Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems

Raineen N. Simons
Glenn Research Center, Cleveland, Ohio

David G. Hall
ZIN Technologies, Inc., Brook Park, Ohio

Félix A. Miranda
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076
Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems

Raineen N. Simons
Glenn Research Center, Cleveland, Ohio

David G. Hall
ZIN Technologies, Inc., Brook Park, Ohio

Félix A. Miranda
Glenn Research Center, Cleveland, Ohio

Prepared for the
Radio and Wireless Conference (RAWCON 2004)
sponsored by the Institute of Electrical and Electronics Engineers
Atlanta, Georgia, September 19–22, 2004

National Aeronautics and
Space Administration

Glenn Research Center

August 2004
Acknowledgments

The NASA Glenn Research Center’s Commercial Technology Office under the research project entitled “RF Telemetry for BioMEMS Sensors and Actuators” supported this work. In addition, the authors are grateful to Dr. Jack East and Mr. Yongshik Lee, of the EECS Department, University of Michigan, Ann Arbor, for the fabrication of the spiral inductor with a serrated ground plane on a HR-Si wafer.

This report contains preliminary findings, subject to revision as analysis proceeds.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov
Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems

Rainee N. Simons, David G. Hall, and Félix A. Miranda

1National Aeronautics and Space Administration, Glenn Research Center, Cleveland, Ohio 44135
2ZIN Technologies, Inc., Brook Park, Ohio 44142

Abstract — The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.

I. INTRODUCTION

The biological and physical sciences program at NASA seeks to develop telemetry based implantable sensing systems to monitor the physiological parameters of humans during space flights [1]. This focus is rather unique when compared to efforts by other investigators, which have been mainly in the area of RF/microwave applications in medical treatment and biological effects [2]. In two recent papers [3], [4], the authors have presented the development of a micro inductor/antenna for implantable bio-microelectromechanical systems (bio-MEMS) based capacitive pressure sensors and a printed multi-turn loop antenna for an external hand held unit, respectively. In the above developmental effort, the loop antenna through the inductor/antenna activates and also acquires RF telemetry data from the implanted sensor. In addition to the above, a third paper by the authors demonstrated signal coupling through stratified media represented by muscle tissue-like and fatty tissue-like phantoms placed between the micro inductor/antenna and the loop antenna [5].

In this paper, we further advance the development of the implantable inductor/antenna by taking into consideration the presence of an inevitable lower ground plane and its influence on the inductance and quality factor. In addition, we also investigate the radiation patterns of the printed multi-turn loop antenna in the external hand held unit. The above investigations are covered by two patent applications, one of which has been recently granted [6], [7].

II. WIRELESS RF TELEMETRY SYSTEM

The contact-less powering and telemetry concept, including the miniature square spiral inductor/antenna circuit intended for integration with a MEMS pressure sensor, is illustrated in Fig. 1(a). The pressure sensor is of the capacitive type and is located in the annular region of the inductor. The inductor behaves both as an inductance as well as an antenna thereby allowing the sensor to receive as well as radiate out energy. In the receive mode, the inductance picks up energy and charges the MEMS pressure sensor diaphragm capacitance. In the transmit mode, the above inductance and capacitance form a parallel resonant circuit and radiate energy through the inductor which now behaves as a planar spiral antenna. To obtain a pressure reading, a pulse emitted by the hand held unit initially interrogates the sensor. At the rising and the falling edges of this pulse a voltage is induced in the spiral inductor thus implementing contact less powering. The waveform of this induced voltage is a decaying sine wave. These oscillations also cause the inductor to radiate energy that is picked up as a telemetry signal by the receiving antenna in the hand held unit. Since the inductance of the implanted sensor circuit is fixed, the frequency of the decaying sine wave is mainly determined by the capacitance introduced by the sensor. Thus, the larger the pressure difference, the larger the frequency offset between the received telemetry in the two pressure states. The implanted bio-MEMS sensor and the hand held unit together form the wireless RF telemetry system [6], [7] as illustrated in Fig. 1(b).

Fig. 1. Contact-less powering and telemetry. (a) Concept. (b) Application in biosensors.
III. PRESSURE SENSOR AND SQUARE SPIRAL CHIP INDUCTOR/ANTENNA

A schematic rendition of the pressure sensor is shown in Fig. 2(a). The pressure sensor consists of a diaphragm suspended over a cavity micromachined from a silicon wafer and is of the capacitive type with capacitance change in the range of 0.3 to 4 pF [3].

Figure 2(b) shows a schematic of the square spiral chip inductor/antenna. The outer dimensions of the inductor are about 1×1 mm, and the inductor is fabricated on a spin-on-glass (SOG) coated high resistivity silicon (HR-Si) wafer to reduce the attenuation of the signals. An initial estimate based on the capacitance values of the pressure sensor show that an inductance (L) with a quality factor (Q) of about 150 nH and 10 respectively, are adequate for the application described above. The frequency range over which this device is intended to operate is from 200 to 700 MHz which includes the Federal Communications Commission (FCC) designated bands. Figure 2(c) shows a SEM picture of a typical inductor/antenna circuit. The fabrication procedures as well as the results of a parametric study of these inductors are presented in [3].

The presence of a parasitic lower ground plane introduced by the capacitive pressure sensor degrades the inductance and quality factor of the inductor. Hence, to investigate these problems spiral inductors with different types of ground planes as illustrated in Fig. 3 were fabricated. In the initial phase of the study, the inductors were expeditiously fabricated on low cost copper-clad Duroid® (registered trademark of Rogers Corporation) substrates and evaluated. From this study, the most promising design was picked and transferred to silicon, which is the material of choice for the sensor. Subsequently, several inductors based on this design concept were fabricated on a HR-Si wafer.

IV. PRINTED MULTI-TURN LOOP ANTENNA

The printed multi-turn loop antenna in the hand held unit is illustrated in Fig. 4. For maximum sensitivity, the input impedance of the loop antenna is matched by a lumped element PI-network to the 50 Ω input impedance of the MMIC low noise amplifier (LNA) chip in the receiver. The circuit and fabrication details of the antenna are presented in [3].
V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Inductance of Square Spiral Inductor with Different Types of Ground Planes on Duroid®

The circuits are experimentally characterized by measuring the return loss S_{11} using on-wafer RF probing techniques. From the measured S_{11}, the inductance L and the quality factor Q are analytically determined. Figure 5 shows the inductances as a function of the frequency for inductors with four types of ground planes. It is observed that the inductance degrades in the presence of either a solid full or a solid ring ground plane. This is because the image current in the aforementioned ground planes flows in a direction opposite to the current on the spiral thereby reducing the magnetic field and thus the overall inductance [8], [9]. In contrast, it is interesting to observe that the inductance of the inductor with a serrated ring ground plane is about the same as that of an inductor without a ground plane. This is because the slots in serrated ground plane act as open circuits and thus suppress the flow of image current [8], [9].

B. Quality Factor of Square Spiral Inductor with Different Types of Ground Planes on Duroid®

The peak Q value for the four inductors shown in Fig. 3 are presented in Table I. It is interesting to note that the peak Q for the inductors with and without a serrated ground plane is about the same. From this initial study of L and Q it was concluded that the serrated ground plane is ideally suited for mitigating image current effects.

C. Inductance and Quality Factor of Square Spiral Inductor with Serrated Ground Plane on High Resistivity Silicon Wafer

The L and Q of the inductors in previously reported studies [3] were without a lower ground plane. From that study it was evident that peak Q and corresponding L as high as 10.5 and 153 nH respectively were achievable. To investigate the effect of the lower ground plane, this inductor was reproduced on a HR-Si wafer with a serrated ground plane on the opposite side. The measured Q and L as a function of frequency are presented in Fig. 6. The peak Q and the corresponding L are about 8.2 and 130 nH, respectively. By comparing the two sets of results it is evident that there is a small degradation in the peak Q and corresponding L values. Nevertheless, the serrated ground plane clearly demonstrates its efficacy to mitigate image currents effects.

D. Radiation Pattern of Printed Multi-Turn Loop Antenna

In Fig. 7, the experimental setup for measuring the radiation patterns of the multi-turn loop antenna in the hand held unit and the coordinate system are schematically illustrated. A short dipole antenna is used as the transmitting antenna. In a typical medical diagnostic situation, the radiation emanating from the implanted chip radiator may be vertically, horizontally or slant polarized. Hence, to emulate all possibilities, the radiation patterns of the multi-turn loop antenna are measured in three different polarizations: vertical, horizontal, and slant.
pattern of the loop is measured with the transmitting dipole vertically, horizontally, and slant (45°) polarized. In Fig. 8, the measured radiation patterns of the multi-turn loop in the $\phi = 0^\circ$ or horizontal (x-z) plane are presented. Since the loop antenna is symmetric it is expected to have similar patterns in the $\phi = 90^\circ$ or vertical (y-z) plane also. From these measurements it is inferred that the loop is a very versatile antenna capable of providing hemispherical coverage and also receiving signals with any of the above polarizations.

E. Received Relative Signal Strength

To emulate a typical operating condition in a medical diagnostic application, the hand held unit with the loop antenna is held at a height of 10 cm and coaxial with the inductor. The measured relative signal strength magnitudes are presented in [3] and [5]. It is observed that at the frequency of best impedance match, the loop is capable of discriminating against noise with better than 20 dB signal-to-noise ratio.

VI. CONCLUSIONS

The development of a wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz is presented. In addition, the use of a serrated ground plane instead of a continuous ground plane to mitigate detrimental effects of image currents on inductance and quality factor of printed inductors is demonstrated. Furthermore, radiation pattern measurements demonstrate that the multi-turn loop antenna in the hand held unit is capable of providing hemispherical coverage and also receiving signals emanating from the implanted sensor with vertical, horizontal or slant polarization.

REFERENCES

[2] Mini-Special Issue on RF/Microwave Applications in Medicine (Part I) and Special Issue on Medical Application and Biological Effects of RF/Microwaves (Part II), IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, Nov. 2000.

Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems

Rainee N. Simons, David G. Hall, and Félix A. Miranda

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.