CURRENT ISSUES IN UNSTEADY TURBOMACHINERY FLOWS

Louis Povinelli
NASA Glenn Research Center
Cleveland, OH

Among the numerous causes for unsteadiness in turbo machinery flows are turbulence and flow environment, wakes from stationary and rotating vanes, boundary layer separation, boundary layer/shear layer instabilities, presence of shock waves and deliberate unsteadiness for flow control purposes. These unsteady phenomena may lead to flow-structure interactions such as flutter and forced vibration as well as system instabilities such as stall and surge.

A major issue of unsteadiness relates to the fact that a fundamental understanding of unsteady flow physics is lacking and requires continued attention. Accurate simulations and sufficient high fidelity experimental data are not available.

The Glenn Research Center plan for Engine Component Flow Physics Modeling is part of the NASA 21st Century Aircraft Program. The main components of the plan include Low Pressure Turbine experimental and computational databases and models for flow control, data for Reynolds Stress modeling and model development and combustor spectra measurement and an LES version of the National Combustor Code. The goals, technical output and benefits/impacts of each element are described in the presentation. The specific areas selected for discussion in this presentation are blade wake interactions, flow control, and combustor exit turbulence and modeling.

The results of the technical work lead us to the recognition that (1) it is critical to sort out the limitations of current models and determine the needed improvements for models of transition, separation and reattachment, (2) to understand both the surface properties as well as those within the boundary layer, (3) to understand the interaction of the force created by the control device on the boundary layer behavior and the excitation required, (4) an understanding of combustor exit flow field spectra and (5) an understanding of turbulent reacting flows. These phenomena hold the key to a more effective utilization of turbomachinery devices.
Keynote

Current Issues in Unsteady Turbomachinery Flows

Louis A. Povinelli

NASA Glenn Research Center

MINNOWBROOK IV
TRANSITION AND UNSTEADY ASPECTS OF TURBOMACHINERY FLOWS
17-20 AUGUST 2003
HIGH BYPASS RATIO ENGINE

PW4000

GE90
Sources of unsteadiness in turbomachinery flows

- Turbulence and flow environment
- Wakes - stationary & rotating vanes
- Boundary layer separation
- Boundary layer / shear layer instabilities
- Presence of shock waves
- Deliberate unsteadiness – flow control

- Flow-structure interactions-flutter & forced vibration
- System instabilities-stall, surge
- Turbofan hybrid cycle-PDE
Other Cause for Unsteadiness

FOD damage and the fix!

Another cause of unsteadiness
Major Issues

- Fundamental understanding of unsteady flow physics is lacking and requires continued attention.
- Accurate simulations and sufficient high fidelity experimental data are not available.

GRC PROGRAM

Engine Component Flow Physics Modeling

- Low Pressure Turbine databases
- Models for Low Pressure Turbines & Flow control
- Combustor Spectra Measurement
- LES version of NCC
- Data for Reynolds Stress Modeling
- Hybrid Computational (PANS) Scheme
- Reynolds Stress Model Development
Engine Component Flow Physics Modeling

<table>
<thead>
<tr>
<th>MS#</th>
<th>MS Lvl (Short Phrase)</th>
<th>OUTPUT (Performance Metric/Exit Criteria)</th>
<th>OUTCOME (Benefits & Impact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-04-2-02 L3</td>
<td>Reynolds Stress Model Development</td>
<td>Improved turbulence modeling for unsteady turbulent flows in engine and airframe components.</td>
<td>Enables improved accuracy for flow field simulation, providing increased confidence in design and analysis of engine and airframe components</td>
</tr>
<tr>
<td>11-04-3-03 L3</td>
<td>Hybrid Computational (PANS) Scheme</td>
<td>Demonstrated scheme for Partially Averaged Navier Stokes (PANS) flow simulation and demonstration of test cases for steady and unsteady turbulent wall and jet flow fields.</td>
<td>Verified robust, reliable computational method that will compute turbulent flow fields with a higher level of accuracy</td>
</tr>
<tr>
<td>11-04-3-04 L3</td>
<td>Combustor Spectra Measurement</td>
<td>Measurements of combustor turbulence.</td>
<td>Provides for accurate boundary conditions for turbine heat transfer requirements and reduced cooling flow reqts</td>
</tr>
<tr>
<td>11-04-3-05 L3</td>
<td>LES version of NCC</td>
<td>Large Eddy Simulation (LES) version of National Combustor Code (NCC)</td>
<td>Provides accurate numerical data sets for improved modeling for combustor CFD design tools.</td>
</tr>
<tr>
<td>11-04-3-06 L3</td>
<td>Low Pressure Turbine databases</td>
<td>Experimental and numerical data sets of unsteady low pressure turbine flows.</td>
<td>Provides validation data and physical understanding for CFD and modeling for more fuel efficient engine performance.</td>
</tr>
<tr>
<td>11-04-2-07 L3</td>
<td>Models for Low Pressure Turbines</td>
<td>Improved transition and turbulence modeling for unsteady separated low pressure turbine flows.</td>
<td>Provides accurate models for design tools for prediction of high lift low pressure turbine airfoils to increase loading and avoid flow separation.</td>
</tr>
<tr>
<td>11-04-3-08 L3</td>
<td>Low Pressure Turbine Flow Control</td>
<td>Demonstration and CFD development for active and passive flow control techniques for effective control of boundary layer separation.</td>
<td>Provides high efficiency, low weight, reduced part count, as well as increased loading over entire flight envelope.</td>
</tr>
</tbody>
</table>

Selected areas for discussion

1. Blade wake interactions
2. Flow control
3. Combustor exit turbulence & modeling
4. Pulse detonation hybrid cycles
1. Blade Wake Interactions

- This topic has been an active research area.
- Major recent contributions by Hodson et al, Halstead et al, Solomon et al, and others, mostly originating in Europe
- Has been a major topic in prior Minnowbrook workshops
- Research is particularly applicable for LPT flows

Characteristics of flow in LPT airfoil passages:
- Flow in LPT is unique compared to gas turbine components
 - Low Reynolds number 25,000 - 300,000, Exit M ~0.5
 - High free stream turbulence 0.5 % to 10 %
 - Complex flow: transition, wakes, separation
 - Unsteadiness
 - Additional complexity in 3D flow at endwalls
 - Cause of efficiency loss due to laminar separation on airfoil suction surface

Design needs
- Increase airfoil loading – reduce part count, weight, cost
- Reduce takeoff-to-cruise efficiency degradation.
Wake interaction in LPT - Background

- Much of the experimental work was based on surface measurements.
- Effort at GRC focus on high fidelity measurements inside the boundary layer -essential for successful CFD and model development.
- The goal is accurate simulation and validation of BL transition, separation and reattachment locations.
- Common blade geometry (P&W PAK B) used.
- Cascade simulations have yielded excellent agreement with experiment data.
- Simulation of cascade experiments with unsteady wakes are underway.

NASA GRC LPT PROGRAM

- High lift LPT
 - Unsteady - wakes
 - Steady- no wakes
 - Turbulence/Transition Modeling
 - Experiments
 - Models & physical understanding and databases for improved designs of LPT
 - Baseline for LPT flow control

- Flow Control
 - Active
 - Passive
 - Plasma
 - Theory - optimization
 - Promising initial results

In-house & universities team
- Experiments: GRC/CW7, U. Minnesota, Texas A&M, USNA
- Modeling/CFD: U. Kentucky

In-house & universities team
- Experiments: GRC/CW7, USNA, Notre Dame
- Theory: U.Arizona SBIR: Techsburg
Unsteady LPT flows with wakes:

• Focus on experiments with low speed simulated wake generators

Advantages:

• Enables detailed hot wire anemometry providing details of boundary layer behavior; transition, separation, reattachment, vortex formation, etc

• There is some criticism on use of cylindrical bars – however they are good for model validation – models that work for the turbulent wakes generated by cylindrical bars will work for airfoil wake.

Recent Studies sponsored by GRC:

• U. Minnesota – Simon et al

• Texas A&M – Schobeiri et al

• Univ. Notre Dame – Corke et al development of a solid state wake generator.
Suzen & Huang Simulation of the Experiments of Schobeiri and Pappu (1997) SSME Airfoil

Suzen & Huang (U. Kentucky) 2003: Comparison of CFD with experiments at U. Minnesota by Simon & Kaszeta (2001)
Work funded by NASA GRC

- Re = 21,000
- FSTI = 2.5%
- PAK-B blade passage
- $U_{rod} / U_{axial} = 0.7$
Future Work

• New blade configurations with higher loading to be used in common study
• Blade coordinates will be made available to researchers as done with PAK B
• Evaluation of current modeling to be carried out with new blade
• Extend work to 3D
• Design high lift LPT airfoil and test in new GRC dual spool rig (under construction)

2. Flow Control

Motivation
• There is limit to what can be accomplished with airfoil design and optimization
• Flow control provides a leap to new enabling technologies
• However; unsteadiness is challenge for experiments, simulation and physical understanding

Classification
• Passive Flow Control — trips, dimples, vortex generators, bumps
 • unsteadiness caused by shedding, transition
• Active Flow Control
 • Steady - aspiration – suction-blowing
 • Unsteadiness may be caused by separation (shedding, instabilities) or transition
 • Oscillatory/Pulsed – Synthetic jets, pulse jets, plasma actuators
 • unsteady by definition
Separation control via generation of streamwise vortices

DIMPLES -Passive

STREAMWISE ORIENTED GLOW DISCHARGE PLASMA ACTUATORS

Lake et al, 2000

Corke et al 2002, Hultgren & Ashpis, 2002
Volino, USNA, 2002

2D tripping strip Vortex generator jets

Ejector jet – SBIR – Technology in Blacksburg Inc.

Incoming low Re flow
Separation bubble on suction surface

High Pressure Air
ZERO NET MASS DEVICE - SYNTHETIC JET

Laminar 2D simulation

Synthetic Jet by George Huang Dept of Mech Eng University of Kentucky

Synthetic Jet for CFD Validation and Modeling

- Benchmark time-accurate codes, both unstructured and structured, against synthetic jet model
- Outcome will provide flow physics understanding of actuator interactions
- Calculations and experiments underway

- New actuator jointly designed by CFD modelers and experimentalists
 - Best performance not required
 - Single disk - easier B.C.
 - Wider 2D slot - better measurements
 - Redundant measurements
 - Hot-wire, LV, PIV, input signal, diaphragm displacement, cavity pressure
FLOW CONTROL - Summary (Inspired by Sellers, NASA Langley)

• Active Flow Control has the potential to revolutionize the gas turbine

However
• The dynamic environment that empowers flow control is not well understood,

nor...
• Can that dynamic environment be readily predicted with today’s computational tools,

The challenge....
• The engineering and integration needed to use and manufacture the necessary actuators, sensors and controls using advanced and smart materials needs to be demonstrated,
3. Combustor exit turbulence and combustor modeling

• **Combustor Spectra Measurement**
 • Attainment of turbulence intensity, scale and spectra at combustor exit plane in a full scale combustor facility

• **LES version of NCC (National Combustor Code)**
 • Shih, Ohio Aerospace Institute
 • Develop generalized wall function valid for adverse and favorable pressure gradient and validate with benchmark combustion datasets
 • Develop LES version of the National Combustor Code with suitable modeling for turbulent, swirling, reacting flow

Injection Mechanism

[Diagram of injection mechanism]
COMBUSTOR SPECTRA MEASUREMENTS
PROBE MECHANISM

Combustor Spectra Measurement
MEASUREMENT OF TURBULENT PRESSURE AND TEMPERATURE FLUCTUATIONS IN A GAS TURBINE
4. Pulse detonation hybrid cycles
THERMO CYCLE ANALYSIS

PDE & Brayton Thermal efficiencies
Specific thrust for the PDE and Brayton Cycles versus temperature ratio, stoichiometric propane-air

![Graph showing specific thrust and impulse for PDE and Brayton Cycles](image)

Specific Thrust and Impulse for the PDE and Brayton Cycles

![Graph showing specific thrust and impulse for PDE and Brayton Cycles](image)
PDE Testing at Glenn

PDET Project – Hybrid PDE Application

Advanced Hybrid PDE Concept

• Pulse detonation combustor replaces conventional core in commercial turbine engine

• Conceptual studies by NASA GRC, P&W, and APRI were completed

• 10-15% TSFC improvement potential
PDET Project - Summary

- Pulse detonation (PD)-based engine concept studies indicate significant performance improvements possible but----
 - Significant technology challenges remain

- Future efforts will focus on PDE-hybrid systems

- Continue fundamental research in support of engine concept development
 - Initiate proof-of-concept demonstrations (NASA/Industry)
 - Hybrid engine single tube combustor test in process
 - Combustor operability
 - Combustor integration
 - Develop a multi-PD tube - nozzle test rig

- Develop robust system analysis capability
 - Requires accurate component loss models

Closing remarks

- Critical to sort out the limitations of current models and determine the needed improvements
- Necessary to understand both the surface properties as well as those within the boundary layer
- Knowledge of the interaction of the force created by the control device on the boundary layer behavior and excitation is needed
- BL transition, separation and reattachment remain as key issues for gas turbine flows
- Combustor exit flow field spectra need further resolution
- Turbulent reacting flow understanding has improved, but continues to be challenging
Closing remarks

• As scientists, researchers and engineers, we recognize the need to pursue improved understanding of the flow physics inherent in propulsion devices

• There is a recognized path (or scientific approach) to achieving this knowledge

• There is a need to sustain the activities started by this group some 8 –10 years ago

• Therefore, we must remain committed to our research activities in order to achieve significant improvements in propulsion systems

Closing remarks

• There is an increasing impatience with the “art of science”
• NASA is emphasizing a broader technology readiness level for IH research; Levels 1 through 6.
• NASA also emphasizing earlier application of S&T efforts
• NASA’s turbine engine research is focusing on emissions (fuel efficiency), noise and high speed accelerators.
• Commercial aircraft business undergoing severe reductions world-wide with some consequence on S & T funding.
• A persistent effort is needed on our part to accomplish our objectives.