A SUPERIOR KIRCHHOFF METHOD FOR AEROACOUSTIC NOISE PREDICTION: The Ffowcs Williams–Hawkings equation

Kenneth S. Brentner
NASA Langley Research Center

Presented at the 134th Meeting of the Acoustical Society of America, San Diego, CA, December 1-5, 1997
Introduction

- Prediction of aeroacoustic noise important
 - all new aircraft must meet noise certification requirements
 - local noise standards can be even more stringent
 - NASA noise reduction goal: reduce perceived noise levels by a factor of two in 10 years

- Several prediction methods available
 - direct computation
 - CFD based methods
 - near field only
 - best coupled with integral method for far-field prediction
 - Acoustic Analogy (Ffowcs Williams–Hawkings Equation)
 - Kirchhoff formula

- Confusion over relationship between methods exists
Comments on Integral Methods

- Technology
 - acoustic formulations and algorithms mature
 - widely used for rotating blade noise prediction
 - potentially useful for airframe noise, engine noise, etc.
 - flow field computation feasible in many cases
 - required for input data
 - provided by CFD
 - high quality experiments aid validation

- This talk will demonstrate the superiority of the FW–H approach over the Kirchhoff method for aeroacoustics
 - analytically
 - numerically
Advantages and Disadvantages

■ FW–H method
 + three source terms (thickness, loading, quadrupole) have physical meaning
 + three source terms are independent
 + mature and robust algorithms
 - quadrupole source is a volume source (more computational resources needed when volume integration included)

■ Kirchhoff method
 + surface sources (only surface integration required)
 + applicable to problems described by the wave equation
 - source terms not easily related to flow physics or design parameters
 - not as much experience with algorithms for Kirchhoff problems

■ Analytical/Numerical comparison needed
Analytical Comparison: FW–H Derivation Procedure

- Embed exterior flow problem in unbounded space
 - define generalized functions valid throughout entire space
 - interpret derivatives as generalized differentiation

\[\tilde{\rho} = \begin{cases} \rho & f > 0 \\ \rho_o & f < 0 \end{cases} \]
\[\rho u_i = \begin{cases} \rho u_i & f > 0 \\ 0 & f < 0 \end{cases} \]
\[\tilde{P}_{ij} = \begin{cases} P_{ij} & f > 0 \\ 0 & f < 0 \end{cases} \]

- Generalized conservation equations:

\[\frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = (\rho \frac{\partial f}{\partial t} + \rho u_i \frac{\partial f}{\partial x_i})\delta(f) \quad \text{continuity} \]

\[\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{\partial \tilde{P}_{ij}}{\partial x_j} = (\rho u_i \frac{\partial f}{\partial t} + (\rho u_i u_j + P_{ij}) \frac{\partial f}{\partial x_i})\delta(f) \quad \text{momentum} \]
Analytical Comparison: FW–H Derivation Procedure

- Manipulate conservation laws into form of inhomogeneous wave equation

\[\square^2 p'(\vec{x}, t) = \frac{\bar{\partial}^2}{\partial x_i \partial x_j} \left[T_{ij} H(f) \right] \]

\[- \frac{\partial}{\partial x_i} \left[(P_{ij} \hat{n}_j + \rho u_i (u_n - v_n)) \delta(f) \right] \]

\[+ \frac{\partial}{\partial t} \left[(\rho_o v_n + \rho (u_n - v_n)) \delta(f) \right] \]

- Don’t assume integration surface \(f=0 \) is coincident with body
 - given in this form by Ffowcs Williams
 - demonstrated for rotors by di Francescantonio; Brentner & Farassat
Analytical Comparison: Kirchhoff Derivation Procedure

- Use embedding procedure on wave equation
 - define generalized pressure perturbation:
 \[\tilde{p}' = \begin{cases}
 p' & f > 0 \\
 0 & f < 0
 \end{cases} \]

 - use generalized derivatives
 - generalized wave equation is Kirchhoff governing equation:
 \[
 \Box^2 p'(\bar{x}, t) = -\left(\frac{\partial p'}{\partial t} \frac{M_n}{c} + \frac{\partial p'}{\partial n} \right) \delta(f) - \frac{\partial}{\partial t} \left(p' \frac{M_n}{c} \delta(f) \right) - \frac{\partial}{\partial x_i} (p' \hat{n}_i \delta(f))
 \]
 \[\equiv Q_{kir} \]
Source Term Comparison

- Manipulate FW–H source terms into form of Kirchhoff source terms (inviscid fluid)

\[\Box^2 p'(\vec{x},t) = Q_{\text{kir}} + \frac{\partial^2}{\partial x_i \partial x_j} [T_{ij} H(f')] \]

\[- \frac{\partial}{\partial x_j} [\rho u_i u_j] \hat{n}_i \delta(f) - \frac{\partial}{\partial x_j} [\rho u_i u_n \delta(f)] \]

\[+ \frac{\partial}{\partial t} [p' - c^2 \rho'] \frac{M_n}{c} \delta(f) + \frac{\partial}{\partial t} \left((p' - c^2 \rho') \frac{M_n}{c} \delta(f) \right) \]

- Extra source terms are 2nd order in perturbations quantities
- FW–H and Kirchhoff source terms
 - equivalent in linear region \((p' \approx c^2 \rho' \ u_i \ll 1) \)
 - NOT equivalent in nonlinear flow region
Inte\nal Formulation of FW–H equation

- New variables put FW–H equation into standard form
 \[Q = \rho u_n - \rho' v_n; \quad L_i = P_{ij} + \rho u_i (u_n - v_n) \]
 hence
 \[\Box^2 p'(\vec{x}, t) = \frac{\partial^2}{\partial x_i \partial x_j} [T_{ij} H(f)] - \frac{\partial}{\partial x_i} [L_t \delta(f)] + \frac{\partial}{\partial t} [Q \delta(f)] \]

- Integral representation of solution (formulation 1A)
 \[4\pi p'(\vec{x}, t) = \int_{f=0} \left[\frac{\dot{Q} + \dot{L}_r / c}{r(1 - M_r)^2} \right]_{\text{ret}} dS + \int_{f=0} \left[\frac{L_r - L_M}{r^2 (1 - M_r)^2} \right]_{\text{ret}} dS \]
 \[+ \int_{f=0} \left[\frac{(Q + L_r / c)(r\dot{M}_r + c(M_r - M^2))}{r^2 (1 - M_r)^3} \right]_{\text{ret}} dS \]
Kirchhoff Formulation for Moving surfaces

Kirchhoff integral formulation

\[4\pi p'(\tilde{x}, t) = \int_{f=0}^1 \left[\frac{E_1}{r(1 - M_r)} \right]_{ret} dS + \int_{f=0}^1 \left[\frac{p'E_2}{r^2(1 - M_r)} \right]_{ret} dS \]

where

\[E_1 = \left(M_n^2 - 1 \right) \frac{\partial p'}{\partial n} + M_n \vec{M} \cdot \nabla \hat{r} p' - \frac{M_n}{c} \hat{p}' \]

\[+ \frac{1}{c(1 - M_r)} \left[(\hat{n}_r - \hat{M}_r - \hat{n}_M) p' + (\cos \theta - M_n) \hat{p}' \right] + \frac{1}{c(1 - M_r)^2} \left[\hat{M}_r (\cos \theta - M_n) p' \right] ; \]

\[E_2 = \frac{(1 - M^2)}{(1 - M_r)^2} (\cos \theta - M_n) \]
Numerical Comparison

- Kirchhoff code (RKIR)
 - numerical implementation of Kirchhoff integration
 - code developed for helicopter rotors (Purdue/Sikorsky/NASA LaRC)

- Prototype code developed (FW–H/RKIR)
 - based on RKIR (Rotating Kirchhoff code - rotor noise prediction)
 - utilizes Farassat’s formulation 1A
 - quadrupole source neglected; could be included

- Cases for comparison
 - hovering rotor
 - rotor in forward flight
 - viscous flow over a circular cylinder
Numerical Comparison: UH-1H hovering rotor

- **UH-1H rotor**
 - 1/7th scale model
 - untwisted blade
- **Test setup (Purcell)**
 - Hover, $M_H = 0.88$
 - inplane microphone, 3.09 R from hub
- **Flow-field computation**
 - full potential flow solver used (FPRBVI)
 - 80 x 36 x 24 grid (somewhat coarse)
Numerical Comparison: Sensitivity to Surface Placement

A principal advantage of the FW–H approach is insensitivity to surface placement.

Kirchhoff

FW–H

(Note difference in pressure scales)
Identification of Noise Components

- Compare components from off FW–H/RKIR with WOPWOP+
 - UH-1H rotor in hover
 - Hover solution from TURNS (Baeder)
- Two predictions necessary with FW–H/RKIR
 - thickness and loading from surface coincident with rotor blade
 - total signal from a surface approximately 1.5 chords away from blade.
- New application of FW–H equation retains advantage of predicting noise components
Numerical Comparison: Forward Flight Case

- **Test setup** (Schmitz et al.)
 - Operational Loads Survey (OLS) 1/7 scale model rotor
 - 3 inplane microphone used for comparison

- **Operating conditions**
 - $M_{AT} = 0.84$
 - $\mu = 0.27$

- **Flow-field computation**
 - flow solver: full potential code for rotors (FPRBVI)
 - 80 x 36x 24 grid
Numerical Comparison: Forward Flight Case

- Advancing-side acoustic pressure underpredicted
- Agreement with data is good
- All three codes agree with each other

NASA Langley Research Center, Hampton, VA
Numerical Comparison: Circular Cylinder Flow

Problem:

- Viscous flow over a circular cylinder
- 2D, unsteady laminar CFD computation, Re = 1000.
- Acoustic calculation 3D, cylinder 40 dia long

Vorticity field from N-S computation

CFD grid 193x97

grid extends out 20 dia.
Noise Generated by Flow Over Cylinder

- Location 128 dia from cylinder, 90 deg from freestream

- FW-H predictions show small sensitivity to surface placement
- Kirchhoff predictions meaningless

NASA Langley Research Center, Hampton, VA
Noise Generated by Flow Over Cylinder

- Location 128 dia from cylinder, downstream

- Differences in FW-H prediction due to:
 - CFD inaccuracy
 - Increased integration error (grid size)

NASA Langley Research Center, Hampton, VA
Conclusions

- FW–H method of choice for aeroacoustic problems
 - conservation of mass and momentum built in
 - unified theory with thickness, loading, and quadrupole source terms
 - insensitive to integration surface placement
- FW–H approach the “better” than linear Kirchhoff because:
 - valid in linear and nonlinear flow regions
 - surface terms include quadrupole contribution enclosed
 - physical noise components can be identified with two surfaces
- The Kirchhoff approach
 - valid only in the linear flow region (not known a priori)
 - input data must satisfy the wave equation
 - wakes and potential flow field can cause major problems
 - solution can be sensitive to placement of Kirchhoff surface