Factors That Affect Software Testability

Jeffrey M. Voas

Systems Architecture Branch

Information Systems Division
Mail Stop 478

NASA Langley Research Center
Hampton, VA 23665
(804) 864-8136
jmvoas@phoebus.larc.nasa.gov

Abstract: Software faults that infrequently affect software’s output are dangerous. When
a software fault causes frequent software failures, testing is likely to reveal the fault before
the software is released; when the fault remains undetected during testing, it can cause
disaster after the software is installed. A technique for predicting whether a particular
piece of software is likely to reveal faults within itself during testing is found in [Voas91b].
A piece of software that is likely to reveal faults within itself during testing is said to have
high testability. A piece of software that is not likely to reveal faults within itself during
testing is said to have low testability. It is preferable to design software with higher
testabilities from the outset, i.e., create software with as high of a degree of testability
as posstble to avoid the problems of having undetected faults that are associated with low
testability.

Information loss is a phenomenon that occurs during program ezecution that increases
the likelihood that a fault will remain undetected. In this paper, I identify two broad
classes of information loss, define them, and suggest ways of predicting the potential for

information loss to occur. We do this in order to decrease the likelihood that faults will
remain undetected during testing.

Index Terms: Testability, Domain/Range Ratio (DRR), random black-box testing,
information loss, information hiding, software design, specification metric.

Jeffrey Voas is working as a National Research Council resident research associate at the
National Aeronautics and Space Administration’s Langley Research Center. His research
interests include software testing, studying data state error propagation, debugging tech-
niques, and design techniques for improving software testability. Voas received a BS in

computer engineering from Tulane University and a MS and PhD in computer science
from the College of William and Mary.

Factors That Affect Software Testability

1 Introduction

This paper exposes factors that I have observed which affect program testabilities. Testabslity
of a program is a prediction of the tendency for failures to be observed during random black-
box testing when faults are present [Voas91b]. A program is said to have high testability
if it tends to expose faults during random black-box testing, producing failures for most of
the inputs that execute a fault. A program has low testability if it tends to protect faults
from detection during random black-box testing, producing correct output for most inputs
that execute a fault. In this paper, I purposely avoid a formal definition for fault because
of the difficulty that occurs when trying to uniquely identifying faults, and instead use the
intuitive notion of the term fault.

Random black-box testing is a software testing strategy in which inputs are chosen at
random consistent with a particular input distribution; during this selection process, the
program is treated as a black-box and is never viewed as the inputs are chosen. An input
distribution is the distribution of probabilities that elements of the domain are selected.
Once inputs are selected, the program is then executed on these inputs and the outputs are
compared against the correct outputs.

Sensitivity analysis [Voas91b] is a dynamic method that has been developed for predict-
ing program testabilities. One characteristic of a program that must be predicted before
sensitivity analysis is performed is whether the program is likely to propagate data state
errors (if they are created) during execution. Propagation analysis [Voas91b, Voas9lc] is a
dynamic technique used for predicting this characteristic. If the results of propagation anal-
ysis suggest that the cancellation of data state errors is likely to occur if data state errors
are created, then sensitivity analysis produces results predicting a lower testability than if
cancellation of data state errors were unlikely to occur.

When all of the data state errors that are created during an execution are cancelled,
program failure will not occur. If this occurs repeatedly, this produces an inflated confidence
that the software is correct. It might seem desirable for a correct output to be produced
regardless of how the program arrived at the correct output. This is the justification for
fault-tolerant software. But for critical software, any undetected fault is undesirable, even
if the data state error it produces is frequently cancelled. For critical software, we prefer
correct output from correct programs, not correct output from incorrect programs. By the
fact the program is incorrect, there exists at least one input on which program failure will
occur, and by the fact the software is critical, the potential for a loss-of-life exists.

This paper presents empirical observations concerning a phenomenon that occurs during
program execution; this phenomenon suggests the likelihood of data state error cancellation

occurring. The degree to which this phenomenon occurs can be quantified by static program
analysis, inspection of a specification, or both. Note that this phenomenon can be quantified
statically, which is far less expensive to perform than the dynamic propagation analysis. Thus
through static program analysis or specification inspection, insight is acquired concerning the
likelihood that data state error cancellation will occur. And this gives insight into whether
faults will remain undetected during testing, i.e., program testability.

I term this phenomenon “information loss.” Information loss occurs when internal infor-
mation computed by the program during execution is not communicated in the program’s
output. Information loss increases the potential for the cancellation of data state errors and
this decreases software testability. As mentioned, information loss can be observed by both
static program analysis and inspection of a specification. I divide information loss into two
broad classes: implicit information loss and explicit information loss. Static program anal-
ysis is used to quantify the degree of explicit information loss, and specification inspection
quantifies the degree of implicit information loss.

Ezplicit information loss occurs when variables are not validated either during execution
(by a self-test) or at execution termination as output. The occurrence of explicit information
loss can be observed using a technique such as static data flow analysis [Korer87]. Explicit
information loss frequently occurs as a result of information hiding [Parnas72], however there
are other factors that can contribute to it. Information hiding is a design philosophy that
does not allow information to leave modules that could potentially be misused by other
modules. Information hiding is a good design philosophy; however, it is not necessarily good
for testability, because the data in the local variables is lost upon exiting a module. In
Section 3.3, I propose a scheme where information hiding is kept as a part of the software
design philosophy while its negative effect, explicit information loss, is lessened.

Implicit information loss occurs when two or more different incoming parameters are
presented to a user-defined function or a built-in operator and produce the same outgoing
parameter. An example is the integer division computation a := a div 2. In the com-
putation a := a + 1, there is no implicit information loss. In these two examples, the
potential for implicit information loss occurring is observed by statically analyzing the code.
If a specification states that ten floating-point variables are input to an implementation, and
2 boolean variables contain the implementation’s output, then we know that implicit infor-
mation loss will occur in an implementation of this specification. Thus specifications may
also hint at some degree of the implicit information loss that will occur if they are written
with enough information concerning their domains and ranges.

2 Information Loss

I have proposed two broad classes of information loss. The following pseudo-code example
contains both types of information loss and demonstrates how we can statically observe
where these two types of information loss occur. For this example, I assume inputs a and ¢

have effectively infinite domains, and z has an effectively infinite domain immediately before
the statement z := z mod 23 is executed.

Module x(in—parameter a : real, in-parameter c : real,
out-parameter b : boolean)

local-parameters
Zz : integer
y : boolean

Beginning of Body

z mod 23

Z -
b := f(a,c,y,z)
End of Body

With the assumption of effectively infinite domains for a, ¢, and z, module x suffers from
both implicit information loss and explicit information loss. Explicit information loss occurs
in x as a result of its 2 local variables whose values are not output nor passed out. Implicit
information loss can be observed in several ways. The first way is the impossibility of
taking b’s value at module termination and discovering the values of a and ¢ that were
originally passed in; infinitely many combinations of a and ¢ map to a particular b. This
potentially could have been observed from the specification of the module. The second way
implicit information loss occurs is at the statement containing the mod operator; implicit
information loss occurs because of the assumption that z has an effectively infinite domain.
Many values of z map to a particular value in [0..22] after the computation.

2.1 Implicit Information Loss

Clues suggesting some degree of the implicit information loss that may occur during execu-
tion may be visible from the program’s specification; I use a specification metric termed the
“domain/range ratio” for suggesting a degree of implicit information loss [Voas91a]. Recall
that in the example we were also able to observe implicit information loss by code inspec-
tion. Therefore, a specification’s domain/range ratio only suggests a portion of the implicit
information loss that may occur; code inspection can give additional information concerning
implicit information loss.

The domain/range ratio (DRR) of a specification is the ratio between the cardinality of
the domain of the specification to the cardinality of the range of the specification. I denote a
DRR by « : §, where a is the cardinality of the domain, and £ is the cardinality of the range.
As previously stated, this ratio will not always be visible from a specification. After all, there
are specifications whose ranges are not known until programs are written to implement the
specifications. And if the program is incorrect, an incorrect DRR will probably be calculated.

DRRs roughly predict a degree of implicit information loss. Generally as the DRR
increases for a specification, the potential for implicit information loss occurring within the
implementation increases. When « is greater than P, previous research has suggested that
faults are more likely to remain undetected (if any exist) during testing than when o = B

[Voas91a].

Figure 1: There are four potential values for variable a and four potential values for variable
b, for a total of 16 pairs of potential inputs. Notice that for these 16 inputs, integer division
always produces the same output (1), and real division produces 16 unique outputs.

The granularity of a specification (or functional description) for which we can determine
a DRR varies. For example, DRRs exist for unary operators, binary operators, complex
expressions, subspecifications, or specifications. (By subspecification, I mean a specification
for what will become a module.) In the example, the DRR of subspecification x is (oor)?: 2
and ooy : 23 for the mod operator. In this paper, the symbol co; denotes the cardinality of
the integers, and cog denotes the cardinality of the reals.

For certain specifications, the inputs can be found from the outputs by inverting the
specification. For example, for an infinite domain, the specification f(z) = 2z has only one
possible input = for any output f(z). Other specifications, for example f (z) = tan(z), can
have many different z values that result in an identical f(z); ie., tan~!(z) is not a one-
to-one function. All inverted specifications that do not produce exactly one element of the
domain for each element of the range lose information that uniquely identifies the input given
an output. Restated, many-to-one specifications mandate a loss of information; one-to-one
specifications do not. This is another way of viewing implicit information loss.

When implicit information loss occurs, you run a risk that the lost information may have
included evidence of incorrect data states. Since such evidence is not visible in the output,
the probability of observing a failure during testing is somewhat reduced. The degree to
which it is reduced depends on whether the incorrect information is isolated to bits in the
data state that are not lost and are eventually released as output. As the probability of
observing a failure decreases, the probability of undetected faults existing increases.

Another researcher who has apparently come to a similar conclusion concerning the rela-
tionship between faults remaining undetected and the type of function containing the fault is
Marick [Marick90]. While performing mutation testing experiments with boolean functions,
Marick [Marick90] noted that faults in boolean functions (where the cardinality of the range
is of course 2) were more apt to be undetected. Boolean functions have a great degree of

Function Implicit Information Loss DRR Comment

1 f(a)= { 2 :)ftlczejw(;se yes ooy :00r/2 a is integer

2 fla)=a+1 no oor:o00r @ isinteger

3 f(a) = amod b yes ooy :b testability decreases
as b decreases

4 fla)=adivbd yes oor:0or/b testability decreases
as b increases, b # 0

5 f(a) = trunc(a) yes oOR:007 @ is real

6 f(a) = round(a) yes oOR:007 aisreal

7 f(a) = sar(a) no 2.00Rp:00R aisreal

8 f(e) = sart(a) no ooR : 0R/2 a is real

9 f(a) =a/b no ooRp:00rp aisrteal, b#0

10 fla)=a-1 no ooy :00r @ is integer

11 f(a) = even(a) yes oor:2 a is integer

12 f(a) = sin(a) yes o07:360 a is integer (degrees),
a>0

13 f(a) = tan(a) yes oor : 360 a is integer (degrees),
a>0

14 f(a) = cos(a) yes o007 :360 a is integer (degrees),
a>0

15 f(a) = odd(a) yes oor:2 a is integer

16 f(a) = not(a) no 1:1 a is boolean

Table 1: DRRs and implicit information loss of various functions.

implicit information loss. This result compliments the idea that testability and the DRR
are correlated. Additional evidence that correlation exists between implicit information loss
and testability is currently being collected.

2.1.1 Correlating Implicit Information Loss and the DRR

Implicit information loss is common in many of the built-in operators of modern programming
languages. Operators such as div, mod, and trunc have high DRRs.

Table 1 contains a set of functions with generalized degrees of implicit information loss
and DRRs. A function classified as having a yes for implicit information loss in Table 1
is more likely to receive an altered incoming parameter and still produce identical output
as if the original incoming parameter were used; a function classified as having no implicit
information loss in Table 1 is one that if given an altered incoming parameter would produce
altered output. A yes in Table 1 suggests data state error cancellation would occur; a no
suggests data state error cancellation would not occur. In Table 1, all references to b assume
it be a constant for simplicity. This way we only have to deal with the domain of a single
input, instead of the domain of a 2-tuple input. The infinities in the table are mathematical

entities, but for any computer environment they will represent the cardinality of fixed length
number representations of finite size.

Instead of describing the generalizations made concerning implicit information loss for
each element of Table 1, Figure 1 illustrates the relationship between implicit information
loss and the DRR. In Figure 1, we have 16 (a,b) input pairs that are presented to 2 functions:
one performs real division, the other performs integer division. For the real division function
there are 16 unique outputs, and for the integer division function there is one output. This
example shows how the differences in the DRRs of these two forms of division are correlated
to different amounts of information loss.

2.2 Explicit Information Loss

Explicit information loss is not predicted by a DRR as implicit information loss is. Recall
that explicit information loss is observed through code inspection, whereas the potential for
implicit information loss can be predicted from functional descriptions or code inspection.
Explicit information loss may also be observable from a design document depending on its
level of detail. Explicit information loss is more dependent on how the software is designed,
and less dependent on the specification’s (input, output) pairs.

2.2.1 Observability

Integrated circuit design engineers have a notion similar to explicit information loss that they
term “observability.” Observability is the ability to view the value of a particular node that is
embedded in a circuit [Markowrrz88]. When explicit information loss occurs in software, you
loose the ability to see information in the local variables. So in this sense, greater amounts
of explicit information loss in software is a parallel to lower observability in circuits.

Discussing the observability of integrated circuits, [BercLunp79] states that the principal
obstacle in testing large-scale integrated circuits is the inaccessibility of the internal signals.
One method used for increasing observability in integrated circuits design is to increase the
pin count of a chip, allowing the extra pins to carry out additional internal signals that can
be checked during testing. These output pins increase observability by increasing the range
of potential bit strings from the chip. In Section 3.3, I propose applying a similar notion
to increasing the pin count during software testing—increasing the amount of data state
information that is checked during testing. Another method used for increasing observabil-
ity is inserting internal probes to trap internal signals; Section 3.3 also proposes a similar
technique by self-testing internal computations during execution.

3 Design Heuristics

Section 3 presents several strategies for lessening the effects of information loss. Section 3.1
describes benefits gained during program validation if specifications are decomposed in a
manner that lessens the effect of implicit information loss at the specification level. Section
3.2 describes a way of lessening the effect of implicit information loss at the implementation
level. Section 3.3 describes ways of lessening the effects of explicit information loss.

3.1 Specification Decomposition: Isolating Implicit Information
Loss

Although the DRR of a specification is fired and cannot be modified without changing the
specification itself, there are ways of decomposing a specification that lessen the potential of
data state error cancellation occurring across modules. During specification decomposition,
you have hands-on control of the DRR of each subfunction. With this, you gain an intuitive
feeling (before a subfunction is implemented) for the degree of testing needed for a particular
confidence that a module is propagating data state errors. The rule-of-thumb that guides
this intuitive feeling is: “the greater the DRR, the more testing needed to overcome the
potential for data state error cancellation occurring.”

Section 3.1 presents a benefit that can be gained for testing purposes by using a speci-
fication’s DRR during design. During a design, a specification is decomposed in a manner
such that the program’s modules are designed to either have a high DRR or a low DRR. By
isolating modules that are more likely to propagate incoming data state errors through them
during program testing (low DRR), testing resources can be shifted during module testing
to modules that are less likely to propagate incoming data state errors across them.

I am not suggesting that specification decomposition in this manner is always possible,
but rather when possible, it can benefit those persons testing the program. By isolating
higher amounts of implicit information loss, the benefit derived is knowing which sections of
a program have a greater ability to cancel incoming data state errors before testing begins.
This provides insight for where testing is more critically needed. This allows testers to shift
testing resources from sections needing less effort to sections needing more.

As an example, consider a specification g:

c+2 if odd(a) and odd(b)
g(a,b,c)=¢ c+1 if odd(a) or odd(b)

c otherwise

where a, b, and ¢ are integers. Many different designs can be used to compute g, but I will
concentrate on two designs are also shown in the table in Figure 2: Design 1 and Design 2
(In Figure 2 a thick arc represents large sets of values (too many to enumerate), and a thin
arc represents a single value.) The DRR of g is 0o} : co;. The DRRs of the subfunctions
of Designs 1 and 2 are shown in Figure 2. Design 1 has two subfunctions, f1 and f2. In
Design 2, I have taken g with its DRR of co$: co; and have decomposed it in such a manner
as to isolate the subfunctions that create its high DRR: f3 and f4. This decomposition
provides a priori information concerning where to concentrate testing (in f3 and f4) and
where not to (in f5, since subfunction f5 can be exhaustively tested). Had subfunction f5
not been separated out, then in whatever other design this computation occurred, it would
be needlessly retested.

The reader might ask why subfunctions £3 and f4 should receive additional testing. This
is because if anything were to occur to the values of variables a and b before subfunctions
f3 and f4 are executed (thus causing a data state error affecting these variables), it is likely
that these subfunctions will cancel the data state error. We should test less in f5 and test
more in f3 and f4. This shows how isolation according to module DRRs can benefit testing.

subfunction classification DRR

f1 VDVR 007 : 00%
12 VDVR o0% 1 0o
f3 VDFR ooy : 2
f4 VDFR ooy : 2
f5 FDFR 4:3

f6 VDVR 3-005:00;

Figure 2: Design 1 (left); Design 2 (right).

3.2 Minimizing Variable Reuse: Lessening Implicit Information
Loss

A method for decreasing the amount of implicit information loss that occurs at the operator
level of granularity is minimizing the reuse of the variables. For instance, as we have already
seen, a computation such as a := sqr(a) destroys the original value of a, and although you
can take the square root after this computation and retrieve the absolute value that a had,
you have lost the sign. Minimizing variable reuse is one attempt to decrease the amount of
implicit information loss that is caused by built-in operators such as sqr.

Minimizing variable reuse requires either creating more complex expressions or declaring
more variables. If the number of variables is increased, memory requirements are also in-
creased during execution. If complex expressions are used, we lessen the testability because
a single value represents what were previously many intermediate values. Although there
is literature supporting programming languages based on few or no variables [BackusT78],

programs written in such languages will almost certainly suffer from low testabilities. Thus
I advocate declaring more variables.

3.3 Increasing Out-Parameters: Lessening Explicit Information
Loss

Consider the analogy where modules are integrated circuits and local variables are internal
signals in integrated circuits. This analogy allows us to see how explicit information loss
caused by local variables parallels the notion of low observability in integrated circuits. Since
explicit information loss suggests lower testabilities, I prefer, when possible, to lessen the
amount of explicit information loss that occurs during testing. And if limiting the amount
of explicit information loss is not possible, I at least have the benefit of knowing where the
modules with greater data state error cancellation potential are before validation begins.

One approach to limiting the amount of explicit information loss is to insert write
statements to print internal information. This information must then be checked against
the correct information. A second approach is increasing the amount of output that these
subspecifications return by treating local variables as out-parameters. A third approach
inserts self-tests (this is similar to the assertions suggested in [Stmearr91] for fault detection)
that are executed to check internal information during computation. In this approach,
messages concerning incorrect internal computations are subsequently produced.

These approaches produce the same end results, however in the processes employed to
achieve these results they differ slightly. The end results of these approaches are:

1. Forcing those persons involved in the formalization of a specification to produce de-
tailed information about the states of the internal computations. This should increase
the likelihood that the code is written correctly.

2. Increasing the cardinality of the range.

As an example of the third approach, consider inserting self-tests into the declaration
given in Section 2:

Module x(in-parameter a : real, in-parameter c : real,
out-parameter b : boolean)

local-parameters
z : integer
y : boolean

Beginning of Body

z := zZ mod 23
self-test(z,ok)
if not(ok) then write(’warning on z’)

Yy := expression
self-test(y,ok)
if not(ok) then write(’warning on y’)

b := f(a,c,y,z)
End of Body

A self-test such as self-test(z,ok) may either state explicitly what value z should have
for a given (a,c) pair, or it may give a range of tolerable values for z in terms of a particular
(a,c) pairing. If a self-test fails, a warning is produced.

These three approaches simulate the idea previously mentioned that is used in integrated
circuits—increasing the observability of internal signals [BeraLunp79, Markowrrz88]. In these
approaches, I am not discrediting the practice of information hiding during design. How-
ever, when writing software such as safety-critical software, there is a competing imperative:
to enhance testability. Information that is not released encourages undetected faults, and
increased output discourages undetected faults.

The downside to these approaches is that for the approaches to be beneficial, they all
need additional specified information concerning the internal computations. Maybe the real
message of this research is that until we make the effort to better specify what must occur,
even at the intermediate computation level, testabilities will remain lower.

3.4 Combining Approaches

We have seen how different techniques can be used against various classifications of informa-
tion loss. An even better methodology for achieving this goal is a combination of techniques,
applied at both design and implementation phases. For example, combining the technique of
releasing more internal information with the technique of minimizing variable reuse furthers
the available information for validation. The limit to any combined approach, however, will
be the ability to validate the additional information. After all, if the additional information
can not be validated, then there is no reason to expose it.

4 Summary

Information loss is a phenomenon to be considered by those who gain confidence in the
correctness of software through software testing. The suggestion that information loss and
testability are related is important; it implies that the ability to gain confidence in the
absence of faults from observing no failures may be limited for programs that implement
functions that encourage information loss. Although discouraging on the surface, I feel that
there are ways to lessen this limitation with prudent design and implementation techniques.

The unfortunate conclusion of Section 3 is that we must validate more internal infor-
mation if we hope to increase software testability. To validate more internal information,
we must have some way of checking this additional internal information. This requires that
more information be specified in the specification or requirements phase. And for certain
applications this information is rarely available.

It may be that a theoretical upper bound exists on the testability that can be achieved
for a given (functional description, input distribution) pair. If we can change the functional
description to include more internal information, we should be able to push the upper bound
higher. Although the existence of an upper bound on testability is mentioned solely as
conjecture, my research using sensitivity analysis and studying software’s tendency to not

reveal faults during testing suggests that such exists. I challenge software testing researchers
to consider this conjecture.

5 Acknowledgement

This research has been supported by National Research Council NASA-Langley Resident
Research Associateship.

References

[Backus78] J. Backus. Can Programming Be Liberated from the Von Neumann Style?

A Functional Style and its Algebra Programs. Communications of the ACM,
21(8):613-641, August 1978.

[BercLunp79] Nem C. BercLunp. Level-Sensitive Scan Design Tests Chips, Boards, System.
FElectronics, March 15 1979.

[KoreL87] Bobean Korer. The Program Dependence Graph in Static Program Testing.
Information Processing Letters, January 1987.

[Marick90] Brian Marick. Two Experiments in Software Testing. Technical Report
UIUCDCS-R-90-1644, University of Illinois at Urbana-Champaign, Depart-
ment of Computer Science, November 1990.

[Markowrrz88] Micuaer C. Markowrrs. High-Density ICs Need Design-For-Test Methods.
EDN, 33(24), November 24 1988.

[ParNAsT2]

[SrmMEALLIL]

[Voas91a]

[Voas91b]

[Voas9lc]

Davip L. Parnas. On Criteria to be used in Decomposing Systems into Mod-
ules. Communications of the ACM, 14(1):221-227, April 1972.

Tmoruy J. SuiMeart ano Nancy G. Leveson. An Empirical Comparison of
Software Fault Tolerance and Fault Elimination. IEEE Transactions on Soft-
ware Engineering, 17(2):173-182, February 1991.

J. Voas anp K. MiLLer. Improving Software Reliability by Estimating the
Fault Hiding Ability of a Program Before it is Written. In Proceedings of
the 9th Software Reliability Symposium, Colorado Springs, CO, May 1991.
Denver Section of the IEEE Reliability Society.

J. Voas, L. Morect, anp K. MiuLer. Predicting Where Faults Can Hide From
Testing. IEEE Software, 8(2), March 1991.

J. Voas. A Dynamic Failure Model for Estimating the Impact that a Program
Location has on the Program. In Proceedings of the 3rd European Software
Engineering Conf., Milano, Italy, October 1991.

