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ABSTRACT 

The Kirchhoff formula for radiation from stationary 
surfaces first appeared in 1882, and it has since found many 
applications in wave propagation theory. In 1930, Morgans 
extended the formula to apply to surfaces moving at speeds 
below the wave propagation speed; we refer to Morgans' 
formula as the subsonic formulation. A modern derivation of 
Morgans' result was published by Farassat and Myers in 
1988, and it has now been used extensively in acoustics, 
particularly for high speed helicopter rotor noise prediction. 
Under some common conditions in this application, however, 
the appropriate Kirchhoff surface must be chosen such that 
portions of it travel at supersonic speed. The available 
Kirchhoff formula for moving surfaces is not suitable for this 
situation. In the current paper we derive the Kirchhoff 
formula applicable to a supersonically moving surface using 
some results from generalized function theory. The new 
formula requires knowledge of the same surface data as in 
the subsonic case. Complications that arise from apparent 
singularities in the new formulation are discussed briefly in 
the paper. 

1. INTRODUCTION 

Since its first publication in 1882, the Kirchhoff formula 
has played a fundamental role in the study of optical, acoustic 
and electromagnetic wave propagation.'-2 The formula 
provides a representation of solutions to the homogeneous 
wave equation in regions interior or exterior to a closed 
surface in terms of data specified on the surface itself. Here 
we will call this surface the Kirchhoff surface. The original 
formula applies only to a stationary Kirchhoff surface. In 
many circumstances, however, it is convenient to have an 
analogous formula applicable to a moving surface, and such 
a result was derived by Morgan~ ,~  who extended the original 
formula of Kirchhoff to include surfaces moving at speeds 
below the wave speed in the propagation medium; we refer 
to Morgans' result as the subsonic Kirchhoff formula. A 
modem derivation this formula based on generalized function 
theory and in a form suitable for application was given by the 
authors in 1988." 

In addition to the fact that representation formulas of the 
Kirchhoff Qpe are of interest from a fundamental analytical 
standpoint, they have in recent years also assumed importance 
as computational tools for use in conjunction with CFD 
calculations. One illustration of the utility of the subsonic 
Kirchhoff formula is its successful application by Lyrintzis' 
to helicopter noise prediction. Here unsteady aerodynamic 
calculations were performed in the near field of a helicopter 
rotor in a reference frame fixed to the rotating blades (see 

fig. 1). These then provided data on a blade-fixed Kirchhoff 
surface like that indicated in fig. 1 for subsequent application 
of the subsonic Kirchhoff formula to determine the noise 
radiated by the blade. This particular application, however, is 
limited by the fact that under some commonly occurring 
conditions the shock system associated with a high speed 
helicopter rotor can extend well beyond the tip region, a 
phenomenon that has been called delocalization.6 To apply 
a (linear) Kirchhoff formula in this case requires that the 
entire shock system be included inside the Kirchhoff surface. 
Because part of the surface thus travels at supersonic speed, 
the available Kirchhoff formula for moving surfaces is not 
suitable. 

The primary difficulty with the subsonic formula is the 
appearance of the Doppler factor 1-M, in the denominator of 
the integrands, where M, is the component of the surface 
Mach number in the radiation direction. For supersonic 
surfaces, there exist directions in which M,=l, and thus 
singularities appear in the subsonic Kirchhoff formula. Here 
we derive a new Kirchhoff formula that does not contain the 
Doppler singularity. The new formula is actually valid for all 
surface speeds, but, because it is somewhat complex to code 
for computer applications, its use is not recommended for 
Kirchhoff surfaces, or portions or Kirchhoff surfaces, moving 
subsonically. In this paper, therefore, we refer to the new 
formula as the supersonic Kirchhoff formula. The analysis is 
carried out with a view toward practical numerical 
implementation. Thus, the new formula is derived for an 
open surface panel considered as a portion of the closed 
Kirchhoff surface. This allows its use to be restricted to just 
those parts of the Kirchhoff surface that are actually moving 
at supersonic speed. 

In the next section, the inhomogeneous source terms of 
the wave equation leading to the Kirchhoff formula are 
derived. In the following section, the solution of this wave 
equation is obtained which is valid for supersonically moving 
surfaces. This solution is the desired Kirchhoff formula. In 
the subsequent section the singularities associated with the 
new formula are briefly discussed. The main complications 
in the supersonic formulation are the existence of multiple 
emission times and the appearance of small or vanishing 
denominators in the algebraic expressions. We indicate how 
these complications can be overcome in applications. 

2. THE INHOMOGENEOUS WAVE EQUATION 

Our approach to deriving the supersonic Kirchhoff 
equation is similar to that of reference 4. The primary 
reference for the mathematics used in the derivation is a 
recent publication by the first a ~ t h o r . ~  Let us assume that the 
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moving Kirchhoff surface is defined byf(?l,t) = O  with f>O 
in the exterior of the surface and f<O in the interior. This 
function is selected in such a way that IVf I = 1 over the 
surface, which can always be done.' We are interested in 
radiation into the region exterior to the surface f=O. Let 
@(3,t)  satisfy the homogeneous equation in this region: 

(1) 1 a% e' =---paI=o 
c2 at2 

in which c is the speed of sound. To find the inhomogeneous 
source terms of the wave equation leading to the Kirchhoff 
formula, we extend CD to the entire three-dimensional space 
as follows: 

We now find 86 where 3 stands for the wave operator 
with generalized derivatives. 

Using the rules of generalized differentiation,'-'' we 
obtain 

1 3 6 - 1  $6 1 a@ i a  - - - - - --ha- 6(f) - - -Mn 0 S(f)] (3-b) 
cZ atz c2 at2 c at c at 

In eqs. (3) the bar over a derivative stands for generalized 
differentiation, and Mn=vJc is the local normal Mach 
number of the surface f+O. The Dirac delta function with 

support on f=o is denoted 6(f). The generalized Laplacian of d 
is similarly found as follows: 

Here S=Vf  is the local unit outward normal and 
a,, =ii-V@ on f =O.  From eqs. (3) and (4), and the fact that 

@d =0, we find 

The last two terms of this equation need further 
manipulations to make them suitable for the derivation of the 
supersonic Kirchhoff formula. We perform these 
manipulations below. 

In applications, the Kirchhoff surface is first divided into 
panels (Fig. 2-a). Some of these panels travel at supersonic 
speed, so that the subsonic Kirchhoff formula is not suitable. 
We therefore, derive the new formula for a single panel. Let 

us assume that a panel on f+O is defined by the equation of 

its edge curve, f = O .  We assume that f>O on the panel. We 
can always define f in such a way that Of=?  where v' is 
the local unit inward geodesic normal at the edge of the 
panel. The geodesic normal is tangent to the surface f=O and 

is normal to the edge of the panel f = f =O (see Fig. 2-b). For 
the open surface at this panel, the source terms of the wave 
equation in eq. ( 5 )  must be modified by the Heaviside 

function H e )  as €allows: 

wn Cg H(f) 6 (f) ] - V*[Q iiH(f) 6 (f)] i a  
c a t  

Now we carry out the time differentiation and divergence in 
the last two terms of eq. (6). We have 

_ _  a ~ n @ H @ ) 6 ( f ) ] = ~ ~ ( M  @)H(i')G(f) 
c a t  c a t  -'- (7) 

- MnMv @ 8(f) 6 (4) - Mt *He) S'(f) 

where a tilde under a function stands for the restriction of the 
function to the surface eo. '  The symbol MY =vv/c is the 

local Mach number of the edge f = f = 0 in the direction of the 
geodesic normal. Similarly, the last term in eq. (6) can be 
written as 

V*[Q iiH6) 6 (f)] = - 2Hf CP H(f) 6 (f) + Q H(f) 8/(f) (8) 

where H, is the local mean curvature of the surface e o .  
After substituting eqs. (7) and (8) into eq. (6) and collecting 
terms, we get 

c a t  c a t  1 H@)G(f) 

(9) 
-(1 - M ~ ) ~ H @ ) 6 / ( f ) + M , M v ( P  S(f)S@) 

This is the desired form of the inhomogeneous source terms 
of the wave equation. In the next section, we give the 
solution of eq. (9) which is the supersonic Kirchhoff formula. 

3. THE SUPERSONIC KIRCHHOFF FORMULA 

Equation (9) is now written as 

Note that q2 is restricted to f=O and hence is written as g2. 

Next we write d as the sum of three functions 
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-. (16-a.b) 

where these functions are the solutions of the wave equations 

2 @ = 9, (2, t)H(f) 6 (f) (12-a) 
9 CP, = g2(?,t)H(f) S'(f) (12-b) 

(12-c) 2 (P3 = q3 (2, t) 6 (F) 6(f) 

The solutions of these equations are given fully in reference 
7 (see solutions of eqs. 4.23-b, e, f in Ref. 7). Here we 
utilize these results directly and refer readers to the original 
source. 

The solution of eq. (12-a) is given by eq. (4.34) of 
reference 7 as follows: 

Q 
rA 

4n CPl(?,t) = L d C  
F=O 
P>O 

Here M,, is local normal Mach number on the panel and 
cos 8 = ii i , where r= (Z - f )/r is the unit radiation vector. In 
eq. (13) d C  is the element of surface area of the surface 

F=O,p>O. This is the surface formed by the curves of 
intersection of the collapsing sphere r =c(t-t),  (?,t) fixed, 
with the panel in motion as the source time r increases from --m 

to t. Figure 3 illustrates the construction of the C-surface for 
a panel. 

The solution of eq. (12-b) is given by eq. (4.42) of 
reference 7 in the form 

iw 
(15) 

P=O 

where Q2 = [q,W, r )I, and we have introduced the following 
symbols: 

In eq. (1 5 )  we have also denoted the mean curvature on the 
C-surface by H, , and dL is the element of the length of the 
edge of the C-surface. Below we will see why we must 
retain the restriction sign (-) in Q2 in the integrand of the 

surface integral. 

The solution of eq. (12-c) is given by eq. (4.49) of 
reference 7 as follows: 

Q3 4n CP,(?,t) = -dL 
F=O '4 
P-0 

After combining the eqs. (13), (15) and (17) we get 

ih.0 

loo P=O 

In eq. (19) we have explicitly performed the derivative a/aN 
in eq. (15) and separated the near and far field surface 
integrals. We note that 

where the symbol q2 is used for dq,@,r)/ar. From eq. 
(16-b), we have 

- 1  1 N = - [" - M,(ii COS 0 +il s ~ I I ~ ) ]  = - (1 - M,COS 0) ii 
h A 

M,sin8 -, (21) 
f- 

A t 1  

a 
in which is the unit vector along the projection of 1 on 

the local tangent plane of 6 0 .  Since %,/i3n=O (this a 

property of the restriction7 ), we get 
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Kirchhoff formula from eq. (25) when the surface is 
stationary. We assume a closed surface described by 
f(y) =O. In  this case there is no line integral and we have 

(26-a) F(y';x',t) =f(y') = O  

(26-b,~) where a/&, is the directional derivative in the direction of - M,=O , h = l  
t ,  (keeping T fixed). We also have 

H , = H f ,  q1=-0 , -2HfQ,  (26-d,e) 

(23) 
M, -COS 0 

f i . V r =  
A q 2 = @  9 q ,=O,  d C = d S  (26-f,g,h) 

which, when substituted in eq. (20), gives where dS is the element of the surface area of f=O. 
Substitution of these results in eq. (25), yields M sin0 aQz c ~ 0 - M ~  

- @cos0 dS a *VQ2 = L - + 62 (24) A a o ,  CA 
4 n & ( l , t ) = /  ~ [ ~ - l c o s 0 & ' - 4 , ] ~ d S + [  - 

f-0 r2 

In eq. (24), Q, stands for (8q2/dr), and the directional 
derivative again is calculated keeping T fixed. Finally, after 
using eqs. (23) and (24) in eq. (19), we get 

Equation (25) is the supersonic Kirchhoff formula and is the 
main result of this paper. We will discuss the above result 
further below. 

First, however, we remark on the significance of utilizing 
the restriction of the function q2 to the surface f=O in the 
derivation of eq. (25). The key property of the restriction is 
that aq,/an=O, which allows the derivative in the directionN 

in eq. (15-b) to be evaluated very simply (see eq. (22)). If 
we had not introduced the restriction, the ultimate result 
would still be eq. (25), but it would contain a number of 
extra terms arising from unnecessary differentiation of q2 in 
the direction ii. The extra terms, of course, cancel one 
another, but is difficult to recognize the cancellation in the 
form in which the terms arise in eq. (25). Using q2 leads 

directly to the above result which the authors believe is the 
simplest possible expression of the supersonic Kirchhoff 
formula. 

One important fact that we point out here is that eq. (25) 
is valid for a Kirchhoff surface in arbitrary motion, including 
motion at subsonic speed. However, we do not recommend 
its use for subsonic speeds because the formula presented by 
the authors in reference 4 is much more efficiently applied 
for computation. 

4. ANALYSIS OF THE MAIN RESULT 

We first check to see if  we recover the classical 

This is the classical Kirchhoff formula.',* Thus this aspect of 
consistency of our main result has been established. I t  is 

evident that eq. (25) depends on a,@, and &' on the 
Kirchhoff surface f=O. This is, of course, expected. Note 
that aQ,/ao, involves i3@/ao1, which is obtained from 
knowledge of 6, on f=O. 

We will now discuss the problem of singularities of eq. 
(25). The quantity A appears in every term of the 
denominator and produces a singularity when A=O. The 
singularity A,,=O appears in the line integral of eq. (25) if 
the conditions discussed in reference 1 1 are satisfied. When 
A=O, the collapsing sphere is tangent to the Kirchhoffsurface 
f=O at a point where M,=l. The X surface in the vicinity of 
this point is very complicated with a possible mean curvature 
singularity. This case requires further analysis which we will 
not pursue at present. For now we will indicate a practical 
method to get around this problem. Assume that the 
Kirchhoff surface is chosen to have a shape like that of a 
biconvex airfoil such that there are no points on the surface 
at which M,=l. Then we only have to be concerned with the 
singularities of the line integral in eq. (25) on the leading and 
trailing edges of the Kirchhoff surface. However. the 
integrand of the line integral of eq. ( 2 5 )  is precisely eq. ( 1  7- 
c) of reference I I with p'c2 replaced by 6,. An analysis 
identical to that of reference I I shows that the singularity of 
the line integral in eq. (25) is integrable so long as 6, is 
continuous in the vicinity of the singular point. But this 
condition is always satisfied in practice so that there will be 
no numerical problems in using eq. (25) for the proposed 
Kirchhoff surface. 

5 .  CONCLUDING REMARKS 

In this paper we have derived a Kirchhoff formula that 
describes solutions of the homogeneous wave equation 
exterior to a surface in arbitrary motion. The formula is 
specifically designed for practical computation of radiation 
from surfaces in supersonic motion. Because surfaces 
moving at subsonic speeds are more efficiently treated using 
an earlier result, the new formula is derived for an open 
surface: i t  is recommended that it  be used only on surface 
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panels that are actually moving supersonically. The nc\\ 
formula is expressed in a relatively simple form in terms of 
surface data and of easily calculated geometric and kinematic 
properties of the moving Kirchhoff surface. It is complicated 
somewhat by the existence of singularitics that occur undci 
certain conditions in  supersonic motion, but these singularitics 
are shown to present no difficulties in numcrical 
implementation of the formula. 
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