AEROELASTIC ANALYSIS OF HELICOPTER ROTOR BLADES INCORPORATING ANISOTROPIC PIEZOELECTRIC TWIST ACTUATION

W. Keats Wilkie
NASA Langley Research Center
Aeroelasticity Branch
Mail Stop 340
Hampton, Virginia 23681-0001, U.S.A.
phone: (757) 864-1260, fax: (757) 864-8678
e-mail: w.k.wilkie@larc.nasa.gov

W. Keith Belvin
NASA Langley Research Center
Structural Dynamics Branch
Mail Stop 230
Hampton, Virginia 23681-0001, U.S.A.
phone: (757) 864-4319, fax: (757) 864-8540
e-mail: w.k.belvin@larc.nasa.gov

K. C. Park
University of Colorado at Boulder
Center for Aerospace Structures
Campus Box 429
Boulder, Colorado 80309-0429, U.S.A.
phone: (303) 492-6330, fax: (303) 492-4990
e-mail: kcpark@titan.colorado.edu

ABSTRACT
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrodes is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

NOMENCLATURE

- A: rotor disk area, πR^2; spar material cross sectional area, m^2
- A_r: thin-walled spar section enclosed area, m^2
- a: lift curve slope, rad$^{-1}$
- b: blade semichord, $c/2$, m
- b: normalized blade semichord, b/R
- C_{pm}: airfoil pitching moment coefficient, $C_{pm} = M_p/(1/2)\rho V^2 c^2$
- C_{rel}: linear model static pitching moment coefficient
- C_{ps}: measured static pitching moment coefficient
- C_T: rotor thrust coefficient, $C_T = T/\rho A \Omega^2 R^2$
- C_{el}: airfoil lift coefficient, $C_{el} = L/(1/2)\rho V^2 c$
- C_{el}^*: linear model static lift coefficient
- C_m: measured static lift coefficient
- c: blade chord, m; section contour length, m
- \bar{c}: normalized blade chord, c/R
- c_i, c_s, c_3: pitching moment coefficients
- c_{ij}: material stiffnesses, N/m2
- D_r: electrical displacements, Coulombs/m2
- d_{ij}: piezoelectric strain constants, Coulombs/N or m/V
- EI: effective bending stiffness of composite blade structure, $\int K_{el} \varepsilon^2 ds$, N-m2
- E_i: electric field intensities, V/m
- E^*: coefficient of internal friction in tension, N/m2/sec
- e: distance of section mass center forward of pitch axis, m
- \bar{e}: normalized distance of section mass center forward of pitch axis, e/R
- e_{ij}: piezoelectric stress constants, Coulomb/m2
- f: equivalent flat plate drag area of fuselage, m^2
- GJ: effective torsional stiffness of composite blade structure, $4A_{el}^2 c\int K_{el} \varepsilon^2 ds$, N-m2
- G^*: coefficient of internal friction in shear, N/m2/sec
- h: height of rectangular spar cross-section, m
- I_b: blade flapping inertia, $\int_0^R m_r^2 dr$, kg-m2
- I_b^*: blade flapping root moment of inertia, $\int_0^R m_r x^2 dr$, kg-m2
- K_{ij}: effective laminate stiffnesses neglecting hoop stress, N/m
- K_b: blade flapping root spring rate, N-m/rad
- K^*: blade pitch root spring rate, N-m/rad
- k_{λ}: polar radius of gyration of cross-section area about the elastic axis, m
1. INTRODUCTION

High vibratory loads problems exist throughout today’s civil and military helicopter fleet. Such vibratory loads place severe limits on the reliability and maintainability of vibration sensitive helicopter hardware, as well as limit the load carrying and forward flight speed capabilities of these vehicles. As a result, a high priority has been placed on reducing or eliminating these vibratory loads, and much work has been performed to develop various passive and active methods and mechanisms for achieving this task (Reichert, 1981; Loewy, 1984).

The primary sources of rotorcraft vibration can be traced to effects associated with the unsteady aerodynamic environment of the main rotor system. High tip Mach numbers on the advancing blade side, and stall effects on the retreating blade side produce many of the high oscillatory forces experienced by the rotor blades. Blade-vortex interaction and fuselage interference effects are also additional aerodynamic sources of rotor vibrations.

Past conventional rotorcraft vibration reduction schemes have often focused on dampening or alleviating undesirable vibrations after the fact. More recent active control techniques seek to eliminate or reduce these vibrations at their source, namely by modifying the unsteady aerodynamic forces acting upon individual rotor blades. These are the so-called “individual blade control” techniques, or IBC.
(Ham, 1987). Some form of IBC will most likely be required for future helicopters if the goal of a "jet smooth" ride is ever to be met.

1.1 Smart material IBC actuation schemes.

Although the IBC concept itself is not new, providing a practical means of actuating on-blade control surfaces, pitch, or twist of individual blades remains the principal difficulty in implementing individual blade control techniques on actual helicopters. Adaptive, or smart, materials have been examined by many researchers as a means of providing these sorts of actuation without employing complicated electromechanical or hydraulic mechanisms.

Flap actuation techniques using adaptive materials can, in principal, provide the power and displacement necessary to be used as a means of vibration suppression, and the development of effective smart material flap actuators has been examined by many researchers (Spangler and Hall, 1990; Samak and Chopra, 1993; Giurgiuтиuc, et al, 1995). This approach still requires placement of additional mechanisms, with an attendant increase in complexity, into the rotating system. The requirement that much of the mass of these mechanisms must be placed aft of the blade pitch axis is also an undesirable characteristic. A more desirable technique, in terms of mechanical simplicity and aerodynamic efficiency, is the production of active blade twist through piezoelectric material actuators embedded in the blade structure (Barrett, 1990; Chen and Chopra, 1993; Derham and Hagood, 1996). Unfortunately, the effectiveness of the majority of these smart material twist actuation schemes, to date, has been relatively poor due, primarily, to the limited power and displacement capabilities of the available smart materials.

Despite these drawbacks, some encouraging developments in twist actuation of smart material structures continue to be made. Most recently, research in anisotropic twist actuation of plate structures using piezoelectric fiber composites (PFC) (Rodgers and Hagood, 1995; Bent, et al, 1995) has demonstrated that relatively high levels of twist actuation are potentially achievable. The application of interdigitated electrode technology (IDE) (Hagood, et al, 1993; Bent and Hagood, 1995) can in principle enhance the performance of these materials even further.

1.2 Previous work related to analysis of embedded smart material actuated rotor structures.

To date, there has been relatively little analytical work reported detailing the aeroelastic behavior of rotor blades incorporating embedded smart material actuators. Song and Lebrescu (1993) developed the equations of motion for a rotating, thin-walled, cantilevered beam structure incorporating embedded piezoelectric actuators. No aerodynamics were included in their study, and actuation of torsional motion was not considered. Nitzsche and Breitbach (1994) reported results of an analytical study to evaluate the ability of embedded piezoelectric materials to attenuate out-of-plane bending and torsional vibrations on a rotor blade structure. To accomplish this, they developed a rotor blade aeroelastic model incorporating quasi-static aerodynamics and a "directionally attached piezoelectric crystal" bending-torsion actuation scheme similar to that developed by Barrett. They concluded that the lightly damped torsional blade modes could be significantly affected on a practical blade structure without saturation of the piezoelectric materials.

Most recently, Derham and Hagood (1996) described work related to a joint Boeing/MIT effort to develop a system for actively twisting helicopter blades using interdigitated electrode piezoelectric fiber composite plies. They report achieving levels of twist up to 1.4 degrees in a bench test of a 1/16 Froude scaled model rotor blade. The vibration reduction potential of a proposed 1/6 Mach scaled model blade was also examined using a modified version of Boeing's TECH-01 comprehensive rotor analysis program. This analysis indicated that 70% to near 100% reductions in the Ω vertical hub shears (the principal vibratory load) could be achieved using an appropriately phased Ω frequency applied twisting moment couple. A couple magnitude associated with the maximum theoretically producible level of piezoelectric strain was used in this study.

1.3 Scope of this effort.

For the most part, aeroelastic analysis of rotor blades incorporating embedded smart material strain actuation is still very much in its infancy. In particular, there is a lack of simple analytical models suitable for conducting preliminary conceptual control and design studies for such rotor blade structures. In light of this, and in order to gain greater insight into the control and aeroelastic response issues related to induced twist smart structure rotor blades, a simple aeroelasticity model for a piezoelectric twist actuated helicopter rotor blade has been developed by the authors. This model is derived specifically for use in the investigation of phenomena related to torsional control and response of helicopter rotor blades incorporating piezoelectric twist. Terms related to both stiffness and piezoelectric free strain anisotropy have been included, which allows for a wide variety of piezoelectric actuation concepts to be evaluated. In this paper, a description of the derivation and numerical implementation of this model is given. Additionally, numerical examples demonstrating the twist actuation potential of three conceptual full-scale helicopter blade designs, each employing a representative form of piezoelectric actuation, are shown.

2. ANALYTICAL MODEL DESCRIPTION

In this section we will present aeroelastic equations of motion for a piezoelectric actuated helicopter rotor blade. For simplicity, only linear out-of-plane bending and torsion structural dynamics will be considered here. The aeroelastic formulation will follow a finite-state strip-theory approach, but will include a dynamic stall representation based on the ONERA model. The blade structural geometry will be idealized as a rectangular, closed-cell, thin-walled composite beam containing embedded piezoelectric material layers (Fig. 1), and we will develop the piezoelectric actuation equations for this structure allowing for stiffness and piezoelectric free strain anisotropy within the piezoelectric laminae.

2.1 Structural formulation

The equations of motion used here to were adapted from the general elastic bending and torsion deformation equations developed by Kaza and Kvatněk (1977). Due to the complexity of these equations, and elastic rotor blade equations of motion in general, it was necessary to apply some simplifying assumptions to the complete set of equations in order to obtain a more mathematically manageable model. An ordering scheme approach was used here to accomplish this. Use of such a procedure ensures that the most physically significant terms are retained, while allowing small terms to be consistently neglected. The ordering of parameters used in this study
was based on schemes applicable to rotorcraft vibrations, and is given in Wilkie and Park (1996).

Additional assumptions made to simplify the equations were, 1) that the blade precone angle and built in twist were assumed to be zero, 2) the blade structural cross-section was assumed to be doubly symmetric, and 3) the blade pitch radius of gyration could be approximated by the \(k_{m2} \) cross section integral (i.e., \(k_{m2}/k_{m2} \ll 1 \)).

Small angles were assumed throughout for \(\theta_{con} \) and \(\phi \).

Applying the ordering scheme, with the additional assumptions listed above, to Kaza and Keventer’s equations yields the following nondimensional partial differential equations of motion for blade out-of-plane bending and torsion.

\[
\ddot{w} - \left(\frac{T}{m\Omega^2 R^2 R} \right) \dot{w} + \left(\frac{E}{m\Omega^2 R^2 R^2} \right) \phi \phi - \left(\frac{k_m}{m\Omega^2 R^2 R} \right) \phi - \left(\frac{T}{m\Omega^2 R^2 R} \right) \dot{w} + \left(\frac{E}{m\Omega^2 R^2 R^2} \right) \phi \phi - \left(\frac{k_m}{m\Omega^2 R^2 R} \right) \phi
\]

(1)

\[
T \equiv \Omega^2 R^2 \int_0^L \bar{m} \bar{\bar{x}} d\bar{x}
\]

(3)

\[
\bar{m} = \frac{k_m}{m\Omega^2 R^2 R}
\]

Rotor blade coordinate systems and deflections are shown in Fig. 2. \(M_{pe} \) and \(Q_{pe} \) in Eq. (1) and Eq. (2) are the additional terms representing the piezoelectric induced bending and twisting moments producible with the blade structure. These terms will be derived in the piezoelectric control moment section below.

A modified Galerkin procedure (Duncan, 1937) is used here to obtain modal solutions to Eqs. (1)-(3). In this case, superposition solutions for \(w \) and \(\phi \) of the form,

\[
\bar{w}(\bar{x}, \psi) = \sum_{i=1}^L \bar{w}_i(\psi) W_i(\bar{x})
\]

(4)

\[
\bar{\phi}(\bar{x}, \psi) = \sum_{n=1}^M \bar{\phi}_n(\psi) \Phi_n(\bar{x})
\]

(5)

are assumed, where \(L \) and \(M \) are the number of out-of-plane bending and torsional modal functions respectively. In the modified Galerkin procedure, these modal functions need only satisfy the geometric boundary conditions on the blade. Work due to any nonfulfilled natural boundary conditions is accounted for with additional boundary terms in the equations. Substituting Eqs. (4)-(5) into Eq. (1), and performing the appropriate integrations, yields a set of \(L \) ordinary differential equations of the following form:

\[
\sum_{i=1}^L \bar{w}_i \int_0^L W_i W_i d\bar{x} + \sum_{j=1}^M \bar{w}_i \int_0^L \left(\frac{E}{m\Omega^2 R^2 R^2} \right) \Phi_j \Phi_j d\bar{x} = \int_0^L \frac{E}{m\Omega^2 R^2 R^2} W_i \Phi_j \Phi_j d\bar{x}
\]

(6)

\[
\sum_{i=1}^L \bar{w}_i \int_0^L \frac{T}{m\Omega^2 R^2 R} W_i \Phi_j \Phi_j d\bar{x} + \sum_{j=1}^M \bar{w}_i \int_0^L \left(\frac{k_m}{m\Omega^2 R^2 R} \right) \Phi_j \Phi_j d\bar{x} = \int_0^L \frac{T}{m\Omega^2 R^2 R} W_i \Phi_j \Phi_j d\bar{x}
\]

(7)

where \(n=1,L \). A similar procedure performed on Eq. (2) yields an additional set of \(M \) ordinary differential equations:

\[
\sum_{m=1}^L \bar{\phi}_m \int_0^L \frac{k_m}{m\Omega^2 R^2 R} \Phi_m \Phi_m d\bar{x} + \sum_{n=1}^M \bar{\phi}_m \int_0^L \frac{GJ}{m\Omega^2 R^2 R} \Phi_m \Phi_m d\bar{x} + \sum_{n=1}^M \bar{\phi}_m \int_0^L \frac{k_m}{m\Omega^2 R^2 R} \Phi_m \Phi_m d\bar{x} = \int_0^L \frac{GJ}{m\Omega^2 R^2 R} \Phi_m \Phi_m d\bar{x}
\]

(8)

\[
\sum_{n=1}^M \bar{\phi}_m \int_0^L \frac{Q_{pe}}{m\Omega^2 R^2 R} \Phi_m \Phi_m d\bar{x} + \sum_{n=1}^M \bar{\phi}_m \int_0^L \frac{K_p}{m\Omega^2 R^2 R} \Phi_m \Phi_m d\bar{x} = \int_0^L \frac{Q_{pe}}{m\Omega^2 R^2 R} \Phi_m \Phi_m d\bar{x}
\]

(9)

with \(\psi = 1, M \).

The \(K_p \) and \(K_s \) terms in Eqs. (6)-(7), which do not appear in Eqs. (3)-(4), are used to represent finite stiffnesses present at \(\bar{x} = 0 \). These terms can be used to account for the stiffness of a mechanical flapping spring placed at the blade root, or the inherent flexibility of the pitch control system.
Stiffness terms \((GJ, EI)\) in the above equations represent the effective stiffnesses of the combined piezoelectric/passive material blade structure. These terms were derived using the thin-walled, closed section, composite beam theory developed by Rehfield (1985). We have assumed that the resulting composite structure is elastically uncoupled, hence, potential elastic coupling terms have been ignored. The detailed derivation of the stiffness terms is given in Wilkie and Park (1996).

2.2 Aerodynamic formulation

The sectional lifting forces and moments are calculated using a technique based on the ONERA dynamic stall model developed by Tran and Petot (1981). The ONERA model uses differential equations in time to describe the unsteady aerodynamic lifting forces and pitching moments, including dynamic stall effects, acting upon an airfoil section undergoing arbitrary pitch and plunge motion.

2.2.1 Section lift formulation

Modifications to the ONERA model for general use in rotorcraft aerodynamic formulations have been made by Peters (1985), with nondimensional circulations employed as state variables instead of aerodynamic coefficients. The simplified lift circulation equations reported therein, which are well behaved in the reverse flow region of the rotor disk but do not give lift reversal, are used here (Eqs. (8)-(12)).

\[
\begin{align*}
\mathcal{L}_y &= \mathcal{L}_n + U_y (\Gamma_1 + \Gamma_2) \\
\mathcal{L}_x &= -U_y (\Gamma_1 + \Gamma_2) \\
\mathcal{L}_n &= \bar{b} s_* \dot{U}_y \\
\bar{k}^2 \Gamma_1 + \lambda \bar{k} &= \lambda a U_y + \delta \bar{b} \varepsilon \\
&= -w_* (1 + d_*^2) \left[U_x \Delta C_y + e \bar{k} \left(\dot{U}_x \Delta C_y + \frac{\partial \Delta C_y}{\partial \alpha} \dot{U}_y \right) \right]
\end{align*}
\]

\(\mathcal{L}_n\) in Eq. (10) is the nondimensional apparent mass lift. \(\mathcal{L}_x\) and \(\mathcal{L}_y\) are the components of the nondimensional lift in the airfoil section X and Y directions respectively, and \(\varepsilon\) is the geometric rate of rotation of the airfoil with respect to the air mass. The nondimensional section velocities \(U, U_x\) and \(U_y\) and section angle of attack, \(\alpha\), used in this study are presented in detail in Wilkie and Park (1996).

\(\Delta C_y\) in Eq.(12) is the difference between the linear model static lift coefficient, \(C_{yl}\), and the measured stalled lift coefficient, \(C_{ys}\), i.e., \(\Delta C_y = C_{ys} - C_{yl}\). The angle of attack dependent coefficients \((s, \lambda, \delta, d, w,\) and \(e)\) are derived from experimental two-dimensional unsteady airfoil tests using the parameter identification scheme described in

Figure 1. Idealized rectangular, thin-walled, closed-section piezoelectric blade structure.

Tran and Petot (1981). ONERA OA212 airfoil static lift coefficient data and stall parameter values were used in this model (Peters, et al, 1990).

2.2.2 Section Pitching Moment Formulation

Improvements to the basic ONERA pitching moment formulation have been made by Petot (1989) with further modifications made by Peters, et al (1990), and this is the representation used in this model. In this approach, the unstalled component of \(C_m\) is given explicitly through the static moment coefficient, which is a function of angle-of-attack only. This results in the elimination of one state per spanwise aerodynamic evaluation point in the model. Static pitching moment data used here was extrapolated from curves given in Peters, et al (1990), and from data provided by Tang (1995).

Figure 2. Rotor blade coordinate systems and deflections.
The stalled contribution to the section pitching moment is calculated using a circulation based model similar to that developed for section lift. The second order differential equation describing this stalled pitching moment circulation, defined as \(\Gamma_{\text{m}2} = UC_{\text{m}2} \), is shown below (13).

\[
\frac{E_{m2} + \frac{E_{m2}}{\phi}}{-r_{m2} U_{X} \Delta C_{\text{m}2}} - E_{m2} = E_{m2} \Delta C_{\text{m}2} \tag{13}
\]

The coefficients \(a_{m}, r_{m}, \) and \(E_{m} \) in Eq. (13) were found by Petot (1989) to have similar characteristics for many airfoils. Expressions for these coefficients, omitting subscripts, may be written as

\[
a_{m} = a_{b} + a_{c} \Delta C_{\text{c}2} \tag{14}
\]

\[
r_{m} = \left(r_{0} + r_{c} \Delta C_{\text{c}2} \right) \tag{15}
\]

\[
E_{m} = E_{c} \Delta C_{\text{c}2} \tag{16}
\]

Values of \(a_{b}, a_{c}, r_{0}, r_{c}, \) and \(E_{c} \) used in the present formulation are taken from the generic “mean airfoil” values proposed by Petot (1989).

2.2.3 Airloads calculation

The aerodynamic forcing integrals present in Eqs. (6)-(7) were calculated by evaluating the sectional aerodynamic forces and moments per unit length at \(N \) discrete points along the blade span. For ease of integration, section aerodynamic forces and moments were assumed to be constant over the width of each section. Consistent with the ordering scheme assumed in the structural formulation above, the final expressions for these aerodynamic loading integrals are

\[
\int_{0}^{x_{0}} T_{m} W_{m} d\xi = \frac{1}{6a} \sum_{i=1}^{N} \left[U_{m} \left(T_{m1} + T_{m2} \right) \right]_{\xi_{i}} W_{m} d\xi \tag{17}
\]

\[
\int_{0}^{x_{0}} M_{m} \Phi_{m} d\xi = \frac{E_{c} \sum_{i=1}^{N} \left[U_{m} \Delta C_{\text{c}1} + U_{m} \Delta C_{\text{c}2} + U_{m} \Delta C_{\text{c}3} \right]_{\xi_{i}}}{6a} + c_{m} E_{c} \left(\theta_{\text{c}2} + \phi \right)_{\xi} + \frac{1}{2 \pi} \left[U_{m} \left(T_{m1} + T_{m2} \right) + T_{m0} \right]_{\xi_{i}} \Phi_{m} d\xi \tag{18}
\]

(Note that the lifting moment expression used here (17), is an approximation valid for small \(\theta \) and conditions where \(U_{1} \ll U_{X} \).)

\(\bar{T}_{m} \), in Eqs. (17)-(18), is the radial location of the inboard edge of the \(i \)th aerodynamic section, \(\bar{r} = \bar{x} - \Delta \), where \(\bar{r} \) is the nondimensional radial location of the \(i \)th aerodynamic evaluation point, and \(\Delta \) the associated nondimensional section width.

2.3 Piezoelectric control moment formulation

Bent, et al (1995), developed actuator equations for piezoelectric fiber composites using conventional poling. We will follow their approach here, although we will assume an interdigitated electrode scheme (Hagood, et al, 1993). Their notation has been adapted accordingly.

Assuming in-plane structural anisotropy in the piezoelectric material, and further assuming conditions of plane stress \((T_{3} = 0) \), the standard linear piezoelectric constitutive relations (ANSI/IEEE Std 176-1987, 1988) may be rewritten as

\[
\begin{pmatrix}
D_{1} \\
D_{2} \\
S_{1} \\
S_{2} \\
S_{3}
\end{pmatrix} =
\begin{pmatrix}
\varepsilon_{11} & 0 & 0 & d_{11} & d_{12} & 0 \\
0 & \varepsilon_{22} & 0 & 0 & d_{12} & 0 \\
0 & 0 & \varepsilon_{33} & 0 & 0 & 0 \\
d_{11} & 0 & 0 & s_{11}^{'E} & s_{12}^{'E} & 0 \\
d_{12} & 0 & 0 & s_{12}^{'E} & s_{22}^{'E} & 0 \\
0 & d_{26} & 0 & 0 & 0 & s_{66}^{'E}
\end{pmatrix}
\begin{pmatrix}
E_{1} \\
E_{2} \\
T_{1} \\
T_{2} \\
T_{3}
\end{pmatrix}
\tag{19}
\]

or more compactly

\[
\begin{pmatrix}
D \\
S
\end{pmatrix} = \begin{pmatrix}
\varepsilon & d' & s' & T
\end{pmatrix}
\begin{pmatrix}
E
\end{pmatrix}
\tag{20}
\]

where

\[
\begin{pmatrix}
D \\
E \\
S \\
T
\end{pmatrix} = \begin{pmatrix}
D_{1} & E_{1} & S_{1} & T_{1} \\
D_{2} & E_{2} & S_{2} & T_{2} \\
D_{3} & E_{3} & S_{3} & T_{3}
\end{pmatrix}
\tag{21}
\]

As in Bent, et al (1995), the \(S_{3} \), \(S_{6} \), and \(S_{5} \) strains, although not necessarily zero, have been neglected here. Note that we have assumed poling of the piezoelectric material in the 1-direction, instead of the standard 3-direction, in accordance with the assumption of IDE poling.

Rewriting Eq. (20) with strains \((S) \) as independent variables yields
\[
\begin{bmatrix}
\mathbf{D} \\
\mathbf{T}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{r} & \mathbf{e} \\
-\mathbf{e}^T & \mathbf{c}
\end{bmatrix}
\begin{bmatrix}
\mathbf{E} \\
\mathbf{S}
\end{bmatrix}
\] (22)

where

\[
\mathbf{e}^E = (\mathbf{e}^E)^{-1} \mathbf{e} = \mathbf{d} \mathbf{e}^E \quad \mathbf{e}^T = \mathbf{e}^T - \mathbf{d} \mathbf{e}^E (\mathbf{d})^T
\] (23)

The relationships between field components given in the global, or beam coordinate system, and those in a system rotated by an angle \(\theta_{\text{ply}}\) about the 3-direction (see Fig. 3) are given by

\[
\begin{bmatrix}
\mathbf{D} \\
\mathbf{T}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{r}_E & \mathbf{e} \\
-\mathbf{e}^T & \mathbf{c}_E
\end{bmatrix}
\begin{bmatrix}
\mathbf{E} \\
\mathbf{S}
\end{bmatrix} = \mathbf{R}_E \mathbf{S} \quad \mathbf{T} = (\mathbf{R}_E)^{-1} \mathbf{T}
\] (24)

where \(\mathbf{R}_E\) and \(\mathbf{R}_S\) are respectively the applicable matrix of direction cosines and strain transformation matrix (see Jones (1975)). In terms of the actuator coordinate system, Eq. (22) then becomes

\[
\begin{bmatrix}
\mathbf{D} \\
\mathbf{T}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{r}_E & \mathbf{e} \\
-\mathbf{e}^T & \mathbf{c}_E
\end{bmatrix}
\begin{bmatrix}
\mathbf{E} \\
\mathbf{S}
\end{bmatrix}
\] (25)

Substituting Eq. (24) into Eq. (25) yields constitutive relations expressed in terms of the global field variables.

\[
\begin{bmatrix}
\mathbf{D} \\
\mathbf{T}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{R}_E \mathbf{r}^T \mathbf{R}_E & \mathbf{R}_E \mathbf{e} \mathbf{R}_S \\
-\mathbf{R}_E \mathbf{e}^T \mathbf{R}_E & \mathbf{R}_E \mathbf{c} \mathbf{R}_S
\end{bmatrix}
\begin{bmatrix}
\mathbf{E} \\
\mathbf{S}
\end{bmatrix}
\] (26)

For convenience, the electric fields and displacements will be defined as being specified along the actuator system 1-direction only. As a simplifying abstraction, the electric field within the piezoelectric material will also be assumed to be an average of the field strength between alternating electrodes. Equation (26) then reduces to

\[
\begin{bmatrix}
\mathbf{D} \\
\mathbf{T}
\end{bmatrix} =
\begin{bmatrix}
\mathbf{R}_E \mathbf{r}^T \mathbf{R}_E & \mathbf{R}_E \mathbf{e} \mathbf{R}_S \\
-\mathbf{R}_E \mathbf{e}^T \mathbf{R}_E & \mathbf{R}_E \mathbf{c} \mathbf{R}_S
\end{bmatrix}
\begin{bmatrix}
\mathbf{E} \\
\mathbf{S}
\end{bmatrix}
\] (27)

From Eq. (27), we can extract the stresses in the piezoelectric material arising solely from the application of an electric field, i.e.,

\[
\mathbf{T}_{\text{PE}} = -\mathbf{R}_E \mathbf{c} \mathbf{E}_1
\] (28)

A piezoelectric ply orientation angle which maximizes the actuator induced shear stress \(\mathbf{T}_{\text{PE}}\) is desired for the present study. This will occur for orientation angles of \(\theta_{\text{ply}} = \pm 45^\circ\). Equation (28) then, for the case of \(\theta_{\text{ply}} = +45^\circ\), may be expanded as

\[
\begin{bmatrix}
\mathbf{T}_{\text{PE}} \\
\mathbf{T}_{\text{PE}} \\
\mathbf{T}_{\text{PE}}
\end{bmatrix} =
\begin{bmatrix}
-\frac{1}{2}(\mathbf{e}_{11} + \mathbf{e}_{12}) \\
-\frac{1}{2}(\mathbf{e}_{11} + \mathbf{e}_{12}) \\
-\frac{1}{2}(\mathbf{e}_{11} + \mathbf{e}_{12})
\end{bmatrix}
\] (29)

For the idealized closed, rectangular, thin-walled section considered here, the total piezoelectric induced bending moment may be found to be

\[
\mathbf{M}_{\text{PE}} = \int \mathbf{z}_1 \mathbf{T}_{\text{PE}} t_{\text{PE}} ds
\] (30)

where \(t_{\text{PE}}\) is the total thickness of all piezoelectric laminae. If the applied electric field and piezoelectric laminate properties of the spar structure do not vary around the contour, we can see immediately that the piezoelectric bending moment will be identically zero.

The piezoelectric induced shear flow for this structure, \(q_{\text{PE}}\), may be written as

\[
q_{\text{PE}} = \mathbf{T}_{\text{PE}} t_{\text{PE}}
\] (31)

The total piezoelectric torsional moment is thus

\[
\mathbf{Q}_{\text{PE}} = \int q_{\text{PE}} ds
\] (32)

\[
= 2hwq_{\text{PE}} = -2A_y \frac{1}{2}(\mathbf{e}_{11} - \mathbf{e}_{12}) \mathbf{E}_1 t_{\text{PE}}
\]

where \(h\) and \(w\) are the height and width of the rectangular cross-section, and \(A_y\) is the area enclosed by the wall centerline.

Expressing Eq. (32) in terms of the free strain piezoelectric coefficients, yields

\[
\mathbf{Q}_{\text{PE}} = -A_y \left(d_{11}(\mathbf{e}_{11}^E - \mathbf{e}_{12}^E) + d_{12}(\mathbf{e}_{12}^E - \mathbf{e}_{11}^E) \right) \mathbf{E}_1 t_{\text{PE}}
\] (33)
Three general cases are:

1. Case 1: \(d_{12} \neq d_{11}, \quad c_{11}^E = c_{22}^E \). This is the case of actuation lamina possessing piezoelectric free-strain anisotropy, and in-plane stiffness isotropy. This corresponds to a configuration where actuation layers are composed of solid, or monolithic, PZT materials, and are polarized according to the IDE scheme. This case will be referred to as IDE/MON for the remainder of the discussion.

2. Case 2: \(d_{12} \neq d_{11}, \quad c_{11}^E \neq c_{22}^E \). This is the case where the actuation lamina possess both free-strain and stiffness anisotropy. This would be true of a piezoelectric fiber composite, interdigitated electrode actuation scheme. This case will be referred to as IDE/PFC.

3. Case 3: \(d_{12} = d_{11}, \quad c_{11}^E \neq c_{22}^E \). This is the case of free-strain isotropy (or near isotropy) but with stiffness anisotropy in the actuating layers. This would be the case for a piezoelectric fiber composite structure utilizing a conventional poling scheme, or in an idealized sense, a case similar to the Directionally Attached Piezoelectric scheme originally proposed by Barret (1990). This scheme will be referred to as DAP/PFC.

4. RESULTS AND DISCUSSION

4.1 Piezoelectric twist actuated rotor blade conceptual design

Three conceptual piezoelectric induced twist rotor blade designs were examined in this study. These designs were developed in order to illustrate the twist actuation capabilities of the three general cases of piezoelectric actuation suggested by inspection of Eq. (34). These three general cases are:
Uniform blade properties were assumed in each case for simplicity. The piezoelectric material thickness fractions, t_{PE}, given here were calculated assuming that the blade total mass of each design could be no greater than 120% of the baseline full-scale helicopter blade mass. (The choice of 120% was essentially arbitrary, but represents a reasonable weight constraint on the design of the conceptual piezoelectric twist blades.) As a result, the torsional natural frequencies of the blade structures vary somewhat from the baseline design. Aerodynamic parameters used in the numerical case studies were not varied between the designs, and are shown in Table 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>$-\frac{\pi}{4} \left(1 + 1.4M^2\right)$</td>
</tr>
<tr>
<td>c_2</td>
<td>c_1</td>
</tr>
<tr>
<td>c_3</td>
<td>$\frac{3\pi}{16} \left(-1.26 - 1.53\tan^{-1}\left(15(M-0.7)\right)\right)$</td>
</tr>
<tr>
<td>M</td>
<td>0.30</td>
</tr>
<tr>
<td>$\bar{\nu}_w$</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>$\bar{\chi}$</td>
<td>{0.28 0.44 0.60 0.76 0.92}</td>
</tr>
<tr>
<td>Δ</td>
<td>{0.16 0.16 0.16 0.16 0.16}</td>
</tr>
</tbody>
</table>

Table 3. Structural parameters for numerical examples.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IDE/MON</th>
<th>IDE/PFC</th>
<th>DAP/PFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G/l\Omega^2R$</td>
<td>0.00447</td>
<td>0.00365</td>
<td>0.00365</td>
</tr>
<tr>
<td>γ</td>
<td>8.28</td>
<td>8.28</td>
<td>8.28</td>
</tr>
<tr>
<td>t_{PE}/t</td>
<td>0.1875</td>
<td>0.300</td>
<td>0.300</td>
</tr>
<tr>
<td>$\bar{\omega}_p$</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$\bar{\omega}_p$</td>
<td>5.60</td>
<td>5.14</td>
<td>5.14</td>
</tr>
<tr>
<td>$\bar{\omega}_p$</td>
<td>16.64</td>
<td>15.22</td>
<td>15.22</td>
</tr>
<tr>
<td>$\bar{\omega}_p$</td>
<td>59.67</td>
<td>58.58</td>
<td>58.58</td>
</tr>
</tbody>
</table>

Table 4 Aerodynamic parameters for numerical cases.

Figure 4 illustrates the structural response of the IDE/MON case. A sustained oscillatory elastic twist magnitude of approximately $\pm 1.25^\circ$ to $\pm 1.5^\circ$ is generated for excitation frequencies below the first torsional frequency. At the first torsional resonance, which is predominately an elastic torsional response, the amplitude increases to approximately $\pm 2.25^\circ$. A smaller torsional response occurs at the second and third torsional resonance frequencies.

The resonant response at the second and third torsional frequencies was found to vary widely depending on the amount of material and aerodynamic damping present in the structure. As the

4.2 Numerical twist actuation authority results

Numerically generated twist actuation authority results for each of the three piezoelectric induced twist blade designs are shown in Figs. 2-4. These results are for a typical one-g hovering flight condition, which corresponds to a thrust coefficient of $C_T = 0.00465$. One electrode segment extending from $x_0 = 0.1$ is assumed for all three structures. A sinusoidal electric field input with linearly increasing frequency and peak amplitude of F_{max} was used to generate the frequency responses (amplitude and phase with respect to the electric field input signal) shown in the figures. In these figures the elastic twist is defined as the difference between the elastic torsional deflection at the blade tip and that at the blade root.
torsional aerodynamic damping, from Eq. (18), is in general proportional to \(b^2 \), the corresponding aerodynamic damping for these two modes is almost negligible. Some additional form of damping is desirable then at these higher frequencies to avoid unrealistically large torsional deflections. As such, a level of material damping equivalent to 0.5% of critical damping was assumed for each of the cases presented here.

The actuation results for the IDE/PFC lamina design are shown for the same flight condition in Fig. 5. A level of actuation capability on the order of \(\pm 1^\circ \) to \(\pm 1.25^\circ \) of elastic twist is shown here. This is a level of performance slightly less than that demonstrated with the IDE/MON configuration. Although this may seem to imply that monolithic PZT laminae are more desirable for inclusion in piezoelectric actuated structures, manufacturing and poling nonplanar composite structures with solid PZT layers may not be practical. Piezoelectric fibers on the other hand could be incorporated into complex composite aerospace structures using, for the most part, established fiber composite construction techniques.

Figure 6 displays the twist actuation capabilities of the DAP/PFC blade design. Structurally, the DAP/PFC blade is identical to the IDE/PFC blade design, although the DAP/PFC blade utilizes conventional poling of the piezoelectric fibers. Relatively low nonresonant twist actuation is demonstrated for this actuation case, i.e., around \(\pm 0.2^\circ \) to \(\pm 0.25^\circ \) of elastic twist.

Comparison of the elastic twist actuation response of all three cases is shown in Fig. 7. The effect of the large free-strain anisotropies present in the IDE schemes on the magnitude of elastic twist is readily apparent. Both IDE poling cases exhibit generally four to five times the twist actuation magnitudes of the conventionally poled configuration. Such magnitudes of elastic twist are generally regarded as being sufficient for practical use in a vibration reduction scheme using individually controllable blade twist.

5. CONCLUSIONS

A simple helicopter rotor blade aeroelasticity analysis was developed and used to numerically demonstrate the twist actuation potential of embedded piezoelectric actuators for three nominally full-scale helicopter rotor blade designs. It was numerically demonstrated that useful nonresonant levels of oscillatory blade twist, i.e., on the order of \(\pm 1^\circ \), can potentially be produced without the addition of an excessive amount of piezoelectric actuator mass or saturation of the piezoelectric actuator materials, using an interdigitated electrode poling scheme with either a piezoelectric fiber composite or monolithic PZT actuation design.

The analysis and numerical model in its present form (i.e., with rigid flapping, elastic torsion and stall aerodynamics), should be sufficient for an examination of the potential of piezoelectric twist actuation to alleviate high oscillatory control loads induced by blade stall flutter (Ham and Young, 1966). Such a study is underway by the authors. Improvements to this model, such as the addition of multiple flapwise bending modes and a simple nonuniform inflow model, are also being undertaken.

REFERENCES

