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ABSTRACT

The extended wide-angle parabolic wave equation applied to electromagnetic wave
propagation in random media is considered. A general operator equation is derived
which gives the statistical moments of an electric field of a propagating wave. This -
expression is used to obtain the first and second order moments of the wave field and _
- solutions are found that transcend those which incorporate the full paraxial
approximation at the outset. Although these equations can be applied to any propagation

scenario that satisfies the conditions of application of the extended parabolic wave
equation, the example of propagation through atmospheric turbulence is used. It is

shown that in the case of atmospheric wave propagation and under the Markov

approximation (i.e., the d-correlation of the fluctuations in the direction of propagation),

the usual parabolic equation in the paraxial approximation is accurate even at millimeter N
wavelengths. The comprehensive operator solution also allows one to obtain expressions. .

for the longitudinal (generalized) second order moment. This is also considered and the _
solution for the atmospheric case is obtained and discussed. The methodology developed

here can be applied to any qualifying situation involving random propagation through _

turbid or plasma environments that can be represented by a spectral density of
permittivity - fluctuations
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I INTRODUCTiON’ |

Smce its mceptlon by Leontov1tch and Fock’, the parabohc wave equatlon has

- found application in all aspects of electromagnetlc wave propagation scenarios”* as well
as those in acoustic wave propagation®”. In the case of e_Iectromagnetlc wave
propagation in random media, the parabolic wave equation was originally applied by
- Klyatskin and Tatarskii® to describe the statistical moments of the attendant electric
field. This type of parabolic wave equation, however, is accurate only to within the
paraxial approximation and is therefore suited to treat small-angle wave scattering about
a preferential direction of propagation. Thus, in the case of propagation through random
media, the parabolic wave equation can strictly be applied only when the smallest size
of the permittivity fluctuations within the medium and the wavelength A satisfy the
condition [, >> A, i.e., the wavelength must be the smallest spatial scale in the problem.
In the case of the open atmosphere, /~1mm. As shown by Klyatskin and Tatarskii"®, this
is indeed a good approximation in the case of atmospheric propagation at optical
wavelengths However, there are situations in the applications, e.g., atmospheric
millimeter wave propagation, in which one has 4, = A and the paraxial approximation
strictly no longer holds. In these cases, one can have wide- angle scattering about the
preferential direction of propagation. Again, in the scenario.of electromagnetic wave

propagation through random media, such considerations have been made'’. Much more

recently, the same situation has been met with,in acoustical wave propagation)>'*. In

what is to follow, the wide-angle modification of the parabolic wave equation will be
called the extended parabolic wave equation for reasons that will be apparent in the next
~section. Although extensions of this theory have been advanced within the realm of
stochastic propagation through random media'''®, none have been analytically treated at
the level where corrections to the paraxial approx1matlon have been quantltatlvely
identified and compared to paraxial results.

It is the purpose of this work to analyttcally derive solutlons for the first and
second order moments of a plane wave field propagating through a random medium
within the context of the extended parabohc wave equation. Approximations must, of
course, be made in order to obtain analytical results. However, the main point here is that

such approximations are not made at the outset, as is usuvally done. Such solutions will

afford a comparison between the results of the parabolic wave equation within the
paraxial approximation and those of the extended wide-angle theory. In Section 2, the
extended parabolic wave equation for electromagnetic wave propagation is derived, for

completeness, from the stochastic Helmholtz equation. Since this will be an operator

equation in the random electric field, a statistical operator method is developed in Section
3, which will give a general equation for an arbitrary spatial statistical moment of the

wave field. From this, expressions are obtained as special cases for the first and second

‘'spatial moments of the field. The first field moment is just the average field and the
- second field moment is known as the mutual coherence function (MCF). Analytical
solutions to these equations are derived for the Kolmogorov spectrum of atmospheric

permittivity fluctuations within the Markov approximatiop. Unlike earlier treatments of .

ropagation using the parabolic wave equation®'°, the generality of the operator method
propag g P q g Y P

also allows one to obtain an expression for the second order field moment in the direction
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longltudmal to the dlrecnon of propagauon th1s is known as the generalized MCF A-
soluﬂon for this quantxty is also obtamed -

' II THE EXTEN DED PARABOLIC WAVE EQUATION FOR RANDOM MEDIA

B Consuier the scalar stochast1c I-Ielmholtz equatlon for an electric field E(x,p)

. propagating principally along an x -axis and perpendxcular to the p- pIane of an otherwise =
 arbitrary coordmate system -

" E(x ' o s
R L T R A, o B
where #x,p) is the random part of the total_pemﬁttiv_ity &(x, p) =1+ &(x,p) of the
propagation medium. Using the decomposition of the total field into a forward

propagating field E*(x, 3) and a backward propagating field E(x,p), ie.,

| 5E(i,ﬁ) - 0E*(x,p)  JE(x,p)

'E('_x, p)= E*(x,p)+ E (%),

+ 2)
o ax dx @
with the expansion into inhomogeneous plane waves
. . @ . ow - L ] 2 1'2 :
E (x,p_)_':f f e*(G )exp[ iq- p:z(k ]d q B

" one can obtain the f ol'lowing operator expressions for the component fields

D) o) B (1) =2k V3 e B E (1) eB)]

@

- Such an equation (or its Fourier transform) was considered by Malakoy and Salchev as
well as by Klyatskin' and Frankenthal and Beran'®.
In the event that the backscattered field is insignificant with respect to the forward
‘scattered field, i.e., E*(x,p) >>E (x ), one can formally set E {x,p)=0; Eq.(4) thus
becomes a single equation for the forward propagatiﬁg field B
25‘?‘9—;;3_) +2k2+ V2 B (x,p) = (K + 2} HxPE(xB). O

This equation, which can be called the “extended parabolic equation™®, was previously
analyzed by Saichev'® using a method different from the operator formulation in what is
to follow. Its integral formulation is also known as the method of multiple forward
- scatter'" . However, it was pointed out" that this method is applicable to situations



‘when™ A< [, the penalty for ignoring the backscattered component; The classical
" parabolic wave equation in the paraxial approximation holds for cases where A<</,. _
Hence, although Eq.(5) is capable of describing propagation situations in which the wave
1s scattered at angles up to /2 with respect to the x axis, its application is lifnited to
-cases where A=/ S : :

~ The form of Eq.(5) can be simplified by defining the differential operator

U, = 2;8(1 +k—;] | (6)

‘and the corresponding i_ﬁ'te gral operator

_ AR AN -
| Equation (4) then.becomes
2fk-‘35g+p)+_up5(x, p)~2k'V E(x.P)E(x,p)=0. - (8)

(Hereafter, the superscript ‘+” will be dropped.) This equation can be reduced to the
well-known stochastic parabolic wave equation in the paraxial approximation by
expanding the operators to giye U, ~2k% + Vi and V, ==1/2k2 and transforming the field
* via E(x,p)=W(x, plexp(ikc). 1t must be noted that these operator expansions, which
are necessary conditions for the paraxial approximation, applied to Eq.(8) at this juncture
yields the paraxial form of the parabolic wave equation. In what is to follow, the full
form of Eq.(8) will be dealt with in forming an expression for the statistical moments of
the electric field. Only during the solutions of these equations for the first and second
moments will these operator expansions be judiciously applied. It will turn out that a
geometrical optics approximation which is implicitly made in the scattering term of these
solutions can be lifted which will essentially allow diffractive effects to be introduced - -
into the scattering term. . ' ' _
In what is to follow, Eq.(8) will be employed to yield an operator equation for the
 generalized statistical moments of the field:' Here, the term ‘generalized’ connotes
moments at differing transverse coordinates p as well as differing longitudinal
" coordinates x. - ' : ' '

I OPERATOR SOLUTIONS FOR THE GENERALIZED FIELD MOMENTS
~ A. An expression for the generalized nm™ field moments

A Défin_ing the stochastic operator |



C Dx.p..E 2zka+ Up + Zl_k_z‘Vpg(x,p) ) . - . (9) R
.Eq.(8) simply becomes
D, E(x,p)=0 o - (10)

_ which is easily amenable to further statistical analysis. “To this end one defines the
 generalized moment of the electric field

rnm (x]’ﬁ];x_Z’ﬁ?..;'“xn’ﬁn ;xn+]’ﬁn+l;"'xr1+m’.'ﬁn+m) E.(gnm)’ - .. (1]-)
Bum= HE(x B TE (x,.5,)- . 12
F=1 {=rn+l . .

Usiﬁo a modification of previous prescriptions®*, one can employ Eq (10) for each of
 the field points (x, p) and obtain for the product of fields

Lﬂmgnm(xl’ﬁl;x25ﬁ2;-uxnhan;xrnl'ﬁnﬂ;n.xn+nf’ﬁn+m)=0 . (13)

where

: . . a ) .n+m .
g Sa) ot

rfl (U £ 2KV E (x,,pfl)) 4

Fan+]

In order to isolate the quantity (g, ) =T, from this relation, it is expedient®? to
“ decompose the operator L, , into its average and random parts, L.e., '

(m) 2;/{(20% fax}rzu EU - _(1_5)'.'

=170 lep+l j=1 I-rH—l
aﬁd : _
in'mszk4i V, E (x,.0,)- ﬂiﬂV&.‘ xt,pI)] (Ln)=0 = (16)
J=1 _ - lep+] . - . ’ : ’
 Hence, Eq.(13) becomes
() Ladem=0.  an



: Ensembie averaging.thie: relation yieids .
| (L,;;)rw;+(f,“mgm)'_=0. | D | | _-..(18)' |
Similarly wriﬁng .
Tt (B)=0. a9)
and substibuting into Eq.(18) gives .. |
| (Lol + {Lonon) = 0. (20)

Remembering that it is the goal of this development to obtain an expression for the
general field moment ].“,m'l, one subtracts Eq.(20) from Eq.(13) and using Eq.(19) obtains*

LT +ng,,,, (Ln;)rm_-_-(imgm)w. RPN (1)

Combmmg the first and third members of this equatlon using the fact that
L2 2| o =L, F gives

_ngm;+Lmrm-(f,M;§m)=o. | | _'(22)

. One must now 1solate the random quantity g by defmmg an operator L inverse to
L,,m, ie., L,L, =1. Thus, operatmo on Eq (22) with L, vields '

nmnmmn

6.+ LT - '(.rjmgm);o. O

Fmally, operating on thls relation with L - ensemble averagmo and solvmg the resuitmo
expressmn for (L gm) gives

Substltutmg th1s result back into Eq.(20), one obtains for the equahon governing I, .
{ [1 L L) ] EML;;EM)}FM -0. - -(25) |

~ The solution of thls' operato'r equatlon gives an exact solution for the arbitrary field
- moments for wide-angle propagation through a random medium characterized by the

‘stochastic permittivity &x,5) and the assumpt:[on that ( )= 0.



The general relatlon given by Eq. (25) can be reduced to the parabolic equation for
the- field moments in the paraxial approximation. in the case where A <</, In this

instance, one employs-the approx1mat10ns for the operators U, -==2k2+V2 ~and

e 1‘/2k2 used earlier. - In addition, the clasmcal parabolic equation considers statlstlcal '
moments in the same transverse plane, i.c., X, =x; =x. Thus, the partial differential

operators in- Eq (15) collapse into the single operator afdx. Equatlons (15) and (16) then
become

n+m

(L) = 2lk~—+EV2 EV : o (26)

f=1 © =l+n
and

.=k +E (xp E (st;) —— . | (27).

I=len

Two related palatable approx1mat10ns must now be made since L = (an>+ and it

is ‘usually assumed that "Ln "<<1 one has
Ly <[{Lun)+ L] = (L), [-(LLi)] =1 o (28)
.. where . . _ | -
L o 1
(L m) [2xk—+2v'2 EV
J=1 I=j+h
-1
m[Zik—a—-]
o _ .
i | o @)
- Equation (25) thén becomes _ o _ |
| [sz—--+EV* ﬂfv ' < ( ) ;)}I‘%eo,' o (30)
I=len ' S
- where | | | | o

| (E""'(L )L ),:,_. [§§< xp»') xpf)) ,.S E (e{x p;) xPr)



-2 5f E(x p,)) E}‘, FEp)E (N, ey

i -l I-—l+n - =g I-i-m

\i»'hlch is the well known clasmcal paraxnal form for the problemz3 It is interesting to note

. the ‘geometrical optics’ approx1mat10n made in Eq.(29) which gives the usual scattering

~ term of Eq. (31). One can envision a substantial extension of this development beyond
that of the classical treatment if one 1s to use the entire form of the operator (L ) ,l.e.,
use the inverse of the operator (L) as solved in its entirety rather than in the
geometrical optics approximation which was used above. The inclusion of the V2

- operators will allow diffraction phenomena to be mcorporated into the scattering term.
This will form the subject of the next section in which the first order moment and the
generalized second order moment (1 e., the generalized MCF) are derived using the above

f ormalism. '

B. Solution for the first moment

The first order moment or avera ge field of the random electric field in a piane transverse
to the direction of propagation is defined through Eq.(11) to be given by _

To(xh) = (E(x:p,) B <2
which is a so;uﬁon of the operator re ation of Eq.(25), viz,
{<Lm> L] e e
 where, f'mn{ Egs.(15) and (16), : |
| | (&O)IEZikifUp., f,,aszk‘*vm"s'(x,ﬁ), ph. (4

The ability to proceed in an analytical fashlon 18 dependent upon the s1mpl1fymcr
apprommatlons used earlier, viz,, one has that : '

Lo =[{La}+ lm] (Lwyl’ (- {Latas)] ~L 69
.Usmo th1s result, Eq (33) beoomes - _ o | _ :
{(LIU) < <L10> Ll >} 0=0. | .. o _. _(3.6).

Employing the appropriote definitions of the operators,. Eq.(36) gives



[o(x5)=0. 37)

| '[2;7«:%; U_; - <(_2'1:c.4V9 &(x, ,é)){sz—+ U }_1( 2V 8(x, p))>

‘This differential equation in the operators U o and V, must now be's'.impliﬁed and solved - o
for the first-order moment I',,(x, p). _
"~ To this end, one must first deal with the ‘diffraction propagator

_{2&%+Up} = G(x,) . | _(38).

It is at this point that this method has its greatest effect on the description of ‘the
propagation mechanism. Within the geometrical optics approximation, the U, term in

 Eq.(38) is neglected with respect to the 2ik gfdx term. Hence, potentially important
diffractive effects are neglected within the scattering term (- ) of Eq.(37) by use of this
_ apprommahon (see Eq.(29)). As mentioned earlier, the retention of the U, term, even in

ts. approximate form, will include diffractive phenomena inherent in the random
-scattering mechanism that have hitherto been neglected. The Green function of the
operators 2ik df dx + U, glven by Eq.(38) is defined by

{2:1«3— + 2k2(1 + %’-J Gx,p) = 6(x - x)6(p-p') (39)
X ) .

- where the defimtion of U, is used. Applylng the apprommatxon U ~ 2K +V and '
_ solvmg for the Green funct:lon G(x, p) yields,

: G(x,p) = G(x,ﬁ;x',ﬁ’) = (Ilj-c-)exp[—jk(x - x’)] exp[ ik(p-p') ,/Q(x -'-x')] N _ (40)

x~Xx.
Thus, the third term within the brackets of Eq.(37) can be written
)= <(2k“VP &(x, ﬁ)){Z:’k% + Up} (2k*V &(x, ;é))> =
-2&) [ [ G(x, pix BV E(x. PV, &(x.B))d*p'dx’. @n -
0 -= _ '_

~ Proceeding further, one now must deal with the operator products



- “ _1 , 1;’2~_ ) |
V. &(x.p) = (2](2)(1} kz] _E(Ix,p)_—_ o L .(42_)

.Smce #x, p) is a random functlon 1t can be represented in the form of a Founer -Stieltjes
mtegral ' '

'a¢m=faﬂmawaux)- @

in which the spectral amplitude dZ(x,K) is endowed with the same stat1st1cal properties -
- as is the random function s(x p) as will be shown in what is to follow. Applymo Eq.(43)
to Eq (42) gives

24>

Thus, the ensemble averaged product appeering in right side of Eq.(41) becomes,
<e4,MVd'*7-@ﬁ)ffbu~J -5
-exp(ik - p+ k" p'}dZ(x, k‘)dz('x’ £')). - (45)

 One now makes use of the fact that the atmosphenc permittivity ﬂuctuanon field E(x )|
is taken to be statistically homogeneous, characterized by a power spectral density P, (k)
and d-correlated in the longltudmal dlrectlon (the Markov apprommatxon) these’
cucumstances allow one to write®

(dZ(x,J?)dZ(x’,k”)) = 8k + B')F, (x - x’,fr‘)dzxdz:c’ . (46a)

- where for 6-correlated fluctuations in the x direction, the two dimensional spectrum
F(x-x K) is given by S

F(x —x’,}'&) =276(x - x’)ti)'(f) | '_ - | (46b)

in which P .(K) is the three dlmensmnal spectrum of permittivity ﬂuctuatlons Using
these relations in Eq.(45) and performing the mtegranons where possible ylel ds

“n.

10



where p, = p— p' is the difference coordinate. : '

Taking the statlstlcs governing the random field E(x p) to be also isotropic,
ie.,®, () =®,(x), Bq.(41) can now finally be evaluated by substituting into it Eqs.(40)
and (47); converting the integration in the p,-plane into one m plane polar coordmates
and perfomnng the assoc1ated mtegratlons gwes '

_. . . . ] _2 a . . - ) |
1] ’ .
. where the §-function releﬁon |
fﬁ(x—-x')dx’=% B | “9)
0. e S .

18 employed
Returnin g to Eq (37) and, substltutm g Eq (48) mto Eq.(37), one obtams

d V2 & ® 23! o
2k—+ 2071+ —£| i’k [ [1-5| & (x)xdx
o TR T k -

1]

Lo(x:p)=0 ~  (50)

- The general solution to this equatlon is unknown However for the plane-wave case, one
has that : : o

. V2 LE V3 12 ' ' .
| (177) rw(x,ﬁr(“?ﬂ To®)-L(» D

. since the plane wave W111 not possess any transverse variations. In this special case,
Eq. (50) becomes

[25k£—+2k2+;‘:r2k3 { (1—-%) @E(K)Kdrc}]‘w(x)=0 . (52) |

the solution of which is

2

:2) o,(:;)m] )

S _ ..
Lg(x) = T,,(0) exp[z’kx mj—ri-kzx f (

Thls result differs by the factor (1 K[k ) from that of the parabolic equatxon in

' the paraxial approximation. Of course, the later is obtained from the former by retaining
- the ﬁrst term in the series expansion of this f actor. The presence of this f: actor tends to

11



accentuate the spatial frequencies near the value of the wave number k. Since this theory
- 1s applicable to those situations in which A <I,, most of the contribution of this factor to
wave scattering will occur at the largest spatial frequencies of the inhomo geneities. '
‘Hence, in the case of atmospheric turbulence, one can employ the von Karman spectral
density (i.e., the Kolmogorov spectral density modified by a lower cufoff frequency K )

' L -11fs ' ) . '

- @, (k) = 0.033C(x* + K32) | (54)
which is not bounded at the high spatial frequencies, to compare the result of Eq.(53) -
with that of the paraxial approximation. Here, C” is the ‘structure parameter’ giving the
strength of permittivity fluctuations and K, = 2zfL, where I, is the outer scale (or the
largest spatial size) of permittivity inhomogeneity. Substituting Eq.(54) into Eq.(53) and
evaluating the integral using Mathematica® yields :

T(x) =’_Fm(_0)é"p

k2

ifx - {(1.772 +1.023)k " + 0.39081(5@’32}«;[1,1;-(15;;—&]}63%}

- 55)

where the structure parameters for the permittivity C? and the associated refractive index
C? are related by C? =4C2. In the case of the open atmosphere, one always has within
the bounds of the extended parabolic wave equation, k >> K, ; thus, the hypergeometric
function reduces to unity and k™¥° << K;**, allowing Eq.(35) to be approximated by

I"m_(x) =T,,(0) exp[ikx. - 0.3908K, 5%’3C f:‘kz_x] | l (56)

which is the result of the parabolic equation in the paraxial approximation. Hence, the
use of the extended parabolic wave equation only makes negligible amplitude and phase
corrections to the first order moment of the wave field propagating through atmospheric
turbulence. This result extends and establishes the accuracy of the parabolic equation in
the paraxial approximation for the first order moment (mean field) as it applies to
atmospheric turbulence at all acceptable wavelengths of application, A < l,- The next
section will consider the calculation of the generalized second-order moment (generalized
MCF) of the wave field from the extended parabolic equation and compare its result to
that of the paraxial approximation. In addition, due to the completeness of the operator
analysis, one naturally obtains expressions for the MCF along the longitudinal axis.

C. Selution for the general_iied second moment

The generalized second order moment or generalized MCF of the random electric field in
two planes transverse to the direction of propagation is, from Eq.(11),.

r}l(xl’ﬁl_;xz’ﬁz) = (E(xl;ﬁl)E*(.xﬁ;ﬁz)) o o _ B 57

12



which is a solu_tibn of Eq._(25), in this cz_ise given by-

{(L]'l)—[l—(iul;i)]ﬁl'(ll_r_l;.ifu)}lll=0 . . o
where, from the definitions of Egs.(15) and (16), S
(Al)s2ik£]—f25k£z+Up] QUj;z_ - (59) |
and
ﬁ;_=-=.2k4[Vpl§(x,,f),)—.V’:zé*(xz,ﬁz)], ) '(f,“')=_o. 60

As with the case for the first order moment, two related approximations must be made at
the outset to render the problem analytically tractable. In particular, so long as Ill1 l" <<,

R (LR A LU S | A 1| S T (61)
~ which aIl'ows.Eq.(SS) to become - | .
:__{(lﬂ)—(fﬂ(qi)fﬂ)}nl=0; - 62

At this point, it is suggested to connect the longltudmal coordmates x, and ;:c2 to the
related centroid x, and difference x, coordinates,

| xcsxl’;xa X=X —x, (63)

. The operator expressions of Eqgs.(59) and (60) then become

. I 2
--(111)521;‘;"'{}:0{ U o ' N

~~ Hence, Eq.(62) can be written as -

13



| R a | ’ _. | * . ; I ..JC — . x _x .x - . . . '
21k57+ Uﬁ]_ - _Upz _<[2k4{vﬂre('xc .+ ?d!pl) - VP;? (xc “?d’pz)}] - . . L -
L, @ o N T - w ol Xy o= o
-{sz;-a- U, - Upz} (Zk“{vpls[xc + ?‘fpl) =V, (xc - —f—,pz)})ﬂﬂl =0 -
o S N )

The solutlon of thlS equatlon commences with obtammg an expression for the
Green function, i.e., the diffraction factor

o ’ . _
. é‘ . T . [ .
{2”‘(.54‘ UP: - Upz} .E G(xc_,PpPz). o . (67)

L

Proceedlng as in the. last section and usmg the approximation U, '=--~2k2 +V th1s_
requires the solution of

-{”’fﬁ“fvi{.—Vi} (x,pppz) =8(x, ~x )6(p1 pl)( -p) (6]

C .

which is given by

G(x”%)_ﬁ {5)-) ( - f}zexla[fk((ﬁl- ﬁ{.)-.(f’z._'f’é))/_z.(xc -';;)]' |

X —%,
=Glx, = x5, - Pl - P3) ey

Therefore, _the fourth term in Eq.(66) becomes

“(2’*’4)2.:( £ { G( xpl,pz,x PpPz)<Vp1Vp.£(i +%,*l)§(x;+%.’ﬁ;)_. |

+V.02v92 ~*( _%’52)5*(x:: - %’ﬁ;)> pl d2p2dxf (70)

One now employs the Founer Stle]t_les transform as before to represent the products of
Ve, i.e., S :

14



: S s . L o
1 K e = X, - g |
?’s(x x ,plz) 2k2 f[l—ﬁ) e:)q.)(ucl_2 . Pl‘g.)dz(xc "_'—7&”‘1.2)’ etc..., | (’?1). K

and obtams the followmc relations {functional arcuments have been suppressed but: the
_ correspondence to those in Eq. (70) follows) ' :

' S o ' - - . '
(vplvpi§§> (ylcz) f(l_};z_) exp[ffl-_(ﬁinﬁ;)]ﬂ(xc—x;,fl)dle, (72a) -

- o o - -
(v vsee) =53] (1__;12] expli®, (B - P Ex. ~ X0+ x, R )oK, (720)
* | . Ny ]. g Kz. - | | - . - —t : - 2

{(v.v,&s =(5k—2) f(l—-}-{—;] exp['—irrz-(pz-pi)]ff;(_xc—xc—xd,xz)d_xz, (72¢)

. e \—~1 : . . C
—_— L ]_ - K2 [ .
(V.V.Ee >=(E;r) f (l-k—i) 'exP[ —ic, (P, pz)]F (x, - x,,&)dx,.  (72d)
Substitutin g Eqs (69) and (723.) .(72d) mto Eq.(70), perf orming the required integrals over
o, and p,in plane polar coordinates, and taking all the spectra E(xK ) =F.(xx,) ie.
' to be isotropic in the frequency K, one obtains

X, @ ) A . !
N =._‘J-,_~k3 ]._.K_ ex _f'_(..(x‘—“xc)
i8] of 2]

F(x,-x K)— '

E c?

_e-xp[sﬂ‘%lx (K,'o{,)' (; ~ X+, K)-

,Kz(x; -x,)
2k

- exp[—:

Jo(xp, )Fe(xC - X - xd,xj + ._

+ex i———Kz(x“ —~x;)
_ P 2k

E

1F.(x, —x;,x)}xdrfdxc, ' - (73)

where p, =|,—p,|. Using Eq.(46b) in Eq. (73) and performmg the x, mteoratxon
remembenng Eq.(49), flnally gives

- : wr g ey s
: (--—)=—2n:2ik3f[1~%) _{1—6){})[—%}]0(1(& )}@8 (x)xcdic. (74)
_ 0N -\ _ - o o
~ Hence, Eq.(66) becomes
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2.k (; U : U= 2 2:-k3w 1 K2 B 1 ' -.ixzxd J ‘D | d r 0
._I_E*‘ o p,+__33_1__£ " f?XP— by o(xp,) s(K)K Kty =Y

(75)

where 1_““=1';1(xc,xd, D). Makmg the p]ane wave approx1mat10n of Eq. (75) analogous -
to that done earlier for Eq.(50), the resulting differential equation has as a solution

I‘.(.xc.,..xd.,'pé) | (OOpd)exp' 7ix, (l-k—z]l{l egp( f’j}j‘*)}(xpd)} _( )de]

@)

It is important to note the initial condition I'(0,0,p,); since one necessarily must take
x, =0, one must also have x, =0 by Eqgs.(63) since x,,x, = 0.

This result cannot be analytically studied in its entirety and hence will be
considered in two special cases. The first case is defined by x, =0 in which one deals
- with the usual transverse MCF T'(x,,p,)=T(x,,0,p,). Thus, the extended parabolic
equation solution for the MCF in a transverse plane at a dlstance x, from the source is,
from Eq. (76) :

77

F(xc,pa.)-—-I‘(0,0,pd)exp[—:rzk f(l——] {l J (xp0,) e, (x KdK

As with the case of the first-order mo'ment, this result differs from that of the paraxial
.- " - ) . ) 1

approximation in the presence of the factor (1 x*/ k2) which serves to accentuate

spectral contributions for frequencies near k. The integral indicated in this expression -

cannot be ana]ytncally evaluated using the von Karman spectrum, Eq.(54). However,

- since the integrand is such that no singularities exist in the use of the unbounded
Kolmogorov spectrum, viz., Eq.(54) with K, =0, one can use such a spectrum in Eq.(77)

and, upon evaluating the integral via Mathematica, obtain -

rl;(xc__,pd_)=nl_'(o,pdje;(p[4{(-3.s44—2-04'81')?«:"'“(1—Jo(kéd)) .

_ 2.2 . _
+ 0108k2 ' F, 1—lz E;—f—"i‘f— k*Cx (78)
p 6 6 4 :

where | F,(--) is a generalized hypergeometric function and, as noted earlier, C?=4C2,
At the outset, since A << p, in most applications, the first term within the braces of
- Eq.(78), although quite interesting in structure, is negligible with respect to the second
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term. The hypergeometnc function of the sccond term is most easﬂy dealt with by ﬂrst_ :

convertmg it toaLommel functlon ( ) ie.,
17 17 Kpi\ (1Y -—11,!.3' | S
B L— Ll=|=] (kp,] kp,). : 79
! ( 66 4).(3]_(.‘04) S%‘O(P‘f) S _( ._)-

The Lommel fll]lCthIl reduces®, in the case where kp, >>1 to the simple apprommate '
result S%,n(kpd) (kpd) ¥ Using this 1n. Eq.(79), Eq.(78) become; the well-known

paraxial result
rll(xc’pd) =l"“(O,pd)exp[—1..457k2Cfpf3xc].-. _ | (80) - |

‘Again, as with the first-order moment, corrections to the second moment afforded by the
extended parabolic wave equation are negligible in the case of atmospheric turbulence.
The second special case in which Eq.(76) will be examined is in the instance

where the factor (1 K2 [k? )1 can be neglected; as shown above, this is a good

approximation for atmospherlc turbulence. Thus, one is now dealing with the solution
. for the generalized MCF for field locations at different transverse and longitudinal points,

2

r(xcsxd,p;)=I‘(0,0de)exp{—'x-2k2xj {1—exp(—f"zgd)Jo(xpd)}@s(x)mx]. (81)

Longitudinal correlations of the wave field have been prev1ously conslclerf:d2930 using
different methods and obtaining different results. Setting x, =0 in Eq.(81) gives the well
known paraxial result for the transverse MCF TY{x_,0,p,). Unlike the cases studied
above, the form of Eq.(81) suggests the use of the Kolmogorov spectrum as modified by
Tatarskii, which incorporates a cutoff at high spatial frequenc:les by allowing the
_ mtroductxon of the inner scale of turbulence /4, viz.,

SO .59
@, (x) = 0.033C ™ 'SCxp(—-gz-} K, = sl 2
W 2R N

. .

(82) ”

Substltutmg Eq. (82) into Eq (81) and eva]uahng the resultmg mtegral yxelds for the -

generalized MCF
-'r(xc,xd,p;)=P(Ozo,pd)e_XP[~4.352kzc,?xc{Bﬁ'ﬂE(—g; ;—fﬁ—]—x;ﬂ}] ®3)

“where.
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'Thﬁs, as previously noted™, the pfeseﬁce of the diffractibn factor on Eq.(81) modiﬁes.thé
effect of the cutoff frequency ,,. In the case where p, > |1/K +zxa./2kr‘ Eq.(83)

reduces to E.q (80) upon employmg the. asymptotlc representation of the conﬂuent
hypergeometric function | F{-- ) When p,, =0, Eq(83) becomes :

| RPN |
T(x, xd,O) T{0,0,p, Yexp|~4.352k*C2x &7 {(n ”‘;zm] -1} (85)
. In the appropﬁate limits, this ekpression gives .
. exp[ ]81331kaK1,,{3x ] _' | X h<< I
I(x,.x,,0)=T(0.0,,) | (86)

exp[—(O 5631+2. 1021) 7f"GC 3 ] xdﬁ.>>l

Hence, there is a phase variation in the Iongitudinal direction, as eXpected, with an
attendant attenuation as the longitudinal separation is increased. It must be noted,
however, that one needs to realize the condition x, >, in all cases so as to satisfy the
assumption of d-correlation of the fluctuations along the longitudinal axis™.

IV. SUMMARY AND EXTENSIONS OF THE FOREGOING

A general operator equation for the moments of an electromagnetlc wave fleld
~ propagating through a random medium as described by the extended parabolic wave -
equation, i.e., Eq.(5), has been derived and is given by Eq.(25). Unlike the usual
parabolic equatlon approximation in the paraxial approximation which holds only for
A<<l,, the extended version of this equation holds for cases up to A= /; this limitation
is dictated by the neglect of the backscattered field since the extended parabolic wave
equation describes scattering at angles up to xf2 about the preferred direction of -
propagation. An example application of this theory was chosen to be that of the scenario
of propagation through atmospheric turbulence in which the first and generalized second
order statistical moments are given by Eqs.(50) and (75), respectively. In the course of
deriving these equatjons, use of the paraxial approximation is avoided at the outset,
allowing one to be able to include diffractive effects within the scattering terms of these
equations. These relations, which assume a §-function of permittivity fluctuations in the
preferred direction of propagation (i.e., the Markov approximation) are then solved in the
~ plane wave case yielding Eqs.(53) and (76) in terms of the spectrum ® (k) of

‘homogeneous and isotropic fluctuations. Kolmogorov type spectra (e., spectra ~ K 1.13)
are employed to obtain analytical expressions for the first and generalized second
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moments. In this atmospheric example, this extended theory showed that the paraxial
. approximation holds even for millimeter wavelengths in which A ~ /. This is due to the
- fact that the spectra which is nsed to represent atmospheric turbulence (all variations of -
the Kolmogorov spectrum for atmospheric turbulent fluctuations) is such that the
contribution of the spectral frequencies, which approximately correspond to millimeter -

- wavelengths, is relatively small as compared to those at the smaller spatial frequencies

‘(which correspond the outer scale of turbulence). This gives rise to the insignificant
levels of the obtained correction terms at nominal operating wavelengths. However, the
- novel feature of this application example is the description of the longitudinal second
‘moment which naturally follows from the comprehensive operator solution and the
incorporation of diffraction within the scattering term. A solution for this quantity, given
by Eq.(83), is discussed as well as its limiting forms.

The operator method presented here from which the stattstical moments are
obtained is general enough to allow the use of assumptions less restrictive than the
Markov approximation. The use of fluctuation spectra that do not decay as rapidly as that
of the Kolmogorov case (e.g., that of a turbid medium or some turbulent plasmas) will

give rise to non- negh gible correction terms for the first and second moments of the wave
field.
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