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Abstract
This paper reports the initial results of a test series to evaluate a method for determining
the normal incidence impedance of a locally reacting acoustically absorbing liner, located on
the lower wall of a duct in a grazing incidence, multi-modal, nonprogressive acoustic wave
environment without 
ow. This initial evaluation is accomplished by testing the methods'
ability to converge to the known normal incidence impedance of a solid steel plate, and to the
normal incidence impedance of an absorbing test specimen whose impedance was measured
in a conventional normal incidence tube. The method is shown to converge to the normal
incident impedance values and thus to be an adequate tool for determining the impedance
of specimens in a grazing incidence, multi-modal, nonprogressive acoustic wave environment
for a broad range of source frequencies.

Nomenclature
[A(�)]; [AI]; [BI] =complex block tridiagonal matrices
[A[I;J]] =local element matrix
a; b =length and height, respectively, of a �nite element
c0; �0 = ambient sound speed and density, respectively
d =cavity depth
E(&; �) =�eld equation error function
EW (&) =wall error function
f =frequency in Hertz
f1(&); f2(&) =one dimensional basis functions
fFg =vector containing source e�ects
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H;L =height and length respectively, of the impedance tube test section
I; J =axial and transverse node numbers
IMAX; JMAX =number of points in the resistance and reactance grid,respectively
i =

p�1
k =free space wavenumber
L1; L2 =the leading and trailing edge, respectively, of the test specimen
M;N =number of nodes in the x and y direction, respectively
N1; N2; N3; N4 =two dimensional basis functions
m =number of upper wall measurement points
p(x; y) =complex acoustic pressure at (x; y)
p1; p2; p3; p4 =complex acoustic pressure at local nodes 1,2,3, and 4, respectively
pref =reference pressure (20�Pa)
ps(y); pwall =acoustic source and wall pressure, respectively
SPL =measured sound pressure in decibels
x; y = cartesian coordinates
x1; x2; . . .xm =locations of upper wall microphones
� =� + i�, dimensionless admittance
f�g = global vector of the complex acoustic pressure
f�[I;J]g = local vector of the complex acoustic pressure
� =measured phase angle for the complex acoustic pressure
� =� + i�, dimensionless wall impedance
�exit(y) = dimensionless exit impedance
�; & = local coordinate system for a �nite element

1 Introduction

Highly e�cient duct treatments for acoustic noise suppression continue to be a critical con-
sideration in the achievement of environmentally acceptable commercial aircraft. To this end,
a continuing concern in treatment technology is the accurate determination of the normal in-
cidence impedance of an acoustic material underneath the boundary layers of grazing 
ows.
Methods for determining the normal incidence impedance in such environments typically
fall into three categories, \T-tube" method (refs. [1]), \in-situ" method (refs. [2, 3]), and
the \propagation model" methods. All three methods have advantages and disadvantages,
depending on facilities available, instrumentation and test liner construction or complexity.
The disadvantages of the \T-tube" and \in-situ" methods are summarized in ref. [4]. These
two methods do, however, serve as useful complements to the \propagation model" method,
which is the subject of this paper.

The propagation model method is operationally convenient for extracting impedance
spectra of test specimens in grazing 
ow environments. Consequently, 
ow duct facilities
have been designed in an attempt to obtain the appropriate environment for duct propaga-
tion models. The current procedure is to use an in�nite-wave-guide propagation model to
extract the impedance of the test specimen from the measured data (i.e., spatial attenua-
tion and phase rates on walls opposite the test liner) for a single, unidirectional propagating
mode (refs. [4, 5, 6, 7]). However, in real facilities, these idealized test conditions (i.e., uni-
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directional, single propagating mode) generally are attained only in an approximate manner
under the best of laboratory conditions, and typically degrade severely with increasing mean

ow. Additionally, many conventional test liner structures, and, in particular, the innova-
tive liner structures currently under investigation, generate complex acoustic �elds because
of scattering of energy into higher order modes. While this may be a desirable result from the
standpoint of achieving more e�cient, broadband absorbing structures, it is a complicating
feature that cannot be handled by the traditional unidirectional, single mode propagation
model method.

In a recent paper (ref. [8]), a method for extracting the acoustic impedance of a material
installed as a �nite length wall segment of a duct carrying a nonprogressive multi-modal
sound �eld in the absence of 
ow was presented. The method was shown to be successful
for an assumed in�nite liner using analytically based input data. The purpose of this paper
is to validate the impedance extraction method using measured data and a �nite length
liner. More speci�cally, the impedance extraction method developed in ref. [8] is validated
by testing the ability of the method to reproduce known normal incidence impedance data
for a solid steel plate and a sound absorbing specimen. In contrast to the analytically based
input data used in ref. [8], all input data used in this report were obtained from acoustic
pressure measurements taken in a grazing incidence impedance tube facility with the test
specimen installed.

The remainder of this paper is organized into �ve sections. Section 2 describes the
measurement system used to obtain the input data for the numerical method and gives a
brief description of each test specimen. The governing equations and boundary conditions are
presented in section 3. Section 4 describes the numerical method which is used to extracts
the unknown impedance. The known normal incidence impedances for the specimen was
used as a baseline against which the accuracy of the model is judged. These results are
presented in section 5. Finally, conclusions relevant to this paper as well as ongoing research
activities are presented in section 6.

2 Experimental Set-Up and Test Specimens

The input data used to extract the impedance of each test specimen was obtained from
measurements using a 
ow impedance tube in the NASA Langley Flow Impedance Labora-
tory. This multi-con�gurational apparatus has a 51x51 mm cross-section and is designed to
produce a controlled aeroacoustic environment with a Mach number of up to 0.6 over a test
specimen length of 41 cm. Four 120-watt phase-matched acoustic drivers generate signals
over a frequency range of 0.3 to 3.0 kHz, with sound pressure levels up to 155 dB at the test
specimen leading edge. In the present investigation there was no mean 
ow. Sound pressure
levels of at least 120 dB at each frequency of interest were set at the leading edge of the test
specimen. A schematic of the 
ow impedance tube is provided in �gure 1. The test section
(the section of the duct between the source and exit plane) is 84 cm long. The upper and
two side walls of the test section are stainless steel.

Acoustic waves are propagated from left to right, across the surface of the test specimen,
and into a termination section designed to minimize re
ections over the frequency range of
interest. Two 6 mm condenser-type microphones were 
ush-mounted in the test section,
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one at a �xed location on the side wall, and the other on an axial traverse bar. A 13 mm
wide precision-machined slot in the top wall of the 
ow impedance tube allows this axial
traverse bar to traverse the test section length by means of a computer controlled digital
stepping motor. The �xed location microphone was used to provide a reference for phase
measurements. The data acquisition program automatically positioned the traversing mi-
crophone at a number of pre-selected locations ranging from 18 cm upstream of the leading
edge to 52 mm downstream of the trailing edge of the test specimen. At each measurement
location a transfer function between the traversing and the �xed microphone was measured
and used to determine the sound pressure level and phase relative to the �xed microphone.
The complex acoustic pressure at the wall location is determined from the equation

pwall = pref10
20

SPL ei� = pref10
20

SPL [cos�+ i sin�] (1)

A block diagram of the electronic instrumentation and signal conditioning system is given in
�gure 2. At each test frequency, a sound pressure level was set at the test specimen leading
edge with a signal generator.

The duct propagation model, which is discussed in the following section, requires a mea-
surement of three sets of input data

(1) The upper wall acoustic pressures

(2) The source plane acoustic pressure

(3) The exit plane impedance

Unfortunately, the source plane acoustic pressure and exit plane impedance are functions
of position along these planes. Therefore, transverse probe microphones should be used to
measure this data when the test specimen is installed. However, a transverse probe micro-
phone was not available for this initial investigation. The experiment was therefore carefully
designed, so as to minimize higher order mode e�ects along the source and exit boundary.
All data for the duct propagation model was therefore be obtained from measurements made
by the upper wall traversing microphone. It should be noted that because of the sound ab-
sorbing properties of the liner, it is not possible to avoid higher order mode e�ects in the
liner region. In addition, higher order mode e�ects and re
ections will occur in the vicinity
of the leading and trailing edge of the specimen.

In order to avoid the use of a transverse probe, the source plane was chosen 18 cm
upstream (3.5 duct diameters) of the leading edge of the test specimen in the hardwall
section of the duct, and the source frequency was kept below the cuton of higher order
hardwall modes. Higher order mode e�ects caused by the installation of the test specimen
are expected to decay upstream of the leading edge of the test specimen. Therefore, the
source pressure at each point along the source plane was set to the value measured at the
upper wall source location.

A Similar procedure was applied at the exit plane. The exit plane was located 25 cm
downstream (5 duct diameters) of the trailing edge of the test specimen, also in the hardwall
section of the duct. The method developed in ref. [9] was used, with a hardwall test speci-
men installed to obtain the exit impedance. This was done by measuring complex acoustic
pressures at �ve locations along the top wall of the impedance tube using the axial traverse
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bar mounted microphone. The same exit impedance was used for both the hardwall and the
conventional liner con�gurations. Because the exit plane is 5 duct diameters downstream of
the trailing edge of the liner and higher order modes are cuto�, higher order modes generated
by the installation of the liner are not expected to carry appreciable acoustic energy to the
exit plane. Thus, the exit impedance values at all points along the exit plane were set to
that obtained at the upper wall.

Input data were obtained for two specimens. The �rst specimen was a stainless steel
plate (hardwall test specimen) for which the impedance was known. The second (a sound
absorbing specimen) was a conventional uniform liner that consisted of a 100 MKS Rayl
�bermetal facesheet bonded to a 100 mmdeep aluminumhexcell honeycomb structure backed
by a rigid plate. This type of liner construction has been used by the aeronautics industry for
at least 35 years. Installed, this test specimen spanned the 51 mm width of the test section
for a length of 41 cm. Normal incidence impedance measurements for this sound absorbing
specimenwere obtained using a conventional normal incidence impedance tube measurement,
identical to that used in ref. [9]. Because of the simpli�cation that the absence of mean 
ow
a�ords, these measured normal incidence impedances and the impedances predicted using
the method described in this report (using grazing incident sound) are expected to compare
favorably. Thus, the measured normal incidence impedance is used as a baseline against
which to judge the accuracy of the impedance extraction method when 
ow is absent.

3 Governing Equation And Boundary Conditions

In this section a brief description of the governing equation and boundary conditions used
to extract the impedance of each test specimen is presented. Figure 3 depicts the applicable
geometry and coordinate system used to model the test section of the Langley Impedance
Tube. The axial and transverse directions are denoted by x and y, respectively. The spanwise
direction, normal to the (x; y) plane, is not shown in the �gure. To limit the propagation
model to two dimensions, plane waves are assumed in the spanwise direction. This is a
reasonable assumption since the sidewalls of the impedance tube are rigid and the sound
frequency is below the cuton of any higher order modes. The lower and upper walls of the
duct are located at y = 0 and y = H, respectively, and are also rigid except where the liner
is located. The source and exit planes are located in the hardwall section of the duct at
x = 0 and x = L, respectively. The test specimen (assumed locally reacting) is installed
in the lower wall and has a normalized impedance, � = � + i�. The leading and trailing
edge of the specimen are at x = L1 and x = L2, respectively. To perform the computation
for the hardwall baseline (i.e., the stainless steel plate) it is convenient to use the acoustic
admittance of the specimen, de�ned as � = � + i�. Measurement points are located along
the upper wall at x = x1; x2; x3 . . .xm as shown. Acoustic pressure measurements at these
locations were obtained with the traversing microphone as described in the previous section.

The mathematical problem is to �nd the solution to the Helmholtz equation

@2p(x; y)

@x2
+
@2p(x; y)

@y2
+ k2p(x; y) = 0 (2)

Along the source plane of the duct (x = 0), the sound pressure level and phase of the acoustic
pressure �eld is measured and expressed as a complex pressure, ps, using equation (1). The
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source plane boundary condition is therefore

p(0; y) = ps (3)

The boundary conditions along the rigid upper wall and the rigid portion of the lower wall
are equivalent to the requirement that the gradient of the acoustic pressure normal to the
wall vanishes

@p

@y
= 0 (4)

At the exit plane (x = L), the ratio of acoustic pressure to axial velocity is assumed to equal
the exit impedance

@p(L; y)

@x
=
�ikp(L; y)

�exit
(5)

Throughout this work, all impedances are normalized with respect to the characteristic
impedance, �0c0, of the air in the duct. Finally, the test specimen is assumed to be locally
reacting, such that the boundary condition along the lower wall portion of the duct containing
the test specimen is

@p

@y
=

ikp

�
(6)

Equations (2)-(6) constitute a boundary value problem that can be solved to determine
the unknown impedance, �, provided the upper wall pressure is known (ref. [8]). The solution
for the unknown impedance can be put in terms of known functions only for special cases
of the boundary conditions and upper wall pressure. These cases are not useful for general
application. Therefore, the unknown impedance, �, must be determined by a numerical
method for cases of practical interest.

4 The Numerical Method

The numerical method chosen to extract the unknown impedance of the lower wall is dis-
cussed in ref. [8] and only su�cient detail is presented here for continuity and completeness.
Because the experimental set-up was designed to minimize higher order mode e�ects, the
foregoing discussion will assume a constant source pressure, ps, exit impedance, �exit, and
lower wall impedance, �. However, these functions need not be constants to successfully
apply the method (ref. [8]). When applied to the current acoustic problem, the method may
be interpreted as an approximation of the continuous acoustic �eld as an assemblage of rect-
angular �nite elements as illustrated in �gure 4. It is assumed that there are N nodes in the
axial and M nodes in the transverse directions of the duct. A typical rectangular element,
[I; J ], is shown in �gure 5. Each element consists of four local node numbers labeled 1, 2,
3 and 4, respectively. Each element is considered to have width a = (xI+1 � xI) and height
b = (yJ+1�yJ) as shown. The objective of the method is to determine the impedance �, that
minimizes the di�erence between the upper wall pressure obtained from the �nite element
solution, and that obtained from measured data with the specimen installed.

To begin, Galerkin's �nite element method is employed to minimize the �eld error. The
�eld error is distinct from the wall error function, which will be used to extract the unknown
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impedance. First de�ne the local coordinates, & and � for the element

& =
x

a
� =

y

b
(7)

Now de�ne the �eld error function as

E(&; �) =
@2p(&; �)

@&2
+
@2p(&; �)

@�2
+ k2p(&; �) (8)

Within each element p(&; �) is represented as linear combination of four functions, N1; N2; N3

and N4 which comprise a complete set of basis functions

p(&; �) = N1(&; �)p1 +N2(&; �)p2 +N3(&; �)p3 +N4(&; �)p4 (9)

N1(&; �) = f1(&)f1(�) N2(&; �) = f2(&)f1(�) (10)

N3(&; �) = f2(&)f2(�) N4(&; �) = f1(&)f2(�) (11)

f1(&) = 1 � & f2(&) = & (12)

In an ideal sense, the solution to the sound �eld is obtained when the �eld error, E(&; �),
is identically zero at each point of the domain. This is approximately achieved by requiring
that the �eld error function be orthogonal to each basis function NI(&; �). Contributions to
the minimization of the �eld error function from a typical element are

ab
Z 1

0

Z 1

0
E(&; �)NI(&; �)d&d� = [A[I;J]]f�[I;J]g (13)

where [A[I;J]] is a 4x4 complex matrix for each element [I; J ], and f�[I;J]g is a 4x1 column
vector containing the unknown acoustic pressure at each of the four nodes of the element.
The coe�cients in the local matrix, [A[I;J]], were computed in closed form. It should be
noted that the second derivative terms in the �eld error function, E(&; �) , were integrated
by parts in order that linear basis functions could be used. Also, the wall and exit plane
boundary conditions were substituted into these integrated terms.

Assembly of the global equations for the computational domain is a basic procedure in
the �nite element method. Appropriate shifting of rows and columns is all that is required
to add the local element matrix, [A[I;J]], directly into the global matrix, [A]. Assembling the
elements for the entire domain results in a matrix equation of the form

[A(�)]f�g = fFg (14)

where [A(�)] is a complex matrix whose order is MN , and f�g and fFg are MNx1 column
vectors. The vector f�g contains the nodal values of the unknown acoustic pressure and
fFg is the zero vector until the pressure source condition is imposed. It is necessary to
apply the source condition to equation (14) before a solution can be obtained. Satisfying
the noise source boundary condition consists simply of setting all nodal values of acoustic
source pressure at the source plane to the known value of source pressure, this introduces
nonzero elements into the �rst M components of fFg.

The global matrix [A(�)] generated by Galerkin's Method following application of the
source condition is a complex symmetric matrix. Fortunately, owing to the discretization
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scheme used, it will also be block tridiagonal. The structure of the matrix [A(�)] after impos-
ing source conditions is shown in �gure 6, where the superscript T denote matrix transpose.
Note that [A(�)] is a square block tridiagonal matrix whose order isMN . This global matrix
contains a number of major blocks (AI; BI) which are themselves square and block tridiago-
nal as shown in the �gure. The matrix elements in each major block are computed explicitly
in terms of the yet unspeci�ed impedance, �. Much practical importance arises from this
block tridiagonal structure as it is convenient for minimizing storage and maximizing com-
putational e�ciency. Special matrix techniques exist for a solution of this structure1. All
computation and storage is performed only on the elements within the bandwidth of the
matrix [A(�)].

The unknown impedance, �, of the acoustic material is determined from the measured
upper wall acoustic pressure. The procedure is to determine the impedance �, such that the
pressure along the top wall reaches its' measured value at each of the measurement points,
xI . The procedure consists of repeatedly cycling through the solution to equation (14),
obtaining a set of upper wall pressures for each impedance value. As each new set of wall
pressures is computed, it is compared to the measured value until convergence is achieved.

The idea is best illustrated as follows for a perforate. De�ne the unknown impedance as

� = � + i� (15)

where � is the resistance and � the reactance. Resistance values are positive whereas reac-
tance values span the real axis

0 � � � 1; �1 � � � 1 (16)

It should be apparent that searching the entire upper half plane of the resistance/reactance
space for the unknown impedance is impractical. Therefore, introduce the tranformation

� = cot(kd); 0 � kd � � (17)

and search for the unknown impedance in the (�; kd) plane, where � is limited to, 0 � � � 10,
from practical considerations.

The complex plane, (�; kd), is now divide into IMAX evenly spaced intervals in the �
direction and JMAX evenly spaced points in the kd direction, as shown in �gure 7. The
increment spacing �� and k�d are

�� =
10

IMAX � 1
; k�d =

�

JMAX � 1
(18)

Thus, a point � = �IJ in this uniform impedance grid is

�IJ = �I + i�J ; �I = (I � 1)��; �J = cot (J � 1)k�d (19)

If the measured upper wall pressures with the specimen installed are pwall(xn;H), and those
computed from the �nite element solution with � replaced by �IJ are p(xn;H), then a measure

1Gaussian elimination with partial pivoting and equivalent row in�nity norm scaling is used to reduce

the rectangular system to upper triangular form. Back substitution is then employed to obtain the solution

for the acoustic pressure at the MN node points
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of the closeness of �IJ to � is given by the normalized wall error function, EW (�IJ)

EW (�IJ) =
EW (�IJ)

Emax

(20)

EW (�IJ ) =
1

m

mX
n=1

j pwall(xn;H)� p(xn;H) j (21)

in which j j denotes the absolute value of a complex quantity, Emax is the maximum value of
EW for all points �IJ in the impedance grid, and m is the number of known wall pressures.

Determining the unknown impedance of the material is now recast as a minimization
problem. Thus, � should be chosen such that EW (�) is a global minimum. The global
minimum is obtained using a two-step method. First, use a coarse grid in the impedance
plane and tabulate the normalized wall error function to determine the location in that grid
of an approximate minimum point (�1; kd1). Next use a �ne grid centered about (�1; kd1)
to obtain a new minimum. The location of the minimum point of this �ne grid corresponds
to the unknown impedance, � of the material. Coarse grid calculations are performed with
IMAX = 51, JMAX = 31, and �� = k�d = 0:1. Fine grid calculations are carried out
using IMAX = JMAX = 21, and �� = k�d = 0:01. The coarse and �ne grid discretization
were determined from numerical experimentation in an earlier work (ref. [8]).

5 Results

A computer code implementing the impedance extraction method has been developed. The
�nite element matrix equation (14) is solved using a routine a highly developed software
package and minimization of the normalized wall error function is performed internally by
an in-house computer code. The unknown impedance, �, is returned by the in-house code.
Results were computed using a Dec-Alpha work station and were not computationally in-
tensive (i.e., requiring only 0.5 seconds of CPU time for each point in the impedance grid).
Analysis of the solid steel plate, for which the known admittance is zero (� = �+�i = 0+0i)
was conducted in the admittance plane for the sake of convenience. A 231x21 evenly spaced
grid is used (N = 231 and M = 21) in the �nite element discretization for all calculations.
This grid ensured that a minimum of ten elements per axial wavelength was used in the
�nite element discretization at the highest frequency of interest.

Figure 8 shows a plot of the measured resistance and reactance of the normalized exit
impedance as a function of frequency. Note that re
ections are present in the test section
since the resistance is not unity and the reactance has a non-zero value. Thus, the acoustic
�eld in the Langley 
ow impedance tube is not purely progressive, even for the hardwall
test specimen. The measured resistance and reactance spectrum of the exit impedance is
tabulated in the second and third columns respectively, of table 1. Resistance values range
from a minimum of 0.87 at 3,000 Hz to a maximum of 1.13 at 2,600 Hz. Reactance values
range from a minimum of -0.12 at2,800 Hz to a maximum of 0.12 at 2,300 Hz.

Hardwall admittance predictions using the method proposed in this study are shown
�rst. The predicted normalized conductances, �, for the hardwall test specimen, are shown
in �gure 9. Predictions are shown for twenty-six frequencies ranging from 500 to 3,000 Hz,
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in 100 Hz increments. The known and predicted conductance values are tabulated in the
fourth and �fth columns, respectively, of table 1. The sixth column of table 1 is the error (the
di�erence between the known and measured conductance values). The maximum error in
the conductance prediction is only 0.02 (see tabulated results at 2,800 Hz). Figure 10 shows
a graph of the predicted susceptance, �. The predicted and known susceptances, truncated
to two decimal digits of accuracy, were zero at each frequency; therefore, tabular results are
not shown. Overall, the predictions for the conductance and susceptance using the measured
input data appear as accurate as those predicted in ref. [8] for analytically based input data,
with a solid surface installed.

An appropriate next step in the validation of the impedance extraction method is to
install the conventional liner and predict the impedance of the soft test specimen. The liner
and end e�ects will generate higher order modes and re
ections in the test section that were
not present for the solid steel plate. Figure 11 shows a comparison of the predicted and
measured resistances, �, for the conventional liner at six selected frequencies (500, 1,100,
1,500, 2,000, 2,500 and 3,000 Hz). Predicted and measured resistance values for the conven-
tional liner are tabulated in the second and third columns, respectively, of table 2. Predicted
resistance values range from a minimum of 0.39 at 500 Hz to a maximum of 0.72 at 2,000 Hz.
At each frequency, the predictions are close to the measured values. A maximum error of
-0.10 is observed in the resistance prediction at 1,500 Hz (see the fourth column of table 2).
Figure 12 shows predicted and measured reactance comparisons for the conventional liner.
The data for this graph are tabulated in the �fth and sixth columns of table 2. The vari-
ability in the reactance component of the impedance is noticeably greater than that of the
resistance component. The maximum error in the predicted reactance is -0.20 and also oc-
curs at 1,500 Hz (see column seven of table 2). Note that predicted reactance values are
generally less accurate than the predicted resistance.

Since the largest error in the predicted and measured normal incidence impedance for the
soft specimen occurred at 1,500 Hz, each impedance value was used to predict the attenuation
of the soft test specimen with the prediction program. The attenuation predicted with the
measured normal incidence impedance (� = :63+2:48i) was 1.70dB and that obtained using
the predicted impedance (� = :53+2:28i) was 1.67dB. Thus, for the chosen soft test specimen,
the di�ence between the predicted and measured normal incidence impedance (i.e., .1 for
resistance and -.2 for reactance) doesn't a�ect the overall noise reduction peformance of the
test specimen.

Overall, resistance and reactance predictions with the liner installed match the measured
normal incidence values quite well. However, the predictions are not as good as those ob-
tained for the hardwall specimen. This is in contrast to the predictions obtained in ref. [8]
with analytically based data, in which the predictions were just as accurate for soft as for
rigid walls. There are several possible explanations as to why the predictions are less accurate
with the liner installed when experimentally based input data is used. These are

(1) Twenty elements across the duct may not be su�cient to resolve the transverse acoustic
�eld in the neighborhood of the discontinuties at the leading and trailing edge of the
test specimen.

(2) Installation of the liner generates some transverse dependence in the acoustic �eld at
either the source or exit plane (these e�ects have been neglected in the predictions).
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(3) Di�erences between the predicted and measured values may be due to small errors in
the measured normal incident impedance determination.

A more likely explanation is that a combination of these e�ects is responsible for slightly
less accurate predictions when the liner is installed.

6 Conclusions and Discussion

A duct propagation model for extracting the acoustic impedance of a test specimen using
measured data has been tested for e�ectiveness. Although the method as presented here
does not contain 
ow e�ects, it is extendable to mean 
ows with shear. Results of this
study show that the method is extremely e�ective in extracting the impedance of hard and
soft specimens for a range of source frequencies. There is only a slight degradation in the
accuracy of the impedance prediction when high quality measured data is used instead of
analytically based data.

The results of this investigation represent a signi�cant step in the development of a
new and more complete impedance measurement technique. This method currently extends
zero-
ow impedance prediction capability to test specimens with non-uniform impedance dis-
tributions in nonprogressive acoustic wave�elds, while maintaining impedance measurement
accuracy. Additional validation experiments are planned, which should

(1) validate the measurement capability for more complicated sources and at higher fre-
quencies

(2) validate the applicability of the method to variable impedance liners

E�orts are also underway to include the e�ects of shearing 
ows into the measurement
technique. One important challenge in both the 
ow and zero-
ow e�ort is to provide
su�ciently accurate boundary condition data at the source and exit planes such as prescribed
by equations (3) and (5). It will be recalled that in the source plane, the complex acoustic
pressure distribution is required (and also the entrance impedance when 
ow is present)
whereas in the exit plane the exit impedance distribution is required.

Presumably, the successful measurement of the complex pressures at two closely spaced
planes would permit acoustic particle velocities to be inferred, thus permitting calculation of
the exit or entrance plane impedance. Although fraught with di�culty, this approach is being
actively pursued by the development of in-
ow/out-
ow acoustic probes to directly measure
acoustic pressure distributions in both the source and exit planes. A second approach to
acquiring source and exit plane pressure distributions is also being pursued. In this approach,
acoustic pressure measurements are con�ned entirely to walls of the source and exit sections
of the 
ow duct. These pressures are then used to 'construct' the in
ow pressure and
particle velocity �elds from a modal decomposition of the hardwall pressure measurements.
The advantages of this approach are

(1) the avoidance of in-
ow or out-
ow measurements

(2) the intuitive appeal and physical insight provided by the modal propagation model
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Frequency Measured Conductance of the
in Hz exit impedance hardwall test specimen

f � � Known Predicted Error
500 1.03 0.02 0.00 0.01 0.01
600 0.97 0.03 0.00 0.01 0.01
700 1.05 -0.01 0.00 0.01 0.01
800 1.05 -0.01 0.00 0.00 0.00
900 1.03 -0.06 0.00 0.00 0.00
1,000 0.98 -0.04 0.00 0.00 0.00
1,100 0.98 -0.03 0.00 0.00 0.00
1,200 0.94 0.02 0.00 0.00 0.00
1,300 0.97 0.07 0.00 0.00 0.00
1,400 1.01 0.05 0.00 0.00 0.00
1,500 1.02 0.06 0.00 0.00 0.00
1,600 1.11 0.01 0.00 0.01 0.01
1,700 1.05 -0.05 0.00 0.01 0.01
1,800 1.04 -0.06 0.00 0.00 0.00
1,900 0.95 -0.10 0.00 0.01 0.01
2,000 0.92 -0.05 0.00 0.00 0.00
2,100 0.91 0.02 0.00 0.00 0.00
2,200 0.92 0.06 0.00 0.00 0.00
2,300 0.99 0.12 0.00 0.00 0.00
2,400 1.07 0.07 0.00 0.00 0.00
2,500 1.10 0.08 0.00 0.01 0.01
2,600 1.13 -0.07 0.00 0.01 0.01
2,700 1.05 -0.11 0.00 0.01 0.01
2,800 0.99 -0.12 0.00 0.02 0.02
2,900 0.90 -0.10 0.00 0.01 0.01
3,000 0.87 0.00 0.00 0.01 0.01

Table 1: Exit plane impedances and wall conductance values for the hardwall test specimen.

Frequency Resistance of the Reactance of the
in Hz conventional liner conventional liner

f Predicted Measured Error Predicted Measured Error
500 0.39 0.44 -0.05 -0.55 -0.66 0.11
1,100 0.46 0.40 0.06 -0.68 -0.61 -0.08
1,500 0.53 0.63 -0.10 2.28 2.48 -0.20
2,000 0.72 0.73 -0.01 -1.37 -1.47 0.10
2,500 0.53 0.45 0.08 0.09 0.17 -0.08
3,000 0.42 0.49 -0.07 1.35 1.30 0.05

Table 2: Predicted and measured impedance for the conventional liner.
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Figure 9: Predicted conductance for the hardwall test specimen.
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Figure 10: Predicted susceptance for the hardwall test specimen
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Figure 11: Comparison of measured and predicted resistance for the conventional liner.
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Figure 12: Comparison of measured and predicted reactance for the conventional liner
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