shows that the current mean velocity pro-
file matches the data of Kimetal. [?] very well. The comparison of the tms values
as shown in fieure 7.2 of the velocity shows good agreement with the data of Kim

et al
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v_rms, w_rms

u_rms,

-

—— u_ms LESTool
v_rms LESTool
—— w_rms LESTool
Ou_rms Kim et.al
Ov_rms Kim et. al
Ow_rms Kim et al

Figure 7.2: Comparison of RMS values
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Cylinder Flow




Chapter 9

Cascade simulations

ure 9.1: 2D view of the grid

plane in figure
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Re = 25000

Re = 50000

anc is shown.
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Figurc 9.3: Contour surface of initial velocity disturbance

iy

Figure 9.4: Contour surface of initial velocity disturbance

Re=50000
Ma=0.08

P




®Inoue, O. and Yamazaki, T., “Secondary vortex
streets in two-dimensional cylinder wakes,” Fluid
Dynamics Research, vol. 25, 1999, pp. 1-18.

Ve

(b)

Fig. 1 Schematic diagrams for integration areas. (a)
convective fluxes, and (b) diffusive fluxes.

Fig. 2 A schematic diagram of cell-centered partitioning
approach

Fig. 3(a) Partitioned triangular mesh for 2D flow over a
circular cylinder

< B %
praae 2 amnabes

Fig. 3(b) Load-balance distribution on each node in
parallel computation

Fig. 3(c) Partitioned tetrahedral mesh for 3D flow over
a circular cylinder
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Fig. 4 Schematic diagram of laminar incompressible
flow past flat plate
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Fig. 8(b) The v-velocity contour plot for two-
dimensional driven cavity flow at Re=400.
Figure 9(b) The v-velocity profile at the vertical
centerline of z=0.5 plane with present results, Ku’s and
Shu’s results.
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Fig. 8(c) Streamline plot for two-dimensional driven
cavity flow at Re=400.
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Figure 9(a) The u-velocity profile at the horizontal
centerline of z=0.5 plane with present results in
hexahedral and tetrahedral meshes, and also Ku’s and
Shu’s results.




Figure 10(a)-(c) The velocity vector and (d)-(f) pressure
contours from present results with hexahedral mesh at

2=0.5, x=0.5, and y=0.5 planes respectively.

(-20,15) outflow (60,15)
y no-slip wall
inflow | 4 /
u=1,
v=0, 1 @‘ x outflow
w=0 ! D=1
| |
(-20,-15) outflow (60,-15)

Fig. 11 Schematic diagram of flow over a circular
cylinder with dimensions and boundary conditions
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Fig. 12 C_ and Cp history plots of two-dimensional
simulation for (a) Re=100, (b) Re=200, (c) Re=300, and
(d) Re=1000.

Fig. 14 Vorticity component contours for three-
dimensional simulation at y=0 plane, where (a)-(c) o,
o, and o, for Re=100 and (d)-(f) o, o, and o, for
Re=200.

(d)

Fig. 13 Vorticity contours for two- dimensional
simulation. (a)Re=100, (b)Re=200, (c)Re=300, and
(d)Re=1000.
Fig. 15 The iso-surface of vorticity magnitude for Re =
200 from present three-dimensional simulation result.
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Abstract

A center pressure based method is presented in
this paper, and which has been implemented into a new
two/three-dimensional parallel unstructured CFD code,
UNCLE, which is developed at the University of
Kentucky to meet the challenges of physical problems
with complex geometries and complicated boundary
conditions while maintaining high computational
efficiency. Good load balancing across computational
nodes is achieved by using METIS. In order to
demonstrate the accuracy and performance of center
pressure based method, several test cases are presented
for validation such as two-dimensional incompressible
flow past a flat plate, two/three- dimensional driven
cavity flow, and two/three- dimensional flow over a
circular cylinder. Notably, an extensive qualitative and
quantitative study of two-dimensional flow over a
circular cylinder for low Reynolds number is also
presented in this paper.

1 Introduction

Continual improvements in computer
technologies and computational fluid dynamics (CFD)
algorithms have established CFD codes as a reliable
tool for fundamental research or industrial applications.
To deal with increasing grid sizes and demands for
faster output, parallel computation of CFD has become
a standard approach. To deal with the different
challenge presented by some physical problems with
complex geometries and complicated boundary
conditions is now approached through unstructured
CFD grids due to their ability to smoothly conform to
complicated  boundaries. = However,  combining
unstructured grids with a parallel code presents still
other challenges, such as achieving well-balanced grid
decomposition on a distributed system and efficient
parallel performance. In order to meet these challenges,
a center pressure based method has been implemented
into a new parallel unstructured CFD code called
UNCLE, which has been developed at the University of

Kentucky. UNCLE is designed to meet the challenges
of using unstructured grid codes on high-performance
parallel computers. It is a two/three-dimensional finite
volume unsteady incompressible Navier-Stokes solver
with center pressure based SIMPLE algorithm with
second order accuracy in both time and space. To
increase flexibility in complex geometries, center
pressure based method is extended to use a variety of
grid types, such as triangular, quadrilateral, tetrahedral,
and hexahedral meshes. To obtain good load balancing
across computational nodes, METIS [1] is applied for
domain decomposition. METIS is a set of programs for
partitioning graphs and finite element meshes, and for
producing fill-reducing orderings for sparse matrices.
The algorithms implemented in METIS are based on
multilevel graph partitioning schemes. The key features
of METIS include extremely fast partition, high quality
partitions, and low fill orderings. The parallel
construction of UNCLE is based on message passing
interface (MPI) protocols and has worked successfully
on systems ranging from commodity PC clusters up to
traditional supercomputers. In order to demonstrate the
accuracy and performance of center pressure based
method, several test cases are presented for validation
such as two-dimensional incompressible flow past a flat
plate, two/three-dimensional driven cavity flow, and
two/three-dimensional flow over a circular cylinder.

2 Numerical Methods

A center pressure based method for two/three-
dimensional finite volume unstructured incompressible
Navier-Stokes solver for steady/unsteady flow fields is
presented in this paper. It is center pressure based
SIMPLE algorithm with second order accuracy in both
time and space. In order to compute numerical flux on
interfaces, a second order upwind scheme is adopted to
compute advection terms and second order central
difference scheme is used for diffusion terms. Non-
staggered grids with the Rhie and Chow momentum
interpolation method [2] is employed to correct the
checkerboard solution in the SIMPLE scheme.




2.1 Governing equations

The governing equations for unsteady incompressible
viscous flow under the assumption of no body force and
heat transfer are as below.

Conservation of Mass
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Conservation of Momentum
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Conservation of Energy
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where pis density, p is pressure, u; is component of
velocity vector, n; is unit normal vector of the interface,

T; is tensor of shear force, and specific internal energy

E=e+1(@’ +v’ +w?). Notably, density is constant for

incompressible flow.

2.2 Convective and diffusive fluxes

Figure 1(a) shows the schematic diagram for integration
area for convective fluxes. By using Taylor series
expansion, flow properties on the interface can be
obtained by Eq. (3).
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where ¢ stands for the velocity components and
pressure, the superscript RHS and LHS denote the
approximation from the right-hand side and left-hand
side of the interface respectively, and HOT represents
higher order terms. By substituting Eq. (3) into Eq. (4),
interfacial flow properties ¢, can be obtained.
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The gradients at the nodal points (cell centers) are
evaluated by the Gauss’s divergence theorem as below.
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where N is the total number of interfaces of the cell
and V denotes the volume of the control volume cell.
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The schematic diagram for diffusive fluxes is shown in
Fig 1(b). The gradients at the interface can be evaluated
by using Chain rule as Eq. (6).
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where the local coordinate system(&,n,¢)is defined by
the type of mesh separately.

For triangular mesh in Fig. 1(b), £ is the vector form
nodal point P; to P,, 7 is the vector from vertex V; to
V,, and Q is the integration area for diffusive fluxes.
The diffusive fluxes can be approximated by Eq. (7).
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where ¢p; denotes the properties at nodal points and ¢;
denotes the properties at vertices.

The values of vortices are obtained by averaging
surrounding nodal value, in which inverse distances
from all surrounding nodal points are considered as
weighted function.

2.3 Center pressure based SIMPLE algorithm

By using an initial pressure field, P", we can obtain u",
v", and w" by solving the momentum equations in an
uncoupled form. The momentum equations can be
written in the form as Eq. (8).
aAu= Z a,,Au+ RHS,
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where the coefficients a,, and a, are
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where subscript ¢ denotes the cell we are solving,
subscript nb denotes the neighbor cells, and 4 denotes
the interfacial area. In this paper, we solve Eq. (8) by
using Gauss-Seldcl method. Then, we can obtain u’, v ,
and w’ by Eq. (9).

u =u"+Au

v =v"+Av &)

w =w+Aw

Although at this stage u* v* and w" satisfy the
momentum equations, they do not necessarily satisfy
the continuity equation. In order to satisfy the mass
conservation, one has to interpolate the velocity to the
interface.

However, this interpolation will lead to the
checkerboard solutions. In order to avoid the
checkerboard solutions, one has to allow the interfacial
velocity to be driven solely by the pressure difference.
To achieve this aim without sacrificing the accuracy,
one can divide the interpolated interfacial velocity into
two components: one is the velocity component without
the pressure contribution and the other is solely the
pressure contribution. The former, which is at the cell
center, can be written as:
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The latter is obtained directly from the pressure
difference of the two adjacent nodal points, P, and P,
such that the interfacial velocity can be expressed as:

N\ ¥V (1)
£

Where F; and a; are obtained by interpolation to the
interface.

We further assume that there are corrections to s , v/,
and w,, such that the continuity equation can be
satisfied by using Eq. (12).
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We can rewrite Eq. (12) as
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where the right-hand side in Eq. (13) represents the
mass imbalance in the control volume cell.

One assumes there is a corresponding pressure
correction field, p’, which drives the velocity
corrections according t0‘
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By substituting the velocity correction equations into
the equation for the mass imbalance, we can obtain the
equations of the pressure correction:
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were a,, and a. in the continuity equation are
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Once the pressure correction is obtained, one can
update the pressure field by:

prul 558 pn+appy (16)

where @, is the under-relaxation factor for pressure and
is generally with a value of 0.5-0.8. Then the velocity




correction on the interfaces as well as nodal points will
be updated.

2.4 Partitioning approach

Figure 2 shows the schematic diagram of partitioning
approach for center pressure based method, which is
also implemented into UNCLE. In Fig. 2, blue points
indicate vertices, red points indicate nodal points, and
white points indicate the boundary points. By using this
approach, the control volumes on the boundary are not
split. Only communication of nodal values is needed for
parallel computation which makes the implement of
MPI in an unstructured grid more straightforward.

Excellent load balancing between the subgrids on
each node is achieved through using METIS for domain
decomposition. METIS can partition an unstructured
grid into any integer number of zones without losing
load balance. It is compatible with many platforms,
convenient for running CFD codes on a variety of
supercomputer to cluster architectures. Present
partitioning approach has been tested by a number of
two/three-dimensional geometries. All results show
good load balances. In order to demonstrate the
capability of this partitioning approach, this paper will
present two cases—one is the grid for two-dimensional
flow over circular cylinder in triangular mesh, and the
other is the grid for three-dimensional flow over a
circular cylinder in tetrahedron mesh. The definition of
load-imbalance rate Lj; and load-balance rate Lp in
this paper is defined as Eq. (17) and (18).
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where Moz is grid size of the node and N, is the
average grid size. By using load balance rate, we can
compare the load balance quantitatively.

Figure 3(a) shows the partitioned grid for 2D flow over
a circular cylinder in triangular mesh. The number of
total grid points is 51,363 and the number of total cells
is approximately 0.1M. The grid is partitioned to 16
zones for parallel computation. The cell distribution is
not uniform, denser near the cylinder and coarser away.
The load-balance distribution on each node is shown in
Fig. 3(b). The x-axis indicates the node number and the
y-axis indicates load-balance rate. The resulting load-
balance rates are very close to 100% on every node
with an average load balance rate of 98.37%. Figure
3(c) shows a partitioned grid for three-dimensional flow
over circular cylinder with the internal grid distribution
visible in a cut-away. The number of total grid points is
approximately 0.3M and the number of total cells is
approximately 1.3M. In this case, the grid is partitioned
to 32 zones. The average load-balance rate is 97.9%.
Our test results show that present partitioning approach

has excellent load balance in two/three-dimensional
grids with various types of meshes by using METIS for
domain decomposition.

2.5 Time discretization

In this paper, a second-order fully implicit scheme is
employed for the temporal discretization. In here, we
take a one-dimensional equation example:
3¢ml_4¢n+¢n~l+@*(¢n+l)=0 (]9)
2At ox
where ¢ is primitive variable, f is interfacial flux, and
the superscript » indicates the index in time. A deferred
iterative algorithm is employed to obtain ¢/ by
substituting (20) into (19),
(¢"H)™ =(¢"")" +(a9)" (20)
where the subscript m stands for the sub iteration level.
The final equation is
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The right-hand-side of Eq. (21) is explicit and can be
implemented in a straightforward manner to discretize
the spatial derivative term. The deferred iterative
algorithm is strongly stable, and the solution ¢/ is
obtained by wusing inner iterations to reach the
convergent solution of the right-hand-side of Eq. (21),
which means Ag is approximate to zero. A sub-iteration
is performed at every time step so that this method is
fully implicit.

3 Results

3.1 Two-dimensional laminar incompressible flow past
a flat plate

In this case, two-dimensional laminar incompressible
flow past a flat plate is simulated. The schematic
diagram including geometry and boundary conditions is
shown in Fig. 4. A uniform free stream boundary
condition is imposed on the inlet. Because of the
viscous effect, the laminar boundary layer begins to
grow at the position x=0 on the plate. The initial
condition for the entire computational domain is
uniform free stream. A quadrilateral mesh of 600x200
is used for both Reynolds number (Re) at 5,000 and
50,000 based on a non-dimensional length scale of
unity. The minimum distance from the wall is 5x10°
(corresponding to y'=0.1) which is fine enough to
capture the phenomena within the boundary layer. In
this case, the computational domain is divided into 16
zones. The parallel computation is performed on
KFC3a, a 16 nodes PC cluster with Pentium IV 2.4




GHz CPU and gigabit network developed at the
University of Kentucky. The results of this computation
are compared to the standard Blasius solution for a
laminar flat-plate boundary layer. Figure 5(a) shows the
n= yﬂ /x versus u/U plot at x=4.5 from present

results for Re=5,000 and 50,000 in comparison with
Blasius solution. Both present results are good
agreement with Blasius solution. Figure 5(b) shows the
plot of momentum thickness (Reg) versus coefficient of
skin friction (c) with present results and Blasius
solution. Good agreement is obtained by comparing our
present results with Blasius solution.

3.2 Two-dimensional driven cavity flow

In this section, two-dimensional incompressible flow in
a square cavity at a Reynolds number of 400 is
simulated. The fluid in the cavity is driven by a moving
top with constant speed. Because driven cavity flow
lacks an exact solution, an existing accurate numerical
solution for this problem is used as a benchmark for
comparing our results. Ghia et al. [3] presented
numerical studies using the vorticity-stream function
formulation for solutions up to Re=10,000 with
257x257 grid points, and these simulation results have
been widely used as a benchmark for the driven cavity
problem. The schematic diagram of this case with
geometry and boundary conditions is shown in Fig. 6.
The initial condition for the entire computational
domain is stationary everywhere. In order to compare
Ghia’s results, the number of grid points used is
257x257 or 66,049 and 65,536 cells are used in a
quadrilateral mesh. For a triangular mesh, 66,546 cells,
which is approximately the same as quadrilateral mesh,
and 33,618 grid points are used in our computation.
Figure 7(a) shows the u-velocity profile along the
horizontal center line for both present results with
quadrilateral and triangular mesh and Ghia’s result.
Both present results are in good agreement with Ghia’s
result. It also shows the present solution is identical and
is independent of mesh types. Figure 7(b) shows the u-
velocity profile along the horizontal center line; again,
the results match. Figure 8 presents the u- and v-
velocity contours and streamline plot from the present
results on the quadrilateral mesh. In Fig. 8(a), the u-
velocity contours ranges from -0.33 to 1.0 with 100
intervals. Solid lines indicate the positive values and
dashed lines negative ones. In Fig. 8(b), the v-velocity
contours ranges from 0.64 to 0.31 with 100 intervals.
The flow structures including the location of the major
vortex center, the bubble in the right bottom corner, and
a small bubble in the left bottom corner are shown
clearly in Figure 8(c), and are in good agreement with
the results of Ghia.

3.3 Three-dimensional driven cavity flow

The three-dimensional version of the preceding
problem is also a standard case for a new flow solver.
In 1987, Ku et al. [4] simulated three-dimensional flow
in a cubic cavity by using pseudospectral methods to
solve the Navier-Stokes equations for Re = 100, 400,
and 1000. In 2003, Shu et al. [5] repeated this problem
by using the SIMPLE algorithm with the differential
quadrature (DQ) method. They simulated the three-
dimensional driven cavity flow at Re = 100, 200, 400
and 1000 and compared their results with Ku’s results.
In this section, we simulated this problem at Re = 400
and compared our results with those of Ku and Shu. In
order to validate the results with different meshes, two
grids are used to study this problem. One is a
hexahedral mesh with 67x67x67 grid points and
287,496 cells, and the other is a tetrahedral mesh with
79,951 grid points and 446,953 cells. The geometry of
this problem is a unit cube. The boundary condition at
the y = 1 plane is uniform flow with u=1, v=0, and
w=0, and all other boundary conditions are no-slip
walls. The initial condition for the entire computational
domain is stationary. Figure 9(a) shows the u-velocity
profile at the horizontal centerline of the z = 0.5 plane
for the present hexahedral and tetrahedral mesh results
as well as those of Ku and Shu. Figure 9(b) shows the
v-velocity profile at the vertical centerline of z= 0.5 for
the same set of simulations. Both present simulations
show essentially identical solutions, and both are in
good agreement Ku and Shu. Figure 10 shows the
velocity vectors and pressure contours taken from the
present simulation using the hexahedral mesh on the
7z=0.5, x=0.5, and y=0.5 planes respectively. As before,
for the pressure contours dashed lines mean negative
values. The established flow structures including the
locations of the vortex center and the positive and
negative regions in each plane are clearly visible and in
good agreement with Ku’s and Shu’s results.

3.4 Two/Three-dimensional incompressible flow over a
circular cylinder

Flow over a circular cylinder is a standard unsteady test
problem. Many two-dimensional numerical studies
have been done on this flow. In 1990, Rogers and Kwak
[6] studied flow over a circular cylinder for Re = 200
using an upwind differencing scheme to solve the
incompressible ~ Navier-Stokes  equations. ~ They
compared their results, which were obtained using 3rd
order and 5th order upwind differencing schemes, with
computational and experimental results. In 1995, Ku [7]
studied this problem for Reynolds numbers 100, 250,
500, and 1,000 using a pseudospectral element method.
Alonso et al. [8] studied the vortex shedding over a
circular cylinder at Re = 500 with a multigrid unsteady
Navier-Stokes solver with a flux-limited dissipation




scheme in 1995. In 1998, Liu et al. [9] used
preconditioned multigrid methods to study unsteady
incompressible flows. They investigated flow over a
circular cylinder at Re = 200 and their results was in
good agreement with other computational and
experimental results. In 1999, Ronald et al. [10]
reported their results for this problem at Re = 300 using
the NASA FUN2D code. A final example of two-
dimensional cylinder flow simulation is the work of
Qian and Vezza [11] studied flow over a circular
cylinder problem at Re = 1000 with a vorticity-based
method in 2001.

Examples of three-dimensional numerical studies of
flow over a circular cylinder are the studies of Braza
and Persillon [12] and Henderson [13]. There are also
many experimental studies of flow over cylinder
problems such as Roshko [14], Wille [15], and
Williamson [16], [17]. According to Williamson [16],
the phenomena of flow over a circular cylinder can be
classified by Reynolds number. Williamson found the
laminar vortex shedding region to occur for Reynolds
numbers between 49 and 140-194. The three-
dimensional wake transition region occurs for Re ~ 190
to 260. For the range between Re= 260 ~ 1000, the
three-dimensional disorder of the wake begin to
increase in at the fine scales. This evolves into the
shear-layer transition regime for Reynolds numbers
1,000 up to 20,000. He also noted that three-
dimensional effects occur for Re > 190. Further detailed
explanations of the remaining regimes are reported in
Williamson [16]. To date, most numerical studies about
this problem only focused on a single Reynolds number
and either two-dimensional or three-dimensional
simulations exclusively. The current results encompass
Reynolds numbers 100, 200, 300, 500, 1,000, and 1500
for two-dimensional simulations and 100 and 200 for
three-dimensional simulations. These results are
compared with the appropriate previous studies as well
as current results cross-comparisons to examine the
dimensional and flow regime effects.

Figure 11 shows a schematic diagram for flow over a
circular cylinder with dimensions and boundary
conditions. For three-dimensional simulation, the span
of the cylinder is 10D, with D representing the
reference length equal to the diameter of the cylinder.
The boundary conditions at z = 0 and z = -10D are
periodic, eliminating end effects. The initial condition
for the entire domain is uniform flow as inflow for all
simulations and the time step is 0.005 for all cases. The
grid for two-dimensional simulations is a quadrilateral
mesh with 22705 cells and 22925 grid points; for three-
dimensional simulation, a hexahedral mesh with 1.13M
cells and 1.17M grid points is used. Both grids are
densely distributed near the cylinder and wake region
and coarser near the outer region. All of the two-
dimensional simulations are performed on the KFC3a

cluster with 16 nodes, and all three-dimensional
simulations are performed on KFC2, a 48 node
commodity cluster with AMD Athlon 2000+ CPU and
a channel-bonded network. It is noted that each three-
dimensional simulation took approximately one week
with 32 nodes on KFC2. Figure 12 presents the
coefficient of Lift (C;) and the coefficient of drag (Cp)
unsteady histories of the present two-dimensional
simulations for Re = 100, 200, 300, and 1,000
respectively. The Strouhal number (S,) for these data
sets is derived from the frequency of C,. In our
simulations, higher Reynolds number cases achieve
steady Strouhal numbers faster than lower Re cases,
consistent with other computational results. Table 1
presents the summary of our present two- and three-
dimensional results along with other computational and
experimental results. As shown in Table 1, our current
results show good agreement with previous data by
comparing S,, C;, and Cp. Fig. 13 shows the two-
dimensional vorticity contours for Re = 100, 200, 300
and 1000. In Fig. 13, the contours are range from -0.3
to 0.3. The three-dimensional ®, contours from the
current simulations are similar to those generated by the
two dimensional test cases. As seen in Fig. 13, the
vortex shedding frequency increases as Re increases.
For Re = 100, the vortices decay in the downstream.
Because of the limited computational domain, we do
not see the vortex structures merge to large scale
vortices in our simulation. For Re = 200, 500 and 1000,
not only does the vortex strength decay, but also the
vortex structures collapse in the far downstream and
start to merge to large scale vortices. This same
phenomenon is reported by Inoue and Yamazaki [18].

Figure 14(a)-(c) show the present three-dimensional
results of w,, 0, and w, for Re = 100 and (d)-(f) for Re
= 200 in the y = 0 plane. The contours of o, and wy
range from -0.0005 to 0.0005 for Re = 100 and from -
0.02 to 0.02 for Re = 200, and the contours of ®, range
from -0.3 to 0.3 for both cases where bright regions
correspond to positive values and dark regions
correspond to the negative values. Obviously, the
magnitude of ®, is much larger than the magnitudes of
o, and o,. For Re = 100, we can see that the magnitude
of o, decreases in the upstream and the local minimum
appears at the position of 5th “roll” in Fig. 14(a). After
that, the magnitude of w, begins to grow. In Fig. 14(b),
the magnitude of w, grows after the flow past the
cylinder. The thickness of the vortex “roll” increases
downstream. From Fig. 14(c), the magnitude of o,
decays after the flow past the cylinder due to the energy
dissipation. Because the three-dimensional effects are
very weak at Re = 200, the three-dimensional outcome
is very similar to two-dimensional case. For Re = 200,
as seen from Fig. 14(d), the magnitude of o, decreases
in the beginning and the local minimum also appears




near the Sth “roll”. In the far downstream, a transition
zone is observed, after which the vortex scales transit
from small to large scales. In Fig. 14(e), unlike Fig.
14(b), wavy vortex structures are observed. Figure 14(f)
shows that w, decays after the flow past the cylinder.
Figure 15 shows the iso-surface of vorticity magnitude
for Re = 200 from the present three-dimensional
simulation result. The flow structures, especially the
vortex streets in the wake regions, observed in our
present results are in good agreement with other
simulation results.

4 Conclusions

A center pressure based method is presented in this
paper, and which has been implemented successfully to
a new two/three-dimensional parallel unstructured
incompressible Navier-Stokes solver, UNCLE, which
has been developed at University of Kentucky.
Implementation of using different types of meshes with
center pressure based method is feasible and
straightforward. In order to increase flexibility in
complex geometries, center pressure based method has
been extended to use a variety of grid types, such as
triangular, quadrilateral, tetrahedral, and hexahedral
meshes. Mesh independent tests are also made to prove
that current method can generate identical solutions for
different mesh types. By using METIS for domain
decomposition, excellent parallel load balance is
achieved. In this paper, several test cases are
presented—laminar incompressible flow past a flat
plate, steady two/three-dimensional driven cavity flow,
and unsteady two/three-dimensional flow over a
circular cylinder for low Reynolds numbers. All these
test cases yielded good agreements in comparison with
previous computational or experimental results. A
complete qualitative and quantitative study of two-
dimensional flow over a circular cylinder for low
Reynolds number is presented in this paper, which can
be further used as a benchmark solution set for the
development of new unsteady Navier-stokes solvers.
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Fig. 5(a) Plot of 77 versus u/U at x=4.5 with present
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Fig. 5(b) The plot of Reg versus c; with present results

and Blasius solution
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Fig. 6 The schematic diagram of two-dimensional

No-slip wall BC

driven cavity flow with boundary conditions
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Fig. 7(a) The u-velocity profile along the horizontal
center line for present results and Ghia’s result.
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Fig. 8(a) The u-velocity contour plot for two-
dimensional driven cavity flow at Re=400.



Table 1 Summary of present results and other computational and experimental results

Re 100 200 300 500 1000 1500
Present C =%0.314 C,=40.642 C=10.869 C=%1.115 C =£1.378 Cp=%1.553
2D results Cp=1.325+0.008 Cp=1.318+0.04 Cp=1.35440.072 Cp=1.40610.119 Cp=1.489+0.198 Cp=1.57540.247
S=0.165 S$=0.196 S=0.21 S=0.224 S$=0.239 S=0.246
Present C=10.322 C=10.664
3D results Cp=1.32710.009 Cp=1.32410.042
S=0.164 S=0.195
Computational 2D results
Rogers and C=10.65
Kwak [6] Cp=1.2320.05
(5"' order) S=0.185
Alonso et al C =t1.046
] Cp=1217
S=0.224
Ku [8] C,=10228 C,=+1.03 C=+1.242
Cp=133~1.358 Cp=1.212~1.481 Cp=1.187~1.651
S=0.1675 S$=0.2203 S$=0.2326
Liuetal. [9] C=10.69
Cp=1.3110.049
S=0.192
Ronald et al C=10.841
[10] Cp=1.34
S=0.2036
Qian and Vezza Cp=1.52
[11] $=0.24
Computational 3D results
Braza and S$=0.202
Persillon [12]
Henderson [13] S=0.178
Experimental results
Roshko [14] S=0.19 Cp=1.2
S=0.21
Wille [15] Cp=13
Williamson $=0.166 $=0.203
[16]
Williamson S=0.197
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