
Distributed-Memory Computing With

the Langley Aerothermodynamic

Upwind Relaxation Algorithm (LAURA)

Christopher J. Riley� and F. McNeil Cheatwoody

NASA Langley Research Center, Hampton, VA 23681

Paper Presented at the
4th NASA National Symposium on Large-Scale Analysis and Design on

High-Performance Computers and Workstations
Oct. 15{17, 1997/Williamsburg, VA

The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-
Stokes solver, has been modi�ed for use in a parallel, distributed-memory environment
using the Message-Passing Interface (MPI) standard. A standard domain decomposition
strategy is used in which the computational domain is divided into subdomains with
each subdomain assigned to a processor. Performance is examined on dedicated parallel
machines and a network of desktop workstations. The e�ect of domain decomposition
and frequency of boundary updates on performance and convergence is also examined for
several realistic con�gurations and conditions typical of large-scale computational
uid
dynamic analysis.

Introduction

The design of an aerospace vehicle for space trans-

portation and exploration requires knowledge of the

aerodynamic forces and heating along its trajectory.

Experiments (both ground-test and
ight) and compu-

tational
uid dynamic (CFD) solutions are currently

used to provide this information. At high-altitude,

high-velocity conditions that are characteristic of at-

mospheric reentry, CFD contributes signi�cantly to

the design because of the ability to duplicate
ight

conditions and to model high temperature e�ects. Un-

fortunately, CFD solutions of the hypersonic, viscous,

reacting-gas
ow over a complete vehicle are both CPU

time and memory intensive even on the most power-

ful supercomputers; hence, the design role of CFD is

generally limited to a few solutions along a vehicle's

trajectory.

One CFD code that has been used extensively for

the computation of hypersonic, viscous, reacting-gas

ows over reentry vehicles is the Langley Aerothermo-

dynamic Upwind Relaxation Algorithm (LAURA).1, 2

LAURA has been used in the past to provide aerother-

modynamic characteristics for a number of aerospace

vehicles (e.g. AFE,3 HL-20,4 Shuttle Orbiter,5 Mars

Path�nder,6 SSTO Access to Space7) and is currently

being used in the design and evaluation of blunt aero-

braking con�gurations used in planetary exploration

missions8, 9 and Reusable Launch Vehicle (RLV) con-

cepts (e.g. the X-3310, 11 and X-3412 programs). Al-

�Research Engineer, Aerothermodynamics Branch, Aero-

and Gas-Dynamics Division.
yResearch Engineer, Vehicle Analysis Branch, Space Systems

and Concepts Division.

though the LAURA computer code is continually be-

ing updated with new capabilities, it is a mature piece

of software with numerous options and utilities that

allow the user to tailor the code to a particular appli-

cation.13

LAURA was originally developed and tuned for mul-

tiprocessor, vector computers with shared memory

such as the CRAY C-90. Parallelism using LAURA is

achieved through the use of macrotasking where large

sections of code are executed in parallel on multiple

processors. Because LAURA employs a point-implicit

relaxation strategy that is free to use the latest avail-

able data from neighboring cells, the solution may

evolve without the need to synchronize tasks. This

results in a very e�cient use of the multitasking capa-

bilities of the supercomputer.14 But future supercom-

puting may be performed on clusters of less powerful

machines that o�er a better price per performance

than current large-scale vector systems. Parallel com-

puters such as the IBM SP2 consist of large numbers of

workstation-class processors with memory distributed

among the processors instead of being shared. In

addition, improvements in workstation processor and

network speed and the availability of message-passing

libraries allow networks of desktop workstations (that

may sit idle during non-work hours) to be used for

practical parallel computations.15 As a result, many

CFD codes are making the transition from serial to

parallel computing.16{20 The current shared-memory,

macrotasking version of LAURA requires modi�ca-

tion before exploiting these distributed-memory par-

allel computers and workstation clusters.

Several issues need to be addressed in creating a

1 of 9

distributed-memory version of LAURA: 1) There is

the choice of programming paradigm to use. A domain

decomposition strategy17 (which involves dividing the

computational domain into subdomains and assigning

each to a processor) is a popular approach to massively

parallel processing and is chosen due to its similarity

to the current macrotasking version. 2) To mini-

mize memory requirements, the current data struc-

ture of the macrotasking, shared-memory version is

changed since each processor requires storage only for

its own subdomain. 3) The choice of message-passing

library (which processors use to explicitly exchange in-

formation) may impact portability and performance.

4) The frequency of boundary data exchanges be-

tween computational subdomains can in
uence (and

may impede) convergence of a solution although the

point-implicit nature of LAURA already allows asyn-

chronous relaxation.14 5) There are also portabil-

ity and performance concerns involved in designing a

version of LAURA to run on di�erent (cache-based

and vector) architectures. 6) Finally, a distributed-

memory, message-passing version of LAURA should

retain all of the functionality, capabilities, utilities,

and ease of use of the current shared-memory version.

This paper describes the modi�cations to LAURA

that permit its use in a parallel, distributed-memory

environment using the Message-Passing Interface

(MPI) standard.21 An earlier, elementary version of

LAURA for perfect gas
ows using the Parallel Vir-

tual Machine (PVM) library22 provides a guide for the

current modi�cations.23 Performance of the modi�ed

version of LAURA is examined on dedicated paral-

lel machines (e.g. IBM SP2, SGI Origin 2000, SGI

multiprocessor) as well as on a network of worksta-

tions (e.g. SGI R10000). Also, the e�ect of domain

decomposition and frequency of boundary updates on

performance and convergence is examined for several

realistic con�gurations and conditions typical of large-

scale CFD analysis.

LAURA

LAURA is a �nite-volume, shock-capturing algo-

rithm for the steady-state solution of inviscid or vis-

cous, hypersonic
ows on rectangularly ordered, struc-

tured grids. The upwind-biased inviscid
ux is con-

structed using Roe's
ux-di�erence splitting24 and

Harten's entropy �x25 with second-order corrections

based on Yee's symmetric total-variation-diminishing

scheme (TVD).26 Gas chemistry options include per-

fect gas, equilibrium air, and air in chemical and ther-

mal nonequilibrium. More details of the algorithm can

be found in Refs. 1, 2 and 13.

The point-implicit relaxation strategy is obtained

by treating the variables at the local cell center L at

the advanced iteration level and using the latest avail-

able data from neighboring cells. Thus, the governing

BLOCKS

PARTITIONS

Fig. 1 Domain decomposition of macrotasking

version.

relaxation equation is

ML�qL = rL (1)

where ML is the n x n point-implicit Jacobian, qL
is the vector of conserved variables, rL is the resid-

ual vector, and n is the number of unknown variables.

For a perfect gas and equilibrium air, n is equal to 5.

For nonequilibrium chemistry, n is equal to 4 plus the

number of constituent species. The residual vector rL
and the Jacobian ML are evaluated using the latest

available data. The change in conserved variables, qL,

may be calculated using Gaussian elimination. An LU

factorization of the Jacobian can be saved (frozen) over

large blocks of iterations (� 10 to 50) to reduce com-

putational costs as the solution converges. However,

the Jacobian will need to be updated every iteration

early in the computation when the solution is changing

rapidly.

Macrotasking

LAURA utilizes macrotasking by assigning pieces of

the computational domain to individual tasks. First,

the computational domain is divided into blocks,

where a block is de�ned as a rectangularly ordered

array of cells containing all or part of the solution

domain. Then each block may be subdivided in the

computational sweep direction into one or more par-

titions. Partitions are then separately assigned to a

task (processor). Figure 1 shows a two-dimensional

(2D) domain divided into 2 blocks with each block di-

vided into 2 partitions. Thus a task may work on one

or more partitions which may be contained in a single

block or may overlap several blocks. Each task then

gathers and distributes its data to a master copy of

the solution which resides in shared memory. With

the point-implicit relaxation, there is no need to syn-

chronize tasks which results in a very e�cient parallel

2 of 9

BLOCK

COMMUNICATION
BETWEEN BLOCKS

BOUNDARY DATA
STORAGE

Fig. 2 Domain decomposition of message-passing

version.

implementation.

Message-passing

In the new message-passing version of LAURA, the

computational domain is again subdivided into blocks

along any of the three (i; j; k) coordinate directions

with each block assigned to a processor. As com-

pared to the macrotasking version, this is analogous

to de�ning each block to contain only one partition

and assigning each partition to a separate task. The

number of blocks is therefore equal to the total num-

ber of processors. Due to the distributed memory of

the processors, each task only requires storage only for

its own block plus storage for boundary data from as

many as six neighboring blocks (i.e. one for each of the

six block faces). Figure 2 shows a 2D domain divided

equally into 4 separate blocks. Each processor works

only on its own block and pauses at user-speci�ed in-

tervals to exchange boundary data with its neighbors.

The boundary data exchange is explicitly handled with

send and receive calls from the MPI message-passing

library.21 The MPI library was chosen because it is

a standard and because there are multiple implemen-

tations that run on workstations as well as dedicated

parallel machines.27, 28 Synchronization of tasks oc-

curs when messages are exchanged, but this exchange

is not required for any particular iteration due to the

point-implicit relaxation scheme. As in the macro-

tasking version, tasks (or blocks) of various sizes may

accumulate di�ering numbers of iterations during a

run. For blocks of equal size, it may be convenient

to synchronize the message exchange at speci�ed iter-

ation intervals.

Results

The performance of the distributed-memory,

message-passing version of LAURA is examined

in terms of computational speed and convergence.

Measuring the elapsed wall clock time of the code on

di�erent machines estimates the communication over-

head and message-passing e�ciency of the code. The

communication overhead associated with exchanging

boundary data information between nodes depends

on the parallel machine, the size of the problem, and

the frequency of exchanges. The frequency of data

exchanges may be decreased if necessary to reduce the

communication penalty, but this may adversely a�ect

convergence. Therefore, the impact of boundary data

exchange frequency on convergence is determined for

several realistic vehicles and
ow conditions.

Computational Speed

Timing estimates using the message-passing version

of LAURA are presented for an IBM SP2, an SGI

Origin 2000, an SGI multiprocessor machine, and a

network of SGI R10000 workstations. The single-node

performance of LAURA on a cache-based (as opposed

to vector) architecture is not addressed. Viscous, per-

fect gas computations are performed on the forebody

of an X-3310, 11 con�guration with a grid size of 64 x 56

x 64. The computational domain is split along each of

the coordinate directions (depending on the number of

nodes) into blocks of equal size. The individual block

sizes are shown below. Because the blocks are equal in

Table 1 Block sizes for timing study.

Nodes Block

2 32 x 56 x 64

4 32 x 28 x 64

8 32 x 28 x 32

16 16 x 28 x 32

32 16 x 14 x 32

64 16 x 14 x 16

128 8 x 14 x 16

size, boundary data exchanges are synchronized at a

speci�ed iteration interval for convenience. Each run

begins with a partially converged solution and is run

for 200 iterations with second order accuracy. Two

values (1 and 20) are used for nexch, the number of

iterations between boundary data exchanges, to esti-

mate the communication overhead on each machine.

The number of iterations that the Jacobian is held

�xed, njcobian, is equal to 20 and represents a typical

value for solutions that are partially converged.

Four di�erent architectures are used to obtain tim-

ing estimates. The �rst is a 160-node IBM SP2 located

at the Numerical Aerospace Simulation (NAS) Facility

at NASA Ames using IBM's implementation of MPI.

The second is a 64 processor (R10000) SGI Origin 2000

also located at NAS using SGI's version of MPI. The

third is a 12 processor (R10000) SGI machine oper-

ating in a multiuser environment, and the fourth is

a network of SGI R10000 workstations connected by

3 of 9

100 101 102

nodes

101

102

103

104

w
al

lc
lo

ck
tim

e
(

se
c

)

nexch = 1
nexch = 20
linear speedup

X-33 forebody
Viscous PG
64 x 56 x 64
200 iterations

IBM SP2

CRAY C-90
(9 CPU’s)

Fig. 3 Elapsed wall clock time on IBM SP2.

100 101 102

nodes

101

102

103

104

w
al

lc
lo

ck
tim

e
(

se
c

)

nexch = 1
nexch = 20
linear speedup

X-33 forebody
Viscous PG
64 x 56 x 64
200 iterations

SGI Origin 2000

Fig. 4 Elapsed wall clock time on SGI Origin 2000.

Ethernet. Both of these SGI machines use the MPICH

implementation27 of MPI. On all architectures, the

MPI de�ned timer, MPI WTIME, is used to measure

elapsed wall clock time for the main algorithm only.

The time to read and write restart �les and to perform

pre- and post-processing is not measured although it

may account for a signi�cant fraction of the total time.

Compiler options include `-O3 -qarch=pwr2' on the

IBM SP2 and `-O2 -n32 -mips4' on the SGI machines.

No e�ort is made to optimize the single-node perfor-

mance of LAURA on these cache-based architectures.

Figures 3 - 6 display the elapsed wall clock times

on the various machines. A time based on the

single-node time and assuming a linear speedup equal

to the number of nodes is shown for comparison. The

measured times are less than the comparison time for

most of the cases as a result of the smaller blocks

on each node making better use of the cache. This

increase in cache performance o�sets the communica-

tion penalty. Improving the single-node performance

of LAURA on these cache-based architectures would

reduce the single-node times and give a more accu-

1 2 3 4 5 6 7 8 9 10

nodes

102

103

104

w
al

lc
lo

ck
tim

e
(

se
c

)

nexch = 1
nexch = 20
linear speedup

X-33 forebody
Viscous PG
64 x 56 x 64
200 iterations

SGI R10000
multiprocessor

Fig. 5 Elapsed wall clock time on SGI multipro-

cessor.

1 2 3 4 5 6 7 8 9 10

nodes

102

103

104

w
al

lc
lo

ck
tim

e
(

se
c

)

nexch = 1
nexch = 20
linear speedup

X-33 forebody
Viscous PG
64 x 56 x 64
200 iterations

SGI R10000

Fig. 6 Elapsed wall clock time on network of SGI

R10000 workstations.

rate measure of the communication overhead. Never-

theless, the speedup of the code on all machines is

good. As anticipated, the relative message-passing

performance on the dedicated machines (IBM SP2,

SGI Origin 2000, SGI multiprocessor) is better than

on the network of SGI workstations. Also, the per-

formance with data exchanged every 20 iterations is

noticeably better on the network of workstations than

with data exchanged every iteration. However, there

is little in
uence of nexch on elapsed time on the

dedicated machines which indicates that the commu-

nication overhead is very low. The degradation in

performance of the 8 processor runs on the SGI mul-

tiprocessor is due to the load on the machine from

other users and is not a result of the communication

overhead. Of course, the times (and message-passing

e�ciency) measured will vary depending on machine

and problem size. Also shown in Fig. 3 is the elapsed

time from a multitasking run with the original version

of LAURA on a CRAY C-90 using 9 CPU's. This

4 of 9

a) X-33 b) X-34

c) X-33 forebody d) Stardust capsule

Fig. 7 Vehicle geometries.

shows that performance comparable to current vector

supercomputers may be obtained on dedicated paral-

lel machines (albeit with more processors) using this

distributed-memory version of LAURA.

Convergence

The e�ect of problem size, gas chemistry, and

boundary data exchange frequency on convergence is

examined for four realistic geometries: the X-3310, 11

and X-3412 RLV concepts, the X-33 forebody, and

the Stardust sample return capsule forebody.8 All

four geometries are shown in Fig. 7. A viscous (thin-

layer Navier-Stokes), perfect gas solution is computed

over the X-33 and X-33 forebody con�gurations. The

convergence of an inviscid, perfect gas solution is ex-

amined using the X-34 vehicle. Nonequilibrium air

chemistry e�ects on the convergence and performance

of the distributed-memory version of LAURA are de-

termined from a viscous, 11-species air calculation over

the Stardust capsule. For all geometries, the vehicle is

de�ned by the k = 1 surface, and the outer boundary

of the volume grid is de�ned by k = kmax.

Each viscous solution is computed with the same

sequence of parameters for consistency and is started

with all
ow-�eld variables initially set to their

freestream values. Slightly di�erent values are used

for the inviscid solutions due to low densities on the

leeside of the vehicle causing some instability when

switching from �rst to second order accuracy. Methods

to speed convergence such as computing on a coarse

grid before proceeding to the �ne grid and converging

blocks sequentially beginning at the nose (i.e. block

marching)5 are not used. The relevant LAURA param-

eters are shown below. Two values of nexch are used

(except for the run involving the complete X-33 con�g-

Table 2 LAURA parameters - viscous.

Iterations Order njcobian

0-100 1 1

101-300 1 2

301-500 2 10

> 500 2 20

Table 3 LAURA parameters - inviscid.

Iterations Order njcobian

0-100 1 1

101-300 1 2

301-900 1 10

901-1100 2 10

> 1100 2 20

uration). A baseline solution is generated with nexch

equal to 1. Updating the boundary data every itera-

tion should mimic the communication between blocks

in the shared-memory version of LAURA. A second

computation is made with nexch equal to njcobian

since acceptable values for both parameters depend

on transients in the
ow. Solutions that are chang-

ing rapidly should update the Jacobian and exchange

boundary data frequently, while partially converged

solutions may be able to freeze the Jacobian and lag

the boundary data for a number of iterations. A simple

strategy is to link the two parameters. Convergence is

measured by the L2 norm de�ned by

L2 =
1

C2

N

NX

L=1

(rL � rL)

�2
L

(2)

where CN is the Courant number, N is the total num-

ber of cells, rL is the residual vector, and �L is the

local density. All solutions are generated on the IBM

SP2.

X-33

The viscous, perfect gas
ow �eld is computed over

the X-33 RLV con�guration (without the wake) to

demonstrate the ability of the new message-passing

version of LAURA to handle large-scale problems in

a reasonable amount of time. The freestream Mach

number is 9.2, the angle of attack is 18.1 deg, and the

altitude is 48.3 km. The grid size is 192 x 168 x 64

and is divided into 64 blocks of 48 x 42 x 16.

Figure 8 shows the L2 convergence as a function of

number of iterations. The elapsed wall clock time on

the SP2 is 12.7 hr. Only the baseline case(nexch = 1)

was computed due to resource limitations. The e�ect

of nexch on convergence will be examined in greater

detail on the nose region of this vehicle. The stall

in convergence after 10000 iterations is due to a limit

cycle in the convergence at the trailing edge of the

tip of the canted �n. Iterations are continued past

5 of 9

0 4000 8000 12000 16000
iterations

10-4

10-2

100

102

104

106
L 2

X-33
M∞ = 9.2
α = 18.1 deg
Viscous PG

192 x 168 x 64
64 nodes - IBM SP2

nexch = 1

12.7 hr

Fig. 8 Convergence history of viscous, perfect gas

ow �eld over X-33 vehicle.

this point to converge the boundary layer and surface

heating.

X-33 forebody

The e�ects of boundary data exchange frequency

and block splitting on convergence are evaluated for

the nose section of the X-33. This is the same con-

�guration used to obtain the timing estimates, and

freestream conditions correspond to the complete X-

33 vehicle case. The 64 x 56 x 64 grid is �rst divided

in the i-, j-, and k- directions into 16 blocks comprised

of 32 x 28 x 16 cells each. Two cases, nexch = 1 and

nexch = njcobian, are run using this blocking. An-

other case is computed with the grid divided in the i-

and j-directions only resulting in blocks of 16 x 14 x 64

cells. Next, the asynchronous relaxation capabilities of

LAURA are tested by reblocking a partially converged

restart �le in the k-direction to cluster work (and it-

erations) in the boundary layer. Each block has i x j

dimensions of 32 x 28, but the k dimension is split into

8, 8, 16, and 32 cells. Blocks near the wall contain 32

x 28 x 8 cells, while blocks near the outer boundary

have 32 x 28 x 32 cells. Thus, the smaller blocks ac-

cumulate more iterations than the larger outer blocks

in a given amount of time and should converge faster.

Figure 9 shows the convergence history for this
ow

�eld. For viscous solutions, convergence is typically

divided into two stages. First, the inviscid shock layer

develops and then the majority of the iterations are

spent converging the boundary layer (and surface heat-

ing). Lagging the boundary data appears to have more

of an impact on the early convergence of the inviscid

features of the
ow and less of an impact on the bound-

ary layer convergence. This e�ect is much larger when

the blocks are split in the k-direction across the shock

layer. The communication delay a�ects the develop-

ing shock wave as it crosses the block boundaries in

0 4000 8000 12000
iterations

10-6

10-4

10-2

100

102

104

L 2

nexch = 1
split in I - J - K
split in I - J

X-33 forebody
M∞ = 9.2
α = 18.1 deg
Viscous PG

64 x 56 x 64
16 nodes - IBM SP2

} nexch = njcobian

a) Convergence as function of number of iterations

0 1 2 3 4
wall clock time (hr)

10-6

10-4

10-2

100

102

104

L 2

nexch = 1
split in I - J - K
split in I - J
asynchronous

} nexch = njcobian

b) Convergence as function of time

Fig. 9 Convergence histories of viscous, perfect

gas
ow �eld over X-33 forebody.

the k-direction.

Figure 9(b) shows the convergence as a function of

wall clock time. Because of the low communication

overhead on the IBM SP2, the time saved by mak-

ing fewer boundary data exchanges is small. As seen

from the timing data, this would not necessarily be

true on a network of workstations where the decrease

in communication overhead might o�set any increase

in number of iterations. Also shown are LAURA's

asynchronous relaxation capabilities. After 1 hr (and

3500 iterations), the outer inviscid layer is partially

converged. Restructuring the block structure at this

point by splitting the k dimension into 8, 8, 16, and

32 cells allows the boundary layer to accumulate more

iterations and accelerates convergence. The result is a

15 percent decrease in wall clock time compared to the

6 of 9

baseline (nexch = 1) case. A similar strategy would

also have accelerated the convergence of the baseline

case.

X-34

The e�ect of boundary data exchange frequency and

block splitting on convergence of inviscid, perfect gas

ows is investigated for the X-34 con�guration (minus

the body
ap and vertical tail). Inviscid solutions are

useful in predicting aerodynamic characteristics for ve-

hicle design and may be coupled with a boundary-layer

technique to predict surface heat transfer as well. The

freestream Mach number is 6.32, the angle of attack is

23 deg, and the altitude is 36 km. The grid is 120 x

152 x 32 and is �rst divided into 32 blocks of 30 x 38 x

16 cells. The grid is also split in the i- and j-directions

into blocks of 30 x 19 x 32 cells to check the e�ect of

block structure on convergence. The convergence his-

tories are shown in Figure 10. The aerodynamics (not

shown) of the vehicle are converged at 4000 iterations.

The spike in convergence at 900 iterations is caused by

the switch from �rst to second order accuracy. With

the grid split in all directions, the baseline solution

(nexch = 1) reaches an L2 norm of 10�3 at 3300 it-

erations while the solution with boundary data lagged

takes 3640 iterations. The solution with the grid split

in the i- and j-directions requires 3530 iterations. As

shown in Fig. 10(b), there is a corresponding di�erence

in run times to reach that convergence level because

the savings from fewer boundary data exchanges are

small on the SP2. Nevertheless, the e�ect of lagging

the boundary data on convergence is minimal.

Stardust

The convergence of a nonequilibrium air (11 species,

two temperature), viscous computation is examined

for the forebody of the Stardust capsule. The

freestream Mach number is 17 and the angle of at-

tack is 10 deg. The grid is 56 x 32 x 60 and is divided

into 32 blocks of 7 x 8 x 60 cells each. There are

no splits in the k-direction. Figure 11 shows the con-

vergence as a function of iterations and elapsed wall

clock time. Because of the larger number of
ow-�eld

variables, considerably more data must be exchanged

between blocks for nonequilibrium
ows. Even on a

dedicated parallel machine such as the IBM SP2, the

communication penalty for this particular case has a

signi�cant impact on the elapsed time. The baseline

case reaches an L2 norm of 10�4 at 6900 iterations

compared to 7500 iterations for the nexch = njcobian

solution. However, the savings in communication time

allows the nexch = njcobian solution to converge 1 hr

faster than the baseline case.

Conclusions

The shared-memory, multitasking version of the

CFD code LAURA has been successfully modi�ed to

0 1000 2000 3000 4000
iterations

10-4

10-3

10-2

10-1

100

101

102

103

104

L 2

nexch = 1
split in I - J - K
split in I - J

X-34
M∞ = 6.32
α = 23 deg
Inviscid PG

120 x 152 x 32
32 nodes - IBM SP2

} nexch = njcobian

a) Convergence as function of number of iterations

0 1 2
wall clock time (hr)

10-4

10-3

10-2

10-1

100

101

102

103

104

L 2

nexch = 1
split in I - J - K
split in I - J } nexch = njcobian

b) Convergence as function of time

Fig. 10 Convergence histories of inviscid, perfect

gas
ow �eld over X-34 vehicle.

take advantage of distributed-memory parallel ma-

chines. A standard domain decomposition strategy

yields good speedup on dedicated parallel systems,

but the single-node performance of LAURA on cache-

based architectures requires further study. The point-

implicit relaxation strategy in LAURA is well-suited

for parallel computing and allows the communication

overhead to be minimized (if necessary) by reducing

the frequency of boundary data exchanges. The com-

munication overhead is greatest on the network of

workstations and for nonequilibrium
ows due to more

data passing between nodes. Lagging the boundary

data between blocks appears to a�ect the development

of the inviscid shock layer more than the convergence

of the boundary layer. Its largest e�ect occurs when

7 of 9

0 2000 4000 6000 8000
iterations

10-6

10-4

10-2

100

102

104
L 2

nexch = 1
nexch = njcobian

Stardust
M∞ = 17
α = 10 deg
Viscous 11-species air

56 x 32 x 60
32 nodes - IBM SP2

} split in I - J

a) Convergence as function of number of iterations

0 2 4 6 8 10
wall clock time (hr)

10-6

10-4

10-2

100

102

104

L 2

nexch = 1
nexch = njcobian } split in I - J

b) Convergence as function of time

Fig. 11 Convergence histories of viscous, nonequi-

librium
ow �eld over Stardust capsule.

the grid is split in the direction normal to the vehicle

surface. However, restructuring the blocks to cluster

work and iterations in the boundary layer improves

overall convergence once the inviscid features of the

ow have developed. These results demonstrate the

ability of the new message-passing version of LAURA

to e�ectively use distributed-memory parallel systems

for realistic con�gurations. As a result, the e�ective-

ness of LAURA as an aerospace design tool is enhanced

by its new parallel computing capabilities. In fact, this

new version of LAURA is currently being applied to

the evaluation of vehicles used in planetary exploration

missions and the X-33 program.

Acknowledgements

The authors wish to acknowledge Peter Gno�o of

the Aerothermodynamics Branch at NASA LaRC for

his assistance with the inner workings of LAURA and

Jerry Mall of Computer Sciences Corporation for his

help in pro�ling LAURA on the IBM SP2.

References
1Gno�o, P. A., \An Upwind-Biased, Point-Implicit Relax-

ation Algorithm for Viscous, Compressible Perfect-Gas Flows,"

NASA TP{2953, Feb. 1990.
2Gno�o, P. A., \Upwind-Biased, Point-Implicit Relaxation

Strategies for Viscous, Hypersonic Flows," AIAA Paper 89{

1972, Jun. 1989.
3Gno�o, P. A., \Code Calibration Program in Support of

the Aeroassist Flight Experiment," Journal of Spacecraft and

Rockets, Vol. 27, No. 2, 1990, pp. 131{142.
4Weilmuenster, K. J. and Greene, F. A., \HL-20 Compu-

tational Fluid Dynamics Analysis," Journal of Spacecraft and

Rockets, Vol. 30, No. 5, 1993, pp. 558{566.
5Gno�o, P. A., Weilmuenster, K. J., and Alter, S. J., \Multi-

block Analysis for Shuttle Orbiter Re-Entry Heating FromMach

24 to Mach 12," Journal of Spacecraft and Rockets, Vol. 31,

No. 3, 1994, pp. 367{377.
6Mitcheltree, R. A. and Gno�o, P. A., \Wake Flow About

the Mars Path�nder Entry Vehicle," Journal of Spacecraft and

Rockets, Vol. 32, No. 5, 1994, pp. 771{776.
7Weilmuenster, K. J., Gno�o, P. A., Greene, F. A., Riley,

C. J., Hamilton, H. H., and Alter, S. J., \Hypersonic Aero-

dynamic Characteristics of a Proposed Single-Stage-to-Orbit

Vehicle," Journal of Spacecraft and Rockets, Vol. 33, No. 4,

1995, pp. 463{469.
8Mitcheltree, R. A., Wilmoth, R. G., Cheatwood, F. M.,

Brauckmann, G. J., and Greene, F. A., \Aerodynamics of Star-

dust Sample Return Capsule," AIAA Paper 97{2304, Jun. 1997.
9Mitcheltree, R. A., Moss, J. N., Cheatwood, F. M., Greene,

F. A., and Braun, R. D., \Aerodynamics of the Mars Microprobe

Entry Vehicles," AIAA Paper 97{3658, Aug. 1997.
10Cook, S. A., \X-33 Reusable Launch Vehicle Structural

Technologies," AIAA Paper 96{4573, Nov. 1996.
11Gno�o, P. A., Weilmuenster, K. J., Hamilton, H. H., Olyn-

ick, D. R., and Venkatapathy, E., \Computational Aerothermo-

dynamic Design Issues for Hypersonic Vehicles," AIAA Paper

97{2473, Jun. 1997.
12Levine, J., \NASA X-34 Program," Meeting Papers on Disc

A9710806, AIAA, Nov. 1996.
13Cheatwood, F. M. and Gno�o, P. A., \User's Manual for

the Langley Aerothermodynamic Upwind Relaxation Algorithm

(LAURA)," NASA TM{4674, Apr. 1996.
14Gno�o, P. A., \Asynchronous, Macrotasked Relaxation

Strategies for the Solution of Viscous, Hypersonic Flows," AIAA

Paper 91{1579, Jun. 1991.
15Jayasimha, D. N., Hayder, M. E., and Pillay, S. K., \An

Evaluation of Architectural Platforms for Parallel Navier-Stokes

Computations," NASA CR{198308, Mar. 1996.
16Venkatakrishnan, V., \Parallel Implicit Unstructured Grid

Euler Solvers," AIAA Paper 94{0759, Jan. 1994.
17Wong, C. C., Blottner, F. G., Payne, J. L., and Soetrisno,

M., \A Domain Decomposition Study of Massively Parallel

Computing in Compressible Gas Dynamics," AIAA Paper 95{

0572, Jan. 1995.
18Borrelli, S., Schettino, A., and Schiano, P., \Hyper-

sonic Nonequilibrium Parallel Multiblock Navier-Stokes Solver,"

Journal of Spacecraft and Rockets, Vol. 33, No. 5, 1996, pp. 748{

750.
19Domel, N. D., \Research in Parallel Algorithms and Soft-

ware for Computational Aerosciences," NAS 96-004, Apr. 1996.

8 of 9

20Van der Wijngaart, R. F. and Yarrow, M., \RANS-MP: A

Portable Parallel Navier-Stokes Solver," NAS 97-004, Feb. 1997.
21Forum, M. P. I., \MPI: A message-passing interface stan-

dard," Computer Science Dept. Technical Report CS{94{230,

University of Tennessee, Knoxville, TN, 1994.
22Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek,

R., and Sunderam, V., \PVM 3.0 User's Guide and Reference

Manual," Tech. rep., Feb. 1993.
23Balasubramanian, R., \Modi�cation of Program LAURA

to Execute in PVM Environment," Spectrex Report 95.10.01,

Oct. 1995.
24Roe, P. L., \Approximate Riemann Solvers, Parameter

Vectors, and Di�erence Schemes," Journal of Computational

Physics, Vol. 43, No. 2, 1981, pp. 357{372.
25Harten, A., \High Resolution Schemes for Hyperbolic Con-

servation Laws," Journal of Computational Physics, Vol. 49,

No. 3, 1983, pp. 357{393.
26Yee, H. C., \On Symmetric and Upwind TVD Schemes,"

NASA TM{86842, Sep. 1985.
27Gropp, W. and Lusk, E., \User's Guide for mpich, a

Portable Implementation of MPI," Tech. Rep. ANL/MCS{TM{

ANL{96/6, Argonne National Laboratory, 1996.
28Burns, G., Daoud, R., and Vaigl, J., \LAM: An Open Clus-

ter Environment for MPI," Tech. rep., Ohio Supercomputing

Center, May 1994.

9 of 9

