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The translucent nature of ceramic oxide thermal barrier
coatings (TBCs) provides an opportunity to employ optical
probes to monitor temperature gradients and buried damage
propagation within the coating. An important advantage of
noncontact optical diagnostics is that they are amenable to
health monitoring of TBCs in service. In this paper, two
optical diagnostic approaches, operating in different
wavelength regimes, are discussed. The first approach is the
use of mid-infrared reflectance (MIR) to monitor the
progression of TBC delamination produced by thermal
cycling. This approach takes advantage of the maximum
transparency of the TBCs at mid-infrared wavelengths, in
particular, between 3 and S microns. Recent progress in
extending the MIR method to a more practical visual
inspection tool will be presented. A second approach, using
visible wavelengths, is the embedding of thermographic
phosphors within the TBC to add sensing functions to the
coating that can provide depth-selective information about
temperature gradients and TBC integrity. Emphasis will be
given to the use of fluorescence decay time measurements to
provide temperature readings from a thermographic phosphor
layer residing beneath the TBC.
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Background

Practical and reliable diagnostic tools are required for TBC health
monitoring and to enable confident measurement of TBC
performance.
— Risk of TBC failure restricts application of TBCs
* Requires extreme safety margins for TBC replacement
or
« Limited to temperatures at which unprotected component can survive

— Accurate measurement of TBC performanceAessential to development -

of-higher performanee coatings. B
{m peoe "j o

Measurements must be depth-penetrating & nondestructive.

- Damage propagation is buried below surface.
TBC translucency allows “window” for optical techniques to provide
depth-penetrating, nondestructive diagnostics.
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Established Optical Techniques

Infrared (IR) pyrometry provides depth-averaged TBC
temperature measurements.

- Long wavelengths (>10 um) can provide near surface
measurements.

— Cannot probe thermal gradients.

Piezospectroscopy (Cr3+ luminescence) has been
demonstrated to monitor stress state in thermally grown
oxide (TGO) beneath TBC. (U. California—Santa
Barbara, U. Connecticut)

— Very difficult to obtain luminescence signal through highly
attenuating plasma-sprayed TBCs.

— Measured TGO stress relaxation occurs immediately preceding
or simultaneous with TBC failure; therefore does not provide
early warning.

IR thermography reveals damage-induced “hot spots” &
lateral thermal profiles.

— No depth sensitivity for probing thermal gradients.

— Significant damage required to produce “hot spots.”

— Measuring transient response to flash not practical for engine
testing.

Two Recent Approaches

Mid-infrared (MIR) reflectance

+ Take advantage of maximum TBC transparency at MIR wavelengths to
monitor buried damage progression & erosion.

+ May be sensitive to early stages of TBC failure.

+ Steady-state reflectance images simpler to implement for engine testing
than transient-based thermography.

— Obscured by surface contamination (misleading results).

— Unsuitable for high temperature measurements.

— Depth-penetrating, not depth-resolved.
Luminescence-sensing for TBCs incorporating thermographic
phosphorst

+ Strategic placement of luminescent layers will provide depth-resolved
information on TBC temperature gradients & integrity.

+ Lower TBC transmittance at visible wavelengths offset by extremely
high contrast-producing interaction (luminescence).

+ Amenable to high temperature measurements.

— Obscured by surface contamination (loss of signal, no misleading
results).

— Thermographic phosphor incorporation may degrade TBC performance.

t Demonstrated by S.W. Allison et al., ORNL; J.P. Feist & A.L. Heyes, Imperial College.




MIR Reflectance Operates at Wavelengths Where TBC
Exhibits Maximum Transmittance
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Effect of Furnace Cycling on Hemispherical Reflectance

180 um thick PS-8YSZ/NiCrAlY bond coat/Rene N5 substrate
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Delamination crack network formed after 150 cycles (3/4 TBC life)
Gradual progression allows effective health monitoring

. Delamination cracks
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Predicted Effect of Crack on Hemispherical Reflectance
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Filtering at 4 um Avoids OH and CO, Interference
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MIR Reflectance Imaging Approach

 Imaging approach is a more practical health monitoring tool
using visual inspection that provides the spatial resolution to
identify areas of buried damage or erosion.

e Because all objects are MIR emitters, reflectance images are
obtained by subtracting image obtained with no illumination from
image obtained with illumination.

source on source off difference

image processing

SiCIR i
source reflectance emission reflectance

laci | .
i + emission only image

MIR (3-5 pm)
camera

N
S

specimen

4 pm
filter




Reflectance Increases with Furnace Cycling
180 pm thick PS-8YSZ/NiCrAlY bond coat/Rene N5 substrate
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MIR Reflectance Imaging

visible light image
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Effect of NiAl Backing — Simulates Substrate Presence
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Effect of 1100°C Heat Treatment on Hemispherical
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Effect of TBC Thickness on Hemispherical Reflectance

Thickness dependence can be used to monitor erosion

Freestanding plasma-sprayed 8YSZ
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MIR Reflectance Imaging
Thickness Dependence -- Freestanding PS-8YSZ TBCs
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Competing Influences on Hemispherical Reflectance

Progression of delamination crack network increases
reflectance (preferentially in 3-5 um range)

Erosion decreases reflectance (over wider 0.8 to 5 um
range)

Sintering decreases reflectance for plasma-sprayed
coatings (preferentially in 0.8 to 3 um range)

— Grain coarsening may increase reflectance in EB-PVD coatings

Effects of TGO growth require further study.

Separation of competing effects may be possible from
distinguishing spectral signatures, requiring multi-
wavelength detection.

Luminescence Sensing Approach

Explore potential of achieving depth-probing TBC
temperature measurements by placing thermographic
phosphor layer at desired depth within translucent TBC.

pulsed
excitation emission with temperature-dependent decay

TBC |

<« phosphor layer

Strategy
e Select thermographic phosphor that can be excited and
emits at wavelengths that can be transmitted through
TBC.
— Severe restriction because most phosphors are best excited by
UV wavelengths that do not penetrate TBC.

e Eventually move from distinct phosphor layer to using

TBC itself as host for layered doping of luminescent ions.

(Feist & Heyes demonstrated doped YSZ can be effective
thermographic phosphor.)

11



Overlap of Y,0,:Eu Excitation and Emission Spectra and
TBC Transmittance
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Specimen Preparation
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Fitting Fluorescence Decay Curves
611 nm emission from Y,0;:Eu beneath TBC at 700°C
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Decay Time (usec)

Temperature Dependence of Decay Time
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YSZ:Eu Is Effective Thermographic Phosphor
606 nm Emission from YSZ:Eu(3%) Powder

wideband bandpass filter (FWHM = 10 nm)
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Emission Maximized by Optimizing Excitation Wavelength

Intensity (counts)
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Summary

MIR Reflectance

Furnace cycling measurements show good correlation between
reflectance & remaining TBC life.

o Sensitive to early stages of TBC failure.
Reflectance at 4 um shows good sensitivity to buried cracks and
desirable insensitivity to OH or CO, or effects of sintering.
Reflectance thickness dependence can be used to monitor
erosion.
Potential for separating competing influences on reflectance by
multi-wavelength detection.
MIR reflectance imaging provides visual inspection capability.

o Provides spatial resolution to identify areas of partial delamination
or erosion.
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Summary

« Luminescence-sensing for TBCs using thermographic
phosphors
— Successful decay-time-based temperature measurements up to
1100°C from Y,0,:Eu layer below 100-um-thick TBC.

« Sufficient transmission of 532 nm excitation and 611 nm emission
for depth-penetrating measurements

Evidence for temperature measurement capability to 1300°C
using initial decay.
Rise time provides better temperature indication below 600°C.

Successful decay-time-based temperature measurements up to
1100°C (with potential to 1300°C) for YSZ:Eu powder.
* Promising for achieving luminescence sensing by low level layer
doping during TBC deposition.
Emission signal can be optimized by “tuning” excitation
wavelength.

Conclusions

« Optical diagnostics can be successfully applied to
translucent TBCs.

» MIR reflectance can be used as a health monitoring tool
to evaluate TBC erosion and delamination crack
progression.

+ Strategically selected and located thermographic
phosphors show promise for adding depth-selective
temperature-sensing functions to TBCs.
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