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Abstract
The linear and the nonlinear stability of disturbances that propagate along the attach-
ment line of a three-dimensional boundary layer is considered. The spatially evolving
disturbances in the boundary layer are computed by direct numerical simulation (DNS) of
the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced either
by forcing at the in
ow or by applying suction and blowing at the wall. Quasi-parallel
linear stability theory and a nonparallel theory yield notably di�erent stability charac-
teristics for disturbances near the critical Reynolds number; the DNS results con�rm the
latter theory. Previously, a weakly nonlinear theory and computations revealed a high
wave-number region of subcritical disturbance growth. More recent computations have
failed to achieve this subcritical growth. The present computational results indicate the
presence of subcritically growing disturbances; the results support the weakly nonlinear
theory. Furthermore, an explanation is provided for the previous theoretical and compu-
tational discrepancy. In addition, the present results demonstrate that steady suction can
be used to stabilize disturbances that otherwise grow subcritically along the attachment
line.
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1. Introduction

On a swept wing, many instability mechanisms occur that can lead to the catastrophic

breakdown of laminar to turbulent 
ow. Contamination along the leading edge, Tollmien-

Schlichting waves, stationary or traveling cross
ow vortices, Taylor-G�ortler vortices, or

combinations of these modes are among the mechanisms that can lead to this breakdown.

For brevity, the discussion here will be limited to disturbances in the region of the attach-

ment line. For a more complete discussion of transition to turbulence on swept wings,

refer to the work of Tuttle and Maddalon (1982), which includes a review of literature on

laminar 
ow control, and that of Reed and Saric (1986), which includes a description of

the known physical mechanisms associated with transition. K�orner et al. (1987) present

a German perspective on the laminarization of transport aircraft, and Gad-el-Hak and

Bushnell (1991) discuss separation control on wings. The most recent and comprehensive

overview of experiments, theory, and computations related to boundary-layer transition

prediction and application to drag reduction is given by Arnal (1994).

Contamination at the leading edge results from turbulence at a fuselage/wing juncture,

which travels out over the wing and contaminates otherwise laminar 
ow on the wing. If

the Reynolds number of the attachment-line boundary layer is greater than some critical

value, then this contamination inevitably leads to turbulent 
ow over the complete wing;

this phenomenon has been demonstrated by Maddalon et al. (1990) and others. To correct

this problem, Gaster (1965) placed a bump on the leading edge to prevent the turbulent

attachment-line boundary layer from sweeping over the entire wing. This bump must be

shaped to create a fresh stagnation point without generating a detrimental adverse pressure

gradient. Outboard of the bump, a new laminar boundary layer forms.

Although the problem of turbulent 
ow that originates from the fuselage/wing junc-

ture and contaminates the entire wing can be avoided by using a device such as the Gaster

bump, a Reynolds number exists beyond which disturbances generated by surface im-
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perfections or particulates on the wing, when combined with noise, will eventually cause

transition. If we assume that the initiated disturbances are su�ciently small, hydrody-

namic stability theory could potentially be used to predict the spatial ampli�cation and

the decay of the disturbances along the attachment line. Gaster (1967) �rst examined this

small-amplitude disturbance problem by using acoustic excitation along the attachment

line of a swept cylinder model. Gaster fed the 
ow sine waves with various frequencies

that were detected by a hot-�lm gauge on the attachment line. He noted that the recorded

oscillations had preferred frequency bands that changed with tunnel speed and that this

behavior was similar to that of traveling-wave instabilities. From his measurements, he con-

cluded that the small-amplitude disturbances in an attachment-line boundary layer were

stable for momentum-thickness Reynolds numbers R� below 170 (the critical Reynolds

number was outside the experimental range); this value for the critical Reynolds number

is close to the theoretical value of 200, which is obtained by assuming a two-dimensional

(2D) attachment-line boundary layer. Later, Cumpsty and Head (1969) experimentally

studied large-amplitude disturbances and turbulent 
ow along the attachment line of a

swept-wing model. They observed that laminar 
ow is stable to small-amplitude distur-

bances up to R� ' 245 (which corresponds to the top speed of the tunnel). Cumpsty and

Head note that this observation remains consistent with the theoretical value; an accurate

theoretical value would need to account for three-dimensional (3D) e�ects. At the same

time, Pfenninger and Bacon (1969) used a wing swept to 45o to experimentally study the

attachment-line instabilities in a wind tunnel that was capable of the larger speeds nec-

essary to obtain unstable disturbances. With hot wires, they observed regular sinusoidal

oscillations with frequencies comparable to the most unstable 2D modes of theory; these

modes caused transition to occur at R� ' 240. A continued interest in transition initi-

ated near the attachment line of swept wings led Poll (1979, 1980) to conduct additional

experiments. With the swept circular cylinder model of Cumpsty and Head (1969), Poll
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de�ned criteria for the onset of turbulence and identi�ed the forms of the disturbances

present in the 
ow. Like Pfenninger and Bacon (1969), Poll observed disturbances that

ampli�ed along the attachment line. He noted that no unstable modes were observed below

R� = 230.

Using an eigenvalue problem approach, Hall et al. (1984) studied the linear stability

of disturbances in the attachment-line boundary-layer 
ow called swept Hiemenz 
ow,

which is illustrated in �gure 1. This 3D base 
ow is a similarity solution to the Navier-

Stokes equations; hence, its use is advantageous in stability analyses. By assuming periodic

instability modes along the attachment line, Hall et al. (1984) determined neutral curves

with and without the presence of steady suction and demonstrated that the attachment-

line boundary layer theoretically can be stabilized with small amounts of suction. Hereafter

the Hall et al. (1984) approach is referred to as a nonparallel theory because the study

accounted for all linear terms, including the wall-normal velocity component of the base


ow. Figure 2 shows the agreement between the neutral curve of Hall et al. (1984) and the

experimental results of Pfenninger and Bacon (1969) and Poll (1979, 1980). Spalart (1989)

used a direct numerical simulation (DNS) approach, based on the fringe method, to study

the leading-edge contamination problem. Small-amplitude disturbances were initialized

with white noise. Both stable and unstable Reynolds-number test points were selected to

assess the validity of the nonparallel theory by Hall et al. (1984). At the lower Reynolds

number, all disturbances decayed; at the higher number, at least one mode was ampli�ed.

The critical number predicted by Hall et al. (1984) fell within the Reynolds number range

used by Spalart; the results of the simulations indicate good qualitative agreement with

the linear theory. Furthermore, Spalart (1989) demonstrated that classical Hiemenz 
ow

is both linearly and nonlinearly stable. Theo�lis (1993a) performed DNS of the 2D linear

disturbances that propagate along the attachment line of swept Hiemenz 
ow. The DNS

results agreed with the theory of Hall et al. (1984) near branch II of the neutral curve, but
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the DNS predicted growing modes in a region of theoretical decay near branch I. Theo�lis

(1993a) attributed the disagreement between DNS and theory near branch I of the neutral

curve to the lack of DNS grid resolution; however, the DNS results di�ered by only a few

percent from the theory. Small-amplitude computations of Jim�enez et al. (1990) led to

results that agreed with the linear results of Hall et al. (1984) for both branch I and branch

II of the neutral curve. More recently, Joslin (1995) developed and used a fully 3D spatial

DNS code that utilized a Chebyshev series in both the wall-normal and 
ow-acceleration

directions and high-order �nite and compact di�erencing in the attachment-line direction.

The DNS results agreed with the neutral curve predicted by Hall et al. (1984). (Given

the signi�cant computational cost of the code described by Joslin (1995), a more e�cient

DNS code is used for the present study.)

As the initial amplitude of the disturbances in the attachment-line region become

large, the experimental results show considerable discrepancy between the onset of tran-

sition and the linear critical Reynolds number. Pfenninger and Bacon (1969) placed a

wire upstream of the attachment line and generated large-amplitude 
uctuations in the

boundary layer. They observed transition at R� = 155. In his study of leading-edge con-

tamination, Pfenninger (1965) discovered through in-
ight experiments that laminar 
ow

could be obtained for R� < 100; for R� > 100, leading-edge contamination occurred. In

their wind-tunnel experiments on a swept airfoil, Gregory and Love (1965) found that for

R� > 95 complete turbulence occurred. Flight tests by Gaster (1967) showed that turbu-

lent spots were �rst present at R� > 88. Cumpsty and Head (1967), and later Poll (1985),

used a swept model in a wind tunnel to show that turbulence was damped for R� < 99 and

that the leading edge was fully turbulent for R� > 114. Clearly, these experiments show

that large roughness elements have an e�ect on the boundary layer that is similar to that

of contamination. Namely, for R� < 100, disturbances are damped, and for R� > 100 the


ow becomes turbulent (note the wide gap between the linear critical Reynolds number of
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R� ' 245 and the nonlinear critical Reynolds number of R� ' 100).

Hall and Malik (1986) strived to bridge the gap between the nonparallel linear theory

and bypass transition Reynolds numbers by studying large-amplitude disturbances with

weakly nonlinear theory and temporal DNS. They note that subcritical instability is ob-

served at wave numbers that correspond to branch II of the neutral curve. Figure 2 shows

the subcritical instability region of Hall and Malik (1986) with the nonparallel linear sta-

bility neutral curves. Hall and Malik note that no upper branch modes appear in the

experimental results because of the subcritical nature of the bifurcation along most of the

upper branch. Consistent with the experimental results, large-amplitude disturbances be-

come unstable before the linear critical point and approach equilibrium states near branch

I of the neutral curve. Both Jim�enez et al. (1990) and Theo�lis (1993b) failed to �nd this

region of subcritical growth with a temporal DNS code. Jim�enez et al. (1990) contend

that this subcritical growth region does not exist.

Bridging the gap between the linear region of instability and the upstream region

of bypass is important for transition prediction and control. As a �rst step toward this

inherently nonlinear 3D process, the present study will focus on resolving the discrepancy

between the weakly nonlinear theory and supporting computations of Hall andMalik (1986)

and the two recent DNS computations. A well-tested 3D spatial DNS code described by

Joslin, Streett, and Chang (1992) is used to independently study both the linear and non-

linear instabilities that initiate and develop along the attachment line of a swept Hiemenz


ow. Regions near both branches (I and II) of the neutral curve are investigated with DNS

to simultaneously verify the form of the disturbances used in the DNS and the nonparallel

theory (eigenvalue approach) of Hall et al. (1984) for in�nitesimal disturbances; to deter-

mine if regions of nonlinear instability growth can be found near branch II, which may

resolve the discrepancy between the theory and the later DNS results; and to determine if

steady suction can be used to control instability growth.
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2. Problem formulation

In general, the velocities ~u = (~u; ~v; ~w) and the pressure ~p are solutions of the in-

compressible, unsteady Navier-Stokes equations. The instantaneous velocities ~u and the

pressure ~p may be decomposed into base and disturbance components as

~u(x; t) = U (x) + u(x; t) and ~p(x; t) = P (x) + p(x; t) (1)

where the base 
ow is given by the velocities U = (U; V;W ) and the pressure P , and

the disturbance component is given by the velocities u = (u; v;w) and the pressure p. A

Cartesian coordinate system x = (x; y; z) is used in which x is aligned with the attachment

line, y is wall normal, and z corresponds to the direction of 
ow acceleration away from

the attachment line.

Originally described by Hall et al. (1984), the base 
ow referred to as a swept Hiemenz


ow is a similarity solution to the incompressible 3D Navier-Stokes equations. Shown in

�gure 1, the 
uid comes straight down toward the wall; it turns away from the attachment

line into the �z directions to form a boundary layer. In the x direction, the 
ow is uniform.

In the absence of sweep, Uo is equal to 0 and the 
ow reduces to the 2D stagnation 
ow

�rst described by Hiemenz (1911). A boundary-layer thickness is de�ned in the yz-plane

as � =
p
�L=Wo; a Reynolds number, as R = Uo�=�; and a transpiration constant, as

� = Vo
p
L=�Wo, where � = 0 for the zero-suction case, Uo; Vo;Wo are velocity scales, and

L is the length scale in the 
ow-acceleration direction z. If the attachment line is assumed

to be in�nitely long, the velocities become functions of z and y only, and the similarity

solution can be found.

The equations for the base 
ow were given by Hall et al. (1984). If the solutions of

these equations are nondimensionalized with respect to the attachment-line velocity Uo,

the boundary-layer thickness �, and the kinematic viscosity �, then the base 
ow is

U(Y ) = Û(Y ); V (Y ) =
1

R
V̂ (Y ); and W (Y;Z) =

Z

R
Ŵ (Y ) (2)
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where fX;Y;Zg = fx; y; zg=�, the hats refer to similarity variables, and Û ; V̂ ; Ŵ are ob-

tained by solving the equations described by Hall et al. (1984). Note that in the character

of this similarity solution, U and V are uniform along the attachment line and W varies

linearly with distance from the attachment line. Because of the properties of this base 
ow,

both temporal and spatial DNS approaches should yield equivalent results in the 2D limit

for small-amplitude disturbances. However, the temporal DNS assumes that disturbances

are growing in time and that there exists a linear transformation from temporal growth

to the realistic spatially growing instabilities. Hall and Malik (1986) realized subcritically

growing instabilities with a temporal DNS code, and, hence the di�erence between the

weakly-nonlinear theory and the previous computations should not be attributable to the

temporal DNS approximation. Although many previous studies have made use of the

temporal approach because of the computational savings over the spatial formulation, the

spatial and temporal formulations are only related in the linear limit, with the spatial

formulation being more representative of the true physical problem.

The disturbance portion of equation (1) is found by solving the 3D incompressible

Navier-Stokes equations in disturbance form as

@u

@t
+ (u � r)u+ (U � r)u+ (u � r)U = �rp+

1

R
r2u (3)

with the continuity equation and boundary conditions

u = 0 at Y = 0 and u! 0 as Y !1 (4)

For this study, disturbances are forced by suction and blowing at the wall or as un-

steady in
ow conditions. At the in
ow, solutions of the base 
ow (plus disturbances) are

forced, and the bu�er-domain technique by Streett and Macaraeg (1989) is employed as

the out
ow condition.
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3. Form of Disturbances

In general, disturbances on and near a 3D attachment-line region are of the 3D nature,

requiring solutions of the full 3D Navier-Stokes equations. However, as assumed in the

original theoretical study by Hall et al. (1984) and con�rmed in the DNS computations

by Spalart (1989) and Joslin (1995), a single mode in the attachment-line region of swept

Hiemenz 
ow can take the form

u = u(x; y; t); v = v(x; y; t); and w = w(x; y; t) � Z (5)

This form permits the w-velocity component of the disturbance to have a linear variation

with distance from the attachment line, which is the same as the base 
ow (see eqn.

2). While the amplitude of w varys linearly with distance from the attachment line,

the u and v components remain uniform with distance from the attachment line. The

subsequent computations by Jim�enez et al. (1990) and Theo�lis (1993a, 1993b) used this

same disturbance form and showed linear results near the neutral curve which were in

agreement with the Hall et al. (1984) theory and nonlinear results that failed to achieve

the subcritical growth predicted by the weakly-nonlinear theoretical and computational

results of Hall and Malik (1986).

In the present study, an alternate disturbance form is �rst used. Namely, the w-

velocity component of the disturbance and the transverse shear of the mean 
ow are

negligible; the disturbance becomes truely 2D along the attachment line. This implies

that w = 0 and @w=@Z = 0 on the attachment-line. Although this simpli�cation is

not consistent with the equations of motion, it turns out that the neglected terms have

little e�ect on the qualitative behavior of the computed disturbances. This assumption

allows us to use a pre-existing DNS solver, which has been tested for 2D instabilities

and 3D spanwise periodic disturbances in 2D and 3D base 
ows. This 2D assumption is

arguably valid because the 
ow is overwhelming dominated by the 
ow in the attachment-

line direction. The results will show that this disturbance assumption is apparently valid
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near the neutral curve and that the nonlinear subcritical trends agree both with the theory

and with the disturbance form in eqn. (5); however, quantitative agreement is not achieved

for the nonlinear comparisons.

A �nal series of simulations is performed with the linear variance form described by

eqn. (5) and used by Hall and Malik (1986) for their theory and computations and used

in subsequent computations by Jim�enez et al. (1990) and Theo�lis (1993a, 1993b). This

dependence requires solutions of the following momentum and continuity equations.

@u

@t
+ (U + u)

@u

@X
+ (V + v)

@u

@Y
+ v

@U

@Y
= �

@p

@X
+

1

R

�
@u2

@X2
+

@u2

@Y 2

�
(6)

@v

@t
+ (U + u)

@v

@X
+ (V + v)

@v

@Y
+ v

@V

@Y
= �

@p

@Y
+

1

R

�
@v2

@X2
+

@v2

@Y 2

�
(7)

@w

@t
+ (U + u)

@w

@X
+ (V + v)

@w

@Y
+ v

@W

@Y
+ (2W +w)w = �

@p

@Z
+

1

R

�
@w2

@X2
+
@w2

@Y 2

�
(8)

@u

@X
+

@v

@Y
+w = 0 (9)

The results for the disturbance described by eqns. (6-9), hereafter referred to as 3D

disturbances, will be shown to qualitatively agree with a 2D solution and the theory of

Hall and Malik (1986) provided the disturbance pressure gradient is of a particular form

in the 
ow-acceleration direction.

4. Numerical methods of solution

In the attachment-line (X) direction, fourth-order central �nite di�erences are used

for the pressure equation and sixth-order compact di�erences are used for the momentum

equations in the interior of the computational domain. At the boundary and near-boundary

nodes, fourth-order forward and backward di�erences are used. The discretization yields

a pentadiagonal system for the �nite-di�erence scheme and a tridiagonal system for the

compact-di�erence scheme. The approximations can be solved e�ciently by appropriate

backward and forward substitutions.
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In the wall-normal (Y ) direction, Chebyshev series are used to approximate the dis-

turbances at Gauss-Lobatto collocation points. A Chebyshev series is used in the wall-

normal direction because it provides good resolution in the high-gradient regions near the

boundaries. Furthermore, the use of as few grid points as possible results in signi�cant

computational cost savings. In particular, the use of the Chebyshev series enables an e�-

cient pressure solver. Because this series and its associated spectral operators are de�ned

on [-1, 1] and the physical problem of interest has a truncated domain [0; ymax], a trans-

formation is employed. Furthermore, a stretching function is used to cluster the grid near

the wall. For further details on the properties and the use of spectral methods, refer to

Canuto et al. (1988).

For time marching, a time-splitting procedure was used with implicit Crank-Nicolson

di�erencing for normal di�usion terms; an explicit three-stage Runge-Kutta (RK) method

by Williamson (1980) was used for the remaining terms. For details of the time-marching

procedure, refer to Joslin et al. (1992). The intermediate RK velocities are determined

semi-implicitly, the pressure is found by solving the Poisson equation, and the full RK stage

velocities are obtained by correcting the intermediate velocities with the updated pressure.

The above system is solved three consecutive times to obtain full time-step velocities.

To satisfy global mass conservation, an in
uence-matrix method is employed and is

described in some detail by Streett and Hussaini (1991), Danabasoglu et al. (1990, 1991),

and Joslin et al. (1992). For boundary-layer 
ow, four Poisson-Dirichlet problems are

solved for the discrete mode that corresponds to the zero eigenvalue of the system; single

Poisson-Neumann problems are solved for all other modes. To e�ciently solve the resulting

Poisson problem, the tensor-product method of Lynch et al. (1964) is used.

The bu�er-domain technique introduced by Streett and Macaraeg (1989) is used for

the out
ow condition. As shown by Joslin et al. (1992) for the 
at-plate boundary-layer

problem, a bu�er length of three disturbance wavelengths is adequate for traveling waves.
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The disturbances are assumed to be from the discrete spectrum, which exponentially decay

with distance from the wall. Both at the wall and in the far �eld, homogeneous Dirichlet

conditions are imposed. The base 
ow is used for the in
ow boundary condition.

Finally, disturbances are forced as unsteady in
ow conditions or by unsteady suction

and blowing of the wall-normal velocity component through the wall. For the former

forcing, u and v pro�les that are normalized by u are generated by some theory (e.g.,

quasi-parallel linear stability theory), and an amplitude is imposed. For the later forcing,

a harmonic source is introduced, the amplitude is based on the wall-normal velocity, and the

wave pro�les develop naturally in the 
ow. A similar technique has been used by (among

others) Danabasoglu et al. (1991) in their study of 
ow control by suction and blowing

in a channel 
ow. Although the disturbances may be generated by random frequency

input, the disturbances of interest here are forced with known frequencies. Essentially,

this disturbance generator is an alteration to the no-slip boundary conditions, which are

conventionally used for the wall condition in a viscous 
ow problem.

5. Linear Stability of Swept Hiemenz Flow

Here, an assessment is made in regard to the value of the Orr-Sommerfeld/Squire

equations (OS) formulation in attachment-line 
ow. Note that OS involves a quasi-parallel


ow assumption (i.e., V = 0), and that no amplitude information is included in the the-

ory. Figure 3 shows the neutral curves predicted with both the OS solver and the linear

theory of Hall et al. (1984), which accounts for all linear terms (i.e., nonparallel theory).

The nonparallel theory allows for a developing boundary layer (i.e., V 6= 0). The largest

disagreement in these results appears near the critical-point region. The theory of Hall

et al. (1984) predicts a critical Reynolds number that is more consistent with the experi-

ments, as shown in �gure 2. Although accurate growth rates of disturbances may not be

obtained with OS as a result of the quasi-parallel constraint, a good estimate of instability

wavelengths can be obtained. For example, with the Reynolds number R = 800 and the
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frequency ! = 0:1271, Hall et al. (1984) listed the wave number �r = 0:3385. Accord-

ing to OS for the same Reynolds number and frequency, the wavenumber �r = 0:3382

is obtained. Therefore, the terms that are neglected in the governing OS equations, but

retained in the Hall et al. (1984) theory, primarily a�ect the growth and decay rates of

the instabilities. Obviously, the spatial growth of the disturbances are of primary impor-

tance in transition studies; however, the OS tool can be used to quickly generate base

disturbance quantities such as �r = f(R;!) and pro�les. These quantities can be used, for

example, to determine the initial states for simulations. Although beyond the scope of the

present study, this comparison indicates the accuracy of OS in predicting attachment-line

instabilities and demonstrates how the nonparallel theory of Hall et al. (1984) improved

upon conventional OS.

Figure 3 also shows the locations on the Reynolds number/frequency plane where the

DNS is used to study the linear and nonlinear instabilities for the attachment-line 
ow.

The simulations are performed on a grid of 661 points (' 60 points per wavelength) along

the attachment line and 81 points in the wall-normal direction. The far-�eld boundary

is located at 50� from the wall, and the computational length along the attachment line

is 216:56�. This attachment-line length corresponds to 11 wavelengths for R = 570 and

! = 0:1249. For the time-marching scheme, the disturbance wavelength was divided into

320 time steps per period for small-amplitude disturbances and into 2560 time steps for

large-amplitude disturbances (stability considerations). The total Cray Y-MP time for a

simulation with a single processor was 1.5 hrs for small-amplitude disturbances and 12.0

hrs for large-amplitude disturbances.

Disturbances for the �rst simulations are forced at the computational in
ow with an

amplitude of A = 0:001% (i.e., arbitrary small amplitude). The Reynolds number R = 570

and the frequency ! = 0:1249 correspond to the region of subcritical growth found by Hall

and Malik (1986), where disturbances are linearly stable. Disturbances that evolve in both
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a base 
ow that complements the quasi-parallel OS assumptions (V = 0) and the full,

swept Hiemenz 
ow are computed with DNS. Although not shown here, the computed

disturbance decay rate and the wavelength in the quasi-parallel 
ow agree exactly with

OS. The disturbance that propagates in the complete swept Hiemenz 
ow closely retains

the wavelength predicted by OS, but decays at a slower rate than that predicted by OS.

This change in decay rate is consistent with the theory of Hall et al. (1984). From this

comparison, we �nd that the wall-normal velocity (V ) terms in the stability equations have

a destabilizing e�ect on the disturbance, which results in the modi�ed neutral curve shown

in �gure 3.

Additional simulations were conducted in the regions near branches I and II and in

the critical Reynolds number region to con�rm the neutral curve predicted by the theory.

The growth and decay of various frequency waves compared with the neutral solutions

were in agreement with the neutral curve as predicted theoretically by Hall et al. (1984),

computed by Spalart (1989), and computed more recently by Jim�enez et al. (1990) and

Theo�lis (1993a, 1993b). This suggests that the chordwise strain contribution, which was

neglected from the 2D DNS solver is insigni�cant for linear computations near the neutral

curve.

Finally, the e�ect of both steady suction and steady blowing on linear instability

growth in this region was documented. The results indicate that suction stabilizes the

disturbance and blowing signi�cantly destabilizes the disturbance. The e�ects of suction

and blowing on disturbances computed by DNS are in agreement with the theory of Hall

et al. (1984) for small-amplitude disturbances.

6. Nonlinear Growth of Subcritical Instabilities

Although the theoretical and computational results agree for the growth and decay

properties of linear disturbances along the attachment line, the nonlinear results di�er in

the subcritical behavior of disturbances. To resolve this discrepancy, the computed results
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from the present study are compared with the previous studies of Hall and Malik (1986),

Jim�enez et al. (1990), and Theo�lis (1993b). In addition, the e�ects of suction on unstable

modes are documented.

Figure 4 shows the evolution of the fundamental wave, the mean-
ow distortion, and

the harmonics from a simulation forced at the in
ow with a large amplitude of A =

12%, a Reynolds number of R = 570, and a frequency of ! = 0:1249. After a transient

region of adjustment, the fundamental wave encounters subcritical growth, which is in

agreement with the weakly nonlinear theory. Instantaneous and mean streamwise and

wall-normal velocity pro�les at various attachment-line locations are shown in �gures 5

and 6, respectively. The results in �gure 5 indicate that time-dependent distortions to

the base 
ow are observed, but the mean 
ow (U + uo), which consists of the base 
ow

and the mean-
ow distortion components, shows no noticable deviation from the base-
ow

solution. However, the results in �gure 6 indicate that both the time-dependent and mean

wall-normal pro�les undergo distortions because of the disturbance. To help understand

what e�ect these mean distortions would have on linear stability calculations, �gure 7

shows the wall-normal component of the base 
ow that corresponds to R = 570 and

R = 670. A comparison of these base-
ow pro�les with the mean 
ow of �gure 6 shows

that a large-amplitude disturbance produces a distortion to the base 
ow, which causes an

e�ective increase in the base Reynolds number. Although the increase in Reynolds number

alone does not account for the growing mode (based on linear stability analysis with the

same frequency), we surmise that (similar to nonparallel e�ects) nonlinear disturbances

broaden the neutral curve toward higher frequencies and lower critical Reynolds numbers.

However, these lower Reynolds numbers are no where near the R� = 100 limit for bypass

transition in experiments.

To control the subcritical growth of disturbances, various levels of suction are em-

ployed. Although Hall and Malik (1986) noted that suction makes the 
ow more suscepti-
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ble to subcritical instability growth, �gure 8 shows that this subcritical disturbance growth

can be controlled by using small levels of suction. If the 2D DNS results mimic the actual

3D behavior of the 
ow, then large-amplitude disturbances generated on the attachment

line can be controlled with a su�cient amount of suction.

To determine if nonlinear disturbance growth can be found above branch II of the neu-

tral stability curve and to ensure that the subcritical growth obtained both by Hall and

Malik (1986) and by DNS shown in �gure 4 did not arti�cially result from the disturbance

forcing at the in
ow boundary, the next sequence of simulations are forced by suction and

blowing at decaying modes that correspond to R = 684:2 and ! = 0:1249 and are repeated

at R = 684:2 and ! = 0:1230 (closer to branch II of the neutral curve). For the later test

point, the initial amplitudes of the disturbances for each simulation were incrementally

increased; the resulting disturbance evolutions are shown in �gure 9 (normalized by the

initial amplitude to show the relative growth e�ects). The otherwise linearly decaying

mode becomes ampli�ed because of the nonlinear forcing. Interestingly, as the initial am-

plitude is increased, the fundamental wave receives a smaller percentage of the total energy

injected into the 
ow. The evolution of the largest-amplitude disturbance and the e�ects

of steady suction on the disturbance amplitude are shown in �gure 10. The results fur-

ther demonstrate that small amounts of suction can be used to stabilize disturbances that

otherwise nonlinearly grow near branch II of the neutral curve. Larger forcing amplitudes

are required to obtain nonlinear growth with Reynolds numbers and frequencies further

away from the neutral curve, and, as expected, larger amounts of suction are required to

stabilize the disturbances.

At this point it is not clear why the results of Jim�enez et al. (1990) do not agree with

either the present DNS results or the previous theory and computations of Hall and Malik

(1986); however, from the present initial amplitudes required to achieve this subcritical

growth, Theo�lis (1993b) apparently could not force a disturbance with su�cient amplitude
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to realize this nonlinear growth.

7. 3D Nonlinear Subcritical Instabilities

It should be noted that the present results are achieved through the 2D simpli�cation.

In this section, the 3D instabilities are determined by solving eqns. (6)-(9). Note, that

by using the disturbance form given in eqn. (5), the Z dependence of the disturbance

is removed from the theoretical/computational problem, except for a partial derivative of

the pressure in eqn. (8). In fact, it is from this observation that we �nd a di�erence

between the studies of Hall and Malik (1986) and Jim�enez et al. (1990). It is apparent

from the manuscripts that di�erent assumptions were made for the pressure behavior in

the 
ow-acceleration direction.

In the studies of Hall et al. (1984) and Hall and Malik (1986), the disturbance pressure

was a function of (X;Y ) only. This leads to

@p

@Z
= 0� Z (10)

in eqn. (8) above. With this pressure form, a series of simulations were conducted by

solving eqns. (6)-(9). Figure 11 shows the fundamental mode and �rst harmonic of the

attachment-line direction velocity component compared with the previous 2D mode (Fig.

4). In agreement with the 2D qualitative behavior, the 3D mode undergoes subcritical

growth. Quantitative di�erences are apparent and expected due to the addition of eqn.

(8) and the modi�ed continuity equation. The energy content with distance along the

attachment line is probably a better measure of total disturbance growth or decay. Figure

12 shows this disturbance energy for various subcritical Reynolds numbers. For a �xed

initial disturbance amplitude, it is clear that the disturbance energy increases with distance

along the attachment line, in agreement with the theory and computations of Hall and

Malik (1986) and with the earlier 2D modal approximation.

In the study of Jim�enez et al. (1990), the disturbance pressure was assumed to be of

the same form of the base 
ow. Namely, pressure varied with the square of distance from
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the attachment-line in the 
ow-acceleration direction. They arrived at a pressure gradient

in the 
ow-acceleration direction which took the form

@p

@Z
= �1� Z (11)

Using this pressure form, a �nal simulation was conducted and the results are compared

in Figure 13 with the results using eqn. (10) as the 
ow-acceleration pressure gradient.

This simple di�erence in pressure leads to a decaying mode instead of nonlinear subcritical

growth. Hence, the disrepancy between the Jim�enez et al. (1990) computations and the

computations and weakly-nonlinear theory of Hall and Malik (1986) lie with an e�ective

pressure source di�erence.

This leads to an additional puzzling question: which pressure form should be used

for future simulations? To address this question, we turn to the fully 3D simulations of

Joslin (1995) for guidance. In those simulations, no aprior assumption was made for 
ow-

acceleration disturbance behavior. A harmonic-source suction and blowing disturbance

generator initiated the disturbances at a given frequency. Joslin (1995) showed that the w

disturbance velocity varied linearly with distance from the attachment line, in agreement

with the form described by eqn. (5). However, no attempt was made to study the dis-

turbance pressure �eld. At an arbitrary distance downstream of the source, the database

of Joslin (1995) was explored for pressure behavior and is shown in Figure 14, where the

maximum pressure is shown with distance from the attachment line. The results clearly

show that the pressure is uniform with distance from the attachment line for this type of

disturbance. This uniformity supports the pressure form of Hall and Malik (1986).

8. Concluding remarks

In this study, results are presented for the spatial direct numerical simulations (DNS)

of the 2D and 3D disturbances that propagate along the attachment line of a swept Hiemenz


ow. With a quasi-parallel base-
ow approximation, the small-amplitude disturbances
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were shown to grow and decay in agreement with linear stability theory. The true swept

Hiemenz base 
ow leads to a destabilization of disturbances, which agrees with the non-

parallel theory of Hall et al. (1984). Furthermore, the e�ect of steady suction and blowing

on small-amplitude disturbances was documented with DNS. In agreement with the re-

sults of Hall et al. (1984), suction stabilizes and blowing destabilizes the small-amplitude

disturbances.

Subcritical nonlinear disturbance growth was detected with a weakly-nonlinear theory

and computations by Hall and Malik (1986). Later, DNS studies by Theo�lis (1993b) and

Jim�enez et al. (1990) failed to �nd this nonlinear disturbance growth. The present 2D

and 3D simulations have detected nonlinear subcritical disturbance growth; these results

support the former theoretical and computational results of Hall and Malik (1986). Based

on the present results, the computations by Theo�lis (1993b) may not have achieved sub-

critical growth because the forcing amplitudes were apparently too small. Furthermore,

Jim�enez et al. (1990) apparently used a di�erent disturbance pressure form in the 
ow-

acceleration direction. The present study showed that this assumed variation in pressure

leads to a decaying subcritical mode, which qualitatively agrees with the results of Jim�enez

et al. (1990). These results suggest that the reason for the discrepancy may evidently be

attributable to di�ering disturbance pressure forms. The 3D DNS data of Joslin (1995)

tends to support the pressure form used by Hall and Malik (1986) for the types of distur-

bances considered.

Furthermore, the DNS results demonstrate that steady suction stabilizes the otherwise

nonlinearly growing disturbances. No nonlinear growing disturbances were detected near

branch I of the neutral curve; however, equilibrium-like states were found near branch I.

Although the present study has served to dissolve the previous discrepancy surround-

ing the subcritical growing disturbances, the results have not explained the physics of the


ow between the known limit of linear instability R� ' 245 and the bypass (or turbulence)
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limit of R� ' 100. The present nonlinear results suggest that the linear critical Reynolds

can be slightly reduced due to nonlinear e�ects; however, the true swept-wing bypass

problem likely involves potentially large and multi-frequency/multi-wavenumber 3D dis-

turbances. Hence, the explanation for bypass transition will involve these multiple modes,

which may be generated o� the attachment line. Furthermore, Joslin (1995) has shown

with fully 3D simulations that disturbance packets generated o� but near the attachment

line can transfer energy to the attachment-line region.

Hall & Seddougui (1990) studied oblique waves and their interaction in attachment-

line 
ow at the large Reynolds number limit. They note that close to the attachment

line a small band of destabilized oblique modes appear, interact with the 2D mode, and

cause a breakdown of the 2D mode. In addition, they note that oblique modes become

less important away from the attachment line and that low-frequency modes become the

dominant mechanism (i.e., stationary cross
ow modes). Lin & Malik (1994) performed 3D

linear computations which showed that, in addition to the dominant 2D symmetric wave

(studied here), both asymmetric and symmetric modes, which have phase di�erences with

distance from the attachment line, can be unstable depending on the Reynolds number.

Although these new modes are linearly stable in the subcritical region outlined by Hall and

Malik (1986), perhaps some combination of small (but �nite) amplitude modes may lead

to a better understanding of the region between the linear and bypass Reynolds numbers.

References

Arnal, D. (1994) Boundary layer transition: prediction, application to drag reduction.

AGARD FDP/VKI course on Skin friction drag reduction, Brussels, Belgium/March 2-6,

1992.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (1988) Spectral Methods

in Fluid Dynamics. Springer, New York.

20



Cumpsty, N. A. and Head, M. R. (1969) The calculation of the three-dimensional

turbulent boundary layer. Part III. Comparison of attachment-line calculations with ex-

periment. Aeron. Quart. 20, 99-113.

Danabasoglu, G., Biringen, S. and Streett, C. L. (1990) Numerical simulation of

spatially-evolving instability control in plane channel 
ow. AIAA Paper No. 90-1530.

Danabasoglu, G., Bringen, S. and Streett, C. L. (1991) Spatial simulation of instability

control by periodic suction and blowing. Phys. Fluids A, 3(9), 2138-2147.

Gad-el-Hak, M. and Bushnell, D. M. (1991) Separation control: Review. J. Fluids

Engng., 113, 5-30.

Gaster, M. (1965) A simple device for preventing turbulent contamination on swept

leading edges. J. Roy. Aero. Soc. 69, 788-789.

Gaster, M. (1967) On the 
ow along swept leading edges. Aeron. Quarterly 18,

165-184.

Gregory, N. and Love, E. M. (1965) Laminar 
ow on a swept leading edge. Final

Progress Report, NPL Aero. Memo., 26.

Hall, P., Malik, M. R. and Poll, D. I. A. (1984) On the stability of an in�nite swept

attachment line boundary layer. Proc. Roy. Soc. Lond. A A395, 229-245.

Hall, P. and Malik, M. R. (1986) On the instability of a three-dimensional attachment-

line boundary layer: Weakly nonlinear theory and a numerical simulation. J. Fluid Mech.

163, 257-282.

Hall, P. and Seddougui, S. O. (1990) Wave interactions in a three-dimensional

attachment-line boundary layer. J. Fluid Mech. 217, 367{390.

Hiemenz, K. (1911) Die grenzschicht an einem in den gleichf�ormigen 
�ussigkeitsstrom

eingetauchten geraden kreiszylinder. Thesis, G�ottingen 1911, Dingl. Polytechn. J., 326,

21



321.

Jim�enez, J., Martel, C., Ag�u�i, J. C. and Zu�ria, J. A., (1990) Direct numerical simu-

lation of transition in the incompressible leading edge boundary layer. ETSIA/MF-903.

Joslin, R. D., Streett, C. L. and Chang, C.-L. (1992) Validation of three-dimensional

incompressible spatial direct numerical simulation code|a comparison with linear stability

and parabolic stability equations theories for boundary-layer transition on a 
at plate.

NASA TP-3205.

Joslin, R. D. (1995) Direct simulation of evolution and control of three-dimensional

instabilities in attachment-line boundary layers. J. Fluid Mech. 291, 369-392.

Lin, R.-S. and Malik, M.R. (1994) The stability of incompressible attachment-line

boundary layers{A 2D-eigenvalue approach, AIAA Paper No. 94-2372.

K�orner, H., Horstmann, K. H., K�oster, H., Quast, A. and Redeker, G. (1987) Lami-

narization of transport aircraft wings: A German view. AIAA Paper No. 87-0085.

Lynch, R. E., Rice, J. R. and Thomas, D. H. (1964) Direct solution of partial di�erence

equations by tensor product methods. Num. Math. 6, 185-199.

Maddalon, D. V., Collier, F. S., Jr., Montoya, L. C. and Putnam, R. J. (1990) Transi-

tion 
ight experiments on a swept wing with suction. Laminar-Turbulent Transition, (D.

Arnal and R. Michel, eds.), Springer, Berlin, 53-62.

Pfenninger, W. (1965) Flow phenomena at the leading edge of swept wings. Recent

Developments in Boundary Layer Research, AGARDograph 97, May 1965.

Pfenninger, W. and Bacon, J. W., Jr. (1969) Ampli�ed laminar boundary-layer os-

cillations and transition at the front attachment line of a 45 degree swept 
at-nosed wing

with and without boundary-layer suction. Viscous Drag Reduction, (C. S. Wells, ed.),

Plenum, 85-105.

22



Poll, D. I. A. (1979) Transition in the in�nite swept attachment line boundary layer.

Aeron. Quarterly 30, 607-628.

Poll, D. I. A. (1980) Three-dimensional boundary layer transition via the mechanisms

of attachment-line contamination and cross
ow stability. Laminar-Turbulent Transition,

(R. Eppler and H. Fasel, eds.), Springer, Stuttgart, 253-262.

Poll, D. I. A. (1985) Some observations of the transition process on the windward face

of a long yawed cylinder. J. Fluid Mech. 150, 329{356.

Reed, H. L. and Saric, W. S. (1986) Stability and transition of three-dimensional 
ows.

In10th U.S. National Congress of Applied Mechanics, (J. P. Lamb, ed.), 457-468.

Spalart, P. R. (1989) Direct numerical study of leading-edge contamination. AGARD-

CP-438, 5.1-5.13.

Streett, C. L. and Hussaini, M. Y. (1991) A numerical simulation of the appearance

of chaos in �nite-length Taylor-Couette 
ow. Appl. Numer. Math. 7, 41-71.

Streett, C. L. and Macaraeg, M. G. (1989) Spectral multi-domain for large-scale 
uid

dynamic simulations. Int. J. Appl. Numer. Math., 6, 123-140.

Theo�lis, V. (1993a) Numerical experiments on the stability of leading edge boundary

layer 
ow: A two-dimensional linear study. Int. J. Num. Methods in Fluids 16, 153-170.

Theo�lis, V. (1993b) A spectral velocity-vorticity algorithm for the solution of the

incompressible Navier-Stokes equations. Numer. Methods in Laminar-Turbulent Flow, (C.

Taylor, ed.), Pineridge, 801{811.

Tuttle, M. H. and Maddalon, D. V. (1982) Laminar 
ow control (1976-1982). NASA

TM 84496.

Williamson, J. H. (1980) Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(1),

48-56.

23



A.L.

Q∞

➤

➤ ➤

ϕ
∞

➤

➤

Figure 1. Sketch of attachment-line region of swept Hiemenz 
ow.
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Figure 2. Neutral curve, experimental regions of instability growth, and theoretical region

of subcritical growth in attachment-line boundary layer. (F-frequency and R-Reynolds

number)
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Figure 3. Neutral curves, region of subcritical instability growth, and sample points for

DNS in attachment-line boundary layer.

26



Figure 4. Nonlinear subcritical disturbance growth in attachment-line boundary layer at

R = 570 and ! = 0:1249.
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Figure 5. Instantaneous (top) and mean (bottom) streamwise velocity pro�les of nonlinear,

subcritically growing disturbance in attachment-line boundary layer at R = 570 and ! =

0:1249.
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Figure 6. Instantaneous (top) and mean (bottom) wall-normal velocity pro�les of nonlin-

ear, subcritically growing disturbance in attachment-line boundary layer at R = 570 and

! = 0:1249.
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Figure 7. Wall-normal component of base 
ows that corresponds to R = 570 and R = 670.
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Figure 8. Control of nonlinear subcritical disturbance growth in attachment-line boundary

layer at R = 570 and ! = 0:1249 with suction.
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Figure 9. Nonlinear disturbance growth in attachment-line boundary layer at R = 684:2

and ! = 0:1230. (Disturbances normalized by initial amplitudes.)
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Figure 10. Control of nonlinear disturbance growth in attachment-line boundary layer at

R = 684:2 and ! = 0:1230 with suction.
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Figure 11. Nonlinear subcritical growth of 2D and 3D disturbances in attachment-line

boundary layer at R = 570 and ! = 0:1249.
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Figure 12. Nonlinear subcritical energy of 3D disturbances in attachment-line boundary

layer with Reynolds number at ! = 0:1249.
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Figure 13. Nonlinear subcritical energy of 3D disturbances in attachment-line boundary

layer at R = 570 and ! = 0:1249. (Pressure gradients of ���, Hall and Malik (1986) and

� � �, Jim�enez et al. (1990).
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Figure 14. Maximum pressure with 
ow-acceleration direction at X = 100 in attachment-

line boundary layer with Reynolds number at ! = 0:1249. (Results of 3D simulation by

Joslin (1995).)
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