The Use of a Microcomputer Based
Array Processor for Real Time
Laser Velocimeter Data Processing

James F. Meyers
NASA Langley Research Center
Hampton, VA

Fifth International Symposium on
Applications of Laser Techniques to Fluid
Mechanics
July 9-12, 1990
Lisbon, Portugal

The Use of a Microcomputer Based Array Processor
For Real Time Laser Velocimeter Data Processing

James F. Meyers
NASA - Langley Research Center
Hampton, Virginia 23665 USA

ABSTRACT

The application of an array processor to laser velocimeter data
processing is presented. The hardware is described along with the
method of parallel programming required by the array processor. A
portion of the data processing program is described in detail. The
increase in computational speed of a microcomputer equipped with an
array processor is illustrated by comparative testing with a
minicomputer.

INTRODUCTION

In the beginning of laser velocimeter development, signal processing
consisted of viewing the Doppler signal on a spectrum analyzer and
writing down the measured frequency. In time more sophisticated
signal processors were developed such as frequency trackers, high-
speed burst counters and photon correlators which required computer
data acquisition. In those days data was acquired with minicomputers
then transferred to main frame computers for processing. By the mid
1970’s the minicomputers had sufficient computing power to perform
both the data acquisition and data processing tasks, if real time
processing was not required. Unfortunately as computer capabilities
and speeds increased so did the demands for more sophisticated data
processing and real time presentation. These increased demands
continued to keep the computer requirements at the minicomputer
level. The development of personal computersinthemideighties was an
interesting curiosity and researchers found them very useful—for
writing their research reports. By the end of the eighties, even though
these small microcomputers had the computational capabilities of small
minicomputers, they were only used by researchers restricted by small
budgets. The present 80386 and 80486 machines now operate at the
same speeds as minicomputers costing ten times as much. But, these toy
computers are only single tasking and do not have the sophisticated
operating system needed to acquire data and perform the statistical
analysis.

In an another arena, researchers were defining computational tasks
which taxed the limits of computer technology, even huge main frames.
Researchers were finding that converted IBM-type business computers
just were not fast enough for scientific calculations. This realization
began the scientific computer industry with machines from the huge
CDC cyber machines tothe small minicomputers built by DEC, Hewlett-
Packard, Data General, etc. Unfortunately researchers were
developing problems faster than the computer companies could develop
faster machines. At this point a few small companies, notably Floating
Point Systems and CSPI, narrowed the task further: these
computationally intensive scientific problems were basically simple
floating point operations using standard mathematical computations.
What if a specialized mathematical engine using parallel type
programming were to be designed to run as an auxiliary unit on a main
frame computer to perform these simple floating point operations
quickly? By restricting the problem and using appropriate software
techniques, circuits could be adjusted for very high speed operation.
Soon these engines were migrating to smaller minicomputers and
providing them with the computational capabilities of large main frame
computers at a fraction of the price. The present paper will show that
one or more of these strange engines can be placed in a foy computer to
yield an extremely powerful machine for laser velocimeter data
acquisition and real-time processing with statistical and graphical
displays. The hardware components contained within the array
processor are described. Example program code is described and
compared with equivalent generic Fortran program steps.

What is an Array Processor?

The central processing unit (CPU), whether composed of discrete logic
or a microprocessor, is a device for doing control operations and
fundamental add, subtract, multiply and divide processes on integer
data. Advanced operations such as floating point arithmetic or even
advanced trigonometric operations rely on software to make the simple
CPU perform these tasks. These software approximations require large
amounts of code and thus long times to perform these fundamental
operations. This has long been recognized as a major drawback in
applying standard computer systems to scientific applications. Special
hardware systems have been developed to perform these fundamental
floating point operations in hardware. These systems are then
appended to the CPU as peripheral processing units. Compilers were
then written totake advantage of these units and transfer floating point
operations to them reducing the required code while increasing
computational speed. In microcomputers this processing unit, like the

CPU, is a single large scale integrated circuit such as an 80387 math
coprocessor.

While math coprocessors such as the 80387 increase the computational
capabilities and speed of the computer system, they are still general
purpose units which can not be streamlined for maximum throughput.
They are restricted to serial operation since they must compute
transparently with standard language commands. This single
operation mode is easily programmed, but extremely inefficient for the
repetitive operations typical in scientific programming. Array
processors break with this method of operation by performing their
tasks in parallel using pipeline techniques to further increase
throughput. The AT&T DSP32-C is a large scale integrated circuit
specifically designed for digital signal processing applications. It
consists of a 32-bit floating point multiplier, cascaded into a 40-bit
arithmetic logic unit (ALU), cascaded into four 40-bit accumulators.
The multiplierand ALU arein a pipeline and operate in parallel. Thusa
multiply and an add or subtract can be performed simultaneously. This
architecture makes the chip ideal for array processing applications.
The AT&T chip can operate at speeds of up to 25 million floating point
instructions per second (MFLOPs) yielding main frame computational
speeds in a single chip.

Obviously an actual array processor consists of more than a single chip.
The processor should also contain a high-speed integer math
coprocessor to handle data transfer between the computer memory, the
array processor memory, and the floating point unit. The integer
coprocessor should also provide logical and integer arithmetic
operationsin support ofthe floating point processorandtocomplete the
mathematical engine. The array processor also needs a bank of very
high-speed static memory, DMA interface with controls to transfer data
to/from the host computer, and the instruction decode and control
hardware to make the unit operate efficiently. A block diagram of such
an array processor is shown in Figure 1.

Parallel Programming

Parallel programming is not a new type of programming but a different
way to solve a problem. One typically solves a problem by performing
one operation after another until the answer is obtained, then moves on
tothe next set of data and repeats the operation. Parallel programming
likewise performs one operation at a time, however it performs this
operation on the entire set of data at onceinstead of one point at a time.
It can also be thought of as vector or matrix arithmetic. Consider the
following example: Develop the time history of an object's position as it

isdropped fromaheight of 100 meters with an initial downward velocity
of 2 m/sec every 10 milliseconds for the first 4.0 seconds. The basic
equation is thus:

s = 0.5at?> + vt + s,

where s is the present position, a is the acceleration of gravity
(-9.8 m/s2), t is time, v is the initial velocity (-2.0 m/s) and s, is the
initial height (100 m). Programming this function would require two
arrays of 4/0.01+1 or 401 elements for the position (s) and time (¢) data.
A Fortran version of the program would be:

1 sO =100.0

2 v =-2.0

3 a = -9.8

4 t(1)= 0.0

5 s(1)=100.0

6 do i=2,401

7 t(i) = t(i-1) + 0.01

8 s(i) = 0.5%a*t(i)**2 + v*t(i) + s0
9 end do

The time consuming portion of this code segmentliesin theloop, lines 6
through 9. Specificallyline 8 requires 1 exponential, 3 multiplies, and 2
adds. Line 7requires 1 add and 1integer subtract. The time for memory
fetchesand puts, and the comparisons within the controlling do loop are
neglected since their time is short compared to the mathematical
operations. It should be noted however, memory operations to the
computer's dynamic memory are much slower than operations to the
array processor's static memory.

While the code, as written, is descriptively clear it is not very efficient,
even for Fortran. The code should be rewritten as follows:

1 sO =100.0
2 v =-2.0
3 a = -9.8
4 t(1)= 0.0
5 s(1)=100.0
S5a acc =0.5%a

do i=2,401
t(i) = t(i-1) + 0.01
s(i) = (acc*t(i) + v)*t(i) + sO

end do

O 00 ~N O

By using an additional variable (acc), 400 multiplies have been reduced
to 1. Other operations are now missing or reduced: no exponentials,
2 multiplies instead of 3, and 2 adds. Thus readability in the code has
been replaced by efficiency—but that is what comment lines are for.
This efficient code can be further enhanced by using parallel
programming with an array processor. After defining the original
constants, the first task is to generate the time array using the ramp
function to construct an array containing time in 10 millisecond
increments from 0 seconds to 4.0 seconds (NOTE: The Fortran
emulation is presented as commented code above the subroutine call):

1 sO =100.0

2 v = -2.0

3 a = -9.8

4 acc =0.5*a

C t(1)=0.0

C do i=2,401

C t(i) = t(i-1)+0.01

C end do

5 call vframp(0.0,0.01,t,401)

Now thatthe time arrayis completed, the array processor’s capability of
performing an addition and a multiplication simultaneously can be used
to perform the operation contained within the parentheses in line 8
above:

C do i=1,401

C s(i) = acc*t(i) +v

C end do

6 call vsmsad(acc,t,v,s,401)

Again using the ability to simultaneously multiply and add, the
resultingarray (s) can be multiplied by the time array (t) and the offset
(s0) added to complete the operation:

C do i=1,401

C s(i) = s(i)*t(i) +s0

C end do

7 call vmsadd(s,t,s0,s,401)

Notice, as in Fortran, the results of an array processor operation can
overwrite one of the input arrays, in this case the s array.

Obviously from the above example, emulation of the parallel processing
code would actually be slower than the efficient Fortran code. However,
the hardware looping and data management within the array processor
along with the pipeline and optimized hardware multipliers and adders
result in speed increases of several orders of magnitude. This example
illustrates the difference between serial and parallel programming. Not
all processes can be converted to parallel operation, but modern array
processors are controlled by common, transparent subroutine calls
allowing intermixing with standard serial Fortran operations.

Laser Velocimeter Data Processing Code

Once the array processor is initialized, memory allocated for arrays,
and basic constants loaded, the processor is available for use within the
data processing program. The beginning portion of the code will be
shown toillustratethetype of operationsthatcan be performed with the
array processor and the ease of programming once the technique of
parallel programming has been mastered.

The data acquired from the laser velocimeter signal processor usually
consists of apackedinteger word specifying the value of time for x cycles
within thesignal burst. For example, ahigh-speed burst counter output
data word is made up of a 10- or 12-bit mantissa and a 4-bit exponent
(power of 2) representing the number of master clock pulses occurring
during the measurement period. The software must decouple these two
segments of information from each measurement and convert them to a
floating point number representing the measurement velocity. If the
times between measurements are recorded by the data acquisition
subsystem, they must also be converted to floating point numbers
representing the length of these times. Assume that these two packed
numbers have the following format:

measurement period - xxaaaaaaaaaabbbb
where

x - don't care
a - mantissa bits

b - exponent bits (power of 2)
and
interarrival time - eecaaaaaaaaaaaaaa
where

e-exponentbits (0.1 microsecondstimes 10 raisedtothe power ee)

a - mantissa bits

The following arrays are used:

rawu - 16-bit integer array holding the input data from the high-
speed burst counter

rawt - 16-bit integer array holding the input interarrival time
measurements

rawux - 16-bit integer working array

rawtx - 16-bit integer working array
u - floating point array containing the velocity values
t -floating point array containingtheinterarrival time values

scratch - floating point scratch array
Begin the conversion process by masking and isolating the components
of the velocity: Isolate the lowest 4-bits (b) and place them in array
rawux where n is the number of measurements in the array as passed
from the Fortran program:

call vsan16(#F,rawu,rawux,n)

Isolate the next 10- bits (a) and place them back in the original array:

call vsan16(#3FF0,rawu,rawu,n)

Logical shiftrightthe mantissabitsby4 tomaketheleastsignificantbit
(LSB) the 0 bit:

call visr16(rawu,4,rawu,n)

Convert the exponent to floating point and raise 2 to the exponent
power:

call vflt16(rawux,scratch,n)

call vexp2(scratch,scratch,n)
Convert the mantissa to floating point and multiply by the exponential
value to obtain the number of master clock pulses for each
measurement:

call vflt16(rawu,u,n)

call vmul(u,scratch,scratch,n)

Loadthevalue 1.0x 10’ into the velocity array. Since n may beless than
or equal to maxdata, this value will serve as an end-of-dataindicator for
the remaining portion of the program:

call vffill(a1e30,u,maxdata)

Divide thearrayinto 32000 toconvertthe number of master clock pulses
to measured signal frequency in MHz and place in the velocity array:

call vsdivr(a32k,scratch,u,n)
Use a similar code to convert the interarrival time data:

call vsan16(#CO000,rawt,rawtx,n)
call vsan16(#3FFF, rawt,rawt,n)
call visr16(rawtx,14 rawtx,n)
call vflt16(rawtx,scratch,n)

call vssubl(s7,scratch,scratch,n)
call vexp10(scratch,scratch,n)
call vfl16u(rawt,t,n)

call vmul(t,scratch,scratch,n)

call vffill(a1e30,t,maxdata)

call vmov(scratch,t,n)

The frequency and interarrival time measurements are now stored in
floating pointnotationin the arrays u and t respectively. The next step
is to remove extraneous data, if any, from the ensemble, convert

frequency to velocity and build the velocity histogram.

This is

accomplished by limiting the data to +128 percent of the simple
ensemble mean. The following code sequence continues processing and
contains comments following the character!.

call meanv(u,s3,n)

call vmul(s3,s85,s6,n1)

call vsmssl(s4,s6,s3,s5,n1)

call vsmsad(s4,s6,s3,s6,n1)

call vssubl(s2,s5,85,n1)

call vssubl(s2,s6,s6,n1)

call vssubl(s2,u,u,n)

call vsmul(s1,s5,s5,n1)

lcompute mean and store in s3
'multiply mean by 0.01 (in s5)
land store result in s6
'multiply 0.01 of frequency
(s6) by the value 128 (s4) and
Isubtract from the mean (s3)
land store resultin s5
'multiply 0.01 of frequency
(s6) by the value 128 (s4) and
ladd to the mean (s3) and
Istore result in s6

Isubtract the Bragg frequency
lfrom the lower limit of
'frequency

Isubtract the Bragg frequency
'from the upper limit of
'frequency

Isubtract the Bragg frequency
'from the data in the velocity
larray

'multiply lower limit of
'frequency by the fringe

Ispacing to obtain velocity

call vsmul(s1,s6,s6,n1) 'multiply upper limit of
'frequency by the fringe
Ispacing to obtain velocity

call vsmul(s1,u,u,n) 'multiply data in the velocity
larray by the fringe spacing to
lobtain velocity

callmnmxv(u,s1,s2,n) lobtain the minimum (s1) and
'maximum (s2) of the velocity
larray

call vhistz(u,vhis,n256,s5,s6,n) !build a 256 bin histogram
lof the velocity data (vhis)
limited by s5 and s6

call maxvi(vhis,s3,s4,n256) !determine the maximum
'number of occurrences in the
'histogram and its index

The process continues in the manner described by Meyers (1988) using

the array processor to complete the statistical calculations of the
velocity data ensemble.

Performance Tests

The completed code was tested using a 12.5 MFLOP array processor
placed in a 33 MHz 80386 microcomputer containing a 80387 math
coprocessor. The coded high-speed burst counter data and the coded
interarrival time data were placed on the hard drive (16 msec average
access time). The test consisted of reading the coded data from disk,
converting it to floating point, storing the floating point values to disk,
performing the statistical analysis using the procedure to insure
independent, non-biased data developed by Edwards and Meyers (1984)
asimplemented by Meyers (1988), and displaying the results in numeric
form with plots of the three velocity histograms shown in Figure 2. The
test data set consisted of three component velocity data with
interarrival times for 49 measurement locations.

The previous minicomputer system used at Langley for laser

velocimeter applications required 14 minutes, 40 seconds to perform
the test without histogram presentation while the present

10

minicomputer only required 6 minutes, 50 seconds. The microcomputer
system using the array processor required 2 minutes, 25 seconds to
perform the test without histogram presentation and 4 minutes, 30
seconds with the histograms. Clearly the ftoy computer with its
primitive operating system can perform, with the help of an array
processor, the laser velocimeter data acquisition and processing tasks a
factor of three faster than the present real computer with all of its
sophistication.

Summary

The conceptofarray processing was presented and the hardware system
for microcomputer applications described. The concept of parallel
programming used by array processors was discussed using examples
including the laser velocimeter data processing program. And finally
performance tests using the system clearly show the major
improvements in computing speed obtained using an array processor to
solve computationally intensive problems.

Bibliography

Edwards, R.V. and Meyers, J.F. 1984 An Overview of Particle Sampling
Bias, Second International Symposium on Applications of Laser
Anemometry to Fluid Mechanics, Lisbon, Portugal.

Meyers, J.F. 1988 Laser Velocimeter Data Acquisition and Real Time
Processing Using a Microcomputer, Fourth International Symposium
on Applications of Laser Anemometry to Fluid Mechanics, Lisbon,
Portugal.

11

Host Interface | | Host Processor

DMA to/from Host Bus PC, XT, AT, or
Host Memory | Compatible

f

8

v

Host
Interface
Processor

Bank O Addresses
0000 - DFFF
57344 Bytes

Floating Point
Processor
(32/40-bit)

—— MEMORY —

Bank 1 Addresses
FO00 - FFFF
4096 Bytes

<— 32-bit Address Bus —

32 bit
Instruction/Decode
Register

<— 16-bit Address Bus —»

<— 32-bit Data Bus

Pipeline
Control

Integer
Processor
Auxiliary

(16-bit) Interface
Processor

Program
Counter

<— 16-bit Address Bus —>

Figure 1.- Block diagram of a microcomputer based array processor.

Acquire Screen Optics LVUABI Traverse Model
Fun number: Z01 817 J:55 Humber of 4k blocks:
Sampla YVolurne Poaition
Mode]l Sherd: Eilalyn] Straamwizse 24350
Model Ferpendicular: 000 “artical —3.9880
Wodal Span: 00 Croas Flow 52220
Component Statisties

Channel 1 Channel 3 Channel &
Mean velocity: BE.6EDD 15,7742 —13.8056
Standard deviation: 31240 1.5451 27Ma
Input dato points: G62.0000 1442 0000 18370000
Integral tirme scole; 0047 L0EE L0034
Minimum velozit: —23.65257 —5, 3051 —33.1460
Maximum welocity: T80 FRESI0 21 .5800
% data accapted: &1.9421 99 0385 94,4859
Average dato rote: 2B2.BHZE 331.8630 3475351
ViR Gorrelation: —a315 —.0082 0191
198 334 120

T iy e P L Tl
A Streamwiza w0 T Yarkical *a TERD Croaa Flow 0

Figure 2.- Display screen from the laser velocimeter data acquisition and on-line
processing program for a microcomputer.

13

