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Abstract. A study of instabilities in incompressible boundary-layer 
ow on a 
at plate
is conducted by spatial direct numerical simulation (DNS) of the Navier-Stokes equations.
Here, the DNS results are used to critically evaluate the results obtained using parabo-
lized stability equations (PSE) theory and to study mechanisms associated with breakdown
from laminar to turbulent 
ow. Three test cases are considered: two-dimensional Tollmien-
Schlichting wave propagation, subharmonic instability breakdown, and oblique-wave break-
down. The instability modes predicted by PSE theory are in good quantitative agreement
with the DNS results, except a small discrepancy is evident in the mean-
ow distortion
component of the 2-D test problem. This discrepancy is attributed to far-�eld boundary-
condition di�erences. Both DNS and PSE theory results show several modal discrepancies
when compared with the experiments of subharmonic breakdown. Computations that allow
for a small adverse pressure gradient in the basic 
ow and a variation of the disturbance
frequency result in better agreement with the experiments.

1



1. Introduction

In the past century, numerous attempts have been made to understand and predict the

transition from laminar to turbulent 
ow in boundary layers. Most of this e�ort stems from

the independent theoretical accomplishments of Orr (1907) and Sommerfeld (1908) at the

turn of the 20th century. The Orr-Sommerfeld equation is based on linearized disturbance

equations and is a successful example of classical hydrodynamic stability theory. Nearly 20

years later Tollmien (1929) solved the Orr-Sommerfeld equation, which led to the calcula-

tion of a critical Reynolds number for the onset of instability. On the same road, Schlichting

(1933) computed ampli�cation rates of disturbances in the boundary layer. The �rst exper-

imental con�rmation of the theory was accomplished by Schubauer and Skramstad (1943,

1947); a vibrating ribbon was used to impress a disturbance into the boundary layer, and

hot wires were used for measurements. These contributions (and others) span over some 40

years of research, after which theory and experiments �nally agree on the initial growth of

disturbances in boundary layers.

Stability theory has gained wide acceptance and is now a well-established tool in the

research and engineering community. The �rst reasonably comprehensive method for pre-

dicting transition was derived from stability theory: the eN method by Smith and Gamberoni

(1956) and van Ingen (1956). Although the eN method is widely used to predict transition

in a broad class of 
ows, this method has considerable shortcomings. Because the approach

uses linear stability theory, the limitations of the theory are imbedded in the methodology.

Speci�cally, a quasi-parallel boundary layer is assumed, and because the equations are linear,

no amplitude information about the ingested disturbance can be taken into account. Finally,

the method is semi-empirical; therefore, some foreknowledge is required of the 
ow in tran-

sition. The true physical problem involves disturbances that interact in a nonlinear manner

in later stages of transition and are imbedded in a growing boundary layer. Consequently, a

method that accounts for nonparallel 
ow and nonlinear interactions is necessary to predict
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transition. At present, such an all-encompassing method of transition prediction is beyond

our grasp; however, progress has been made in recent years.

In the last decade, signi�cant accomplishments have been made in the theoretical pre-

diction of transition beyond the linear growth stage. Based, in part, on pioneering attempts

at nonlinear theories (e.g., Benney and Lin, 1960; Craik, 1971), Orszag and Patera (1980,

1983) by numerical experiments and Herbert (1984) by theory discovered a secondary insta-

bility mechanism. Herbert's (1984) theory is based on Floquet theory and accounts for an

experimentally observed three-dimensional (3-D) instability. Although the governing equa-

tions are linearized and a local parallel-
ow assumption is made, remarkable agreement is

obtained between predictions from Herbert's theory and experimental results, particularly

for the peak-valley splitting mode identi�ed by Klebano� et al. (1959, 1962) and for the

peak-valley alignment mode observed by Kachanov et al. (1977, 1984). These modes are

two distinct and di�erent routes to transition that are discriminated based on the initial

disturbance levels. After nearly a decade of veri�cation, Herbert's theory for secondary in-

stabilities is generally accepted and widely used by the research community to understand

certain aspects of transition in boundary layers.

More recently, Herbert and Bertolotti (1987) have devised a nonlinear, nonparallel com-

putational method based on so-called parabolized stability equations (PSE). The bene�ts

and limitations of this new theory have yet to be determined and will be explored somewhat

in the present paper. Before the development of this theory, the only approach to solve

the nonparallel, nonlinear boundary-layer transition problem was by direct numerical sim-

ulation (DNS), except in the large Reynolds number limit where asymptotic methods have

had some success (e.g., Smith, 1979; Hall and Smith, 1991). To date, most studies using

DNS have been limited to the temporal formulation{where a spatially-periodic computa-

tional domain travels with the disturbance and the temporal evolution of the disturbance is

computed. This enabled simulations into the later stages of transition (Zang and Hussaini,

3



1987,1990; and Laurien and Kleiser, 1989), thus providing a database of qualitative infor-

mation, which, however, lacks the physically-realistic spatial representation. Spatial DNS

computes spatially-evolving disturbances and would provide needed quantitative information

about transition. Progress in spatial DNS has been made by, among others, Danabasoglu et

al. (1990, 1991) for channel 
ow and Fasel (1976), Spalart (1989), Fasel et al. (1990), Rai

and Moin (1991a, 1991b), and Joslin et al. (1992a) for boundary-layer 
ow. Results obtained

from spatial DNS have been compared qualitatively and, with some success, quantitatively

to linear stability theory, secondary instability theory, and available experimental results.

For a more complete list of accomplishments in transition prediction with DNS, refer to the

review by Kleiser and Zang (1991).

The goal of the present research is to quantify various transitional-
ow mechanisms of

interest from the linear region to the nonlinear breakdown stage and to provide a critical

comparison of spatial DNS and PSE theory results. To date, this comparison o�ers the most

rigorous test of the PSE approach for accuracy; the main focus will be to point out strengths

and potential weaknesses of PSE theory and the impact of these weaknesses on the overall


ow-�eld prediction. To accomplish this goal, three test cases are computed by spatial DNS

and then compared to PSE theory: two-dimensional (2-D) Tollmien-Schlichting (TS) wave

propagation, subharmonic breakdown, and oblique-wave breakdown.

2. Governing Equations

To compute the disturbance development, the incompressible Navier-Stokes equations

are solved. The streamwise direction is x, the wall-normal direction is y, and the spanwise

direction is z. Instantaneous velocities ~u = (~u; ~v; ~w) and pressure ~p are decomposed into the

basic components U = (U; V;W ) and P and the disturbance components u = (u; v;w) and

p so that

~u(x; t) = U(x) + u(x; t) and ~p(x; t) = P (x) + p(x; t) (1)

where x = (x; y; z) and t is time.
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The basic 
ow on a 
at plate is generally governed by the full Navier-Stokes equations.

However, according to order-of-magnitude analysis, the streamwise parabolized form of the

equations (boundary-layer equations) is adequate. A marching algorithm may be used to

solve the equations for the basic 
ow (U; V ), or the widely used Blasius similarity pro�le can

be employed. These approaches have been veri�ed by comparisons with experiments (see

Schlichting, 1955). For the present study, the Blasius 
ow is used for the basic state.

To determine the disturbance component of equation (1), the equations that are solved

result from substituting equation (1) into the Navier-Stokes equations and subtracting the

basic 
ow equations. These unsteady, nonlinear disturbance equations are

@u

@t
+ (u � r)u+ (U � r)u+ (u � r)U = �rp+

1

R��o

r2u (2)

and the continuity equation

r � u = 0 (3)

The equations are nondimensionalized with respect to the freestream velocity U
1
, the kine-

matic viscosity �, and some length scale at the in
ow (e.g., displacement thickness ��o). A

Reynolds number can then be de�ned R��o
= U

1
��o=�.

At the wall and in the far �eld, boundary conditions for equations (2) and (3) are

u = 0 at y = 0 and u! 0 as y !1 (4)

To prevent spurious re
ections, out
ow conditions are provided by the bu�er-domain tech-

nique (Streett and Macaraeg, 1989; Joslin et al. 1992a). For the present study, the dis-

turbance forcing takes the form of eigenfunctions that are imposed at the in
ow boundary.

Controlled disturbances at the in
ow are required to facilitate the comparison. To this end,

the in
ow condition for both DNS and PSE is given by the basic 
ow plus the disturbance

forcing functions

uo = Uo +

NzX
n=�Nz

NtX
m=�Nt

Ao
m;n � [û

o
m;n(y) exp[i(n�z �m!t)]] (5)
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where Uo is the in
ow basic component; Ao
m;n are prescribed 2-D and 3-D disturbance am-

plitudes; � is an imposed spanwise wave number; and ! is an imposed disturbance frequency.

The terms ûom;n(y) are complex eigenfunctions found either by solving the Orr-Sommerfeld

and Squire equations or obtained from a secondary instability theory (see Herbert, 1984).

The eigenfunctions ûom;n(y) are normalized with respect to the maximum streamwise-velocity

component such that the initial amplitudes of the induced disturbances are prescribed by

Ao
m;n.

3. Computational Methods of Solution

In this paper, spatial DNS is used to study breakdown mechanisms occurring in tran-

sitional 
ows, and to evaluate the accuracy of PSE theory in predicting the evolution of

convective disturbances. A description of both the DNS and PSE theory approaches follows.

Spatial DNS.

In a previous study by the authors described in Joslin et al. (1992a), the spatial DNS

approach involved fourth-order compact di�erences used on a nonstaggered grid. For this

study, sixth-order compact-di�erence schemes have replaced the fourth-order schemes, and

a staggered grid has replaced the nonstaggered-grid formulation.

In the streamwise direction (x-direction), fourth-order central �nite di�erences are used

for the pressure equation. At boundary and near-boundary nodes, fourth-order di�erences

are used. For �rst and second derivatives in the momentum equations, sixth-order compact

di�erences are used. As described by Lele (1992), the di�erence equations are

1

3
f 0i�1 + f 0i +

1

3
f 0i+1 =

7

9hx
(fi+1 � fi�1) +

1

36hx
(fi+2 � fi�2) (6)

and

2

11
f 00i�1 + f 00i +

2

11
f 00i+1 =

12

11h2x
(fi+1 � 2fi + fi�1) +

3

44h2x
(fi+2 � 2fi + fi�2) (7)

where hx is the uniform streamwise step size, and f is an arbitrary function whose derivatives

are sought. At boundary and near-boundary nodes, explicit �fth-order �nite di�erences are
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used. Equations (6) and (7) lead to tridiagonal systems which can be solved e�ciently by

LU-decomposition with appropriate backward and forward substitutions.

In the wall-normal direction (y-direction), Chebyshev series are used to approximate the

disturbance at Gauss-Lobatto collocation points. Since this series and its associated spectral

operators are de�ned on [-1, 1] and the physical problem of interest has a semi-in�nite domain

[0;1) or a truncated domain [0; ymax], a transformation is employed. Studies of spectral

methods and mapping tranformations in unbounded regions have been conducted by Grosch

and Orszag (1977) and Boyd(1989). Here an algebraic mapping is used:

y =
ymaxsp(1 + y)

2sp + ymax(1� y)
or y =

(2sp + ymax)y � ymaxsp

ymax(sp + y)
(8)

where y 2 [0; ymax) and y 2 [�1; 1]; ymax is the wall-normal distance from the wall to the far-

�eld boundary in the truncated domain, and sp controls the grid stretching in the wall-normal

direction. In the spanwise direction (z-direction), periodicity is assumed, allowing for Fourier

series representations. Using Fourier series, spectral accuracy is obtained in the spanwise

direction and Fast Fourier Transforms (FFT) or sine/cosine transformsmay be used, allowing

for the fast computing of derivatives. For more details on the spectral methods used here refer

to Canuto et al. (1988) and Joslin et al. (1992a). Although spectral accuracy is obtained in

the wall-normal and spanwise directions, the overall spatial-discretization scheme is formally

fourth-order accurate as a result of the streamwise discretization.

For time marching, a time-splitting procedure was used with implicit second-order

Crank-Nicolson di�erencing for normal di�usion terms; an explicit third-order three-stage

Runge-Kutta (RK) method was used for the remaining terms. This time-stepping procedure

was used successfully by Streett and Hussaini (1991) for Taylor-Couette 
ow simulations.

The pressure is omitted from the momentum equations (2) for the fractional RK stage,

leading to

u� � um

hmt
= Cm

1 H
m(u) +

Cm
2

R��o

D2(u� + um); (9a)
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where

Hm(u) = L(u)m + Cm
3 H

m�1(u); (9b)

and operator

L(u) = (U � r)u+ (u � r)U + (u � r)u�
1

R��
o

r2

xzu; (9c)

Here u� are disturbance velocities at the intermediate RK stages, um are velocities at previous

RK stages (m = 1; 2 or 3), uo are velocities at the previous time-step,r2
xz = @2=@x2+@2=@z2,

ht is the time-step size, and D is the wall-normal spectral derivative operator. For a full RK

stage, the momentum equations with the pressure are

um+1 � um

hmt
= Cm

1 H
m(u) +

Cm
2

R��o

D2(um+1 + um)�rpm+1 (10)

Subtracting (9) from (10) leaves

um+1 � u�

hmt
= �rpm+1 (11)

By taking the divergence of (11) and imposing zero-divergence of the 
ow �eld at each RK

stage, a pressure equation is obtained

r2pm+1 =
1

hmt
(r � u�) (12)

which is subject to homogeneous Neumann boundary conditions. This boundary condition is

justi�ed in the context of a time-splitting scheme as discussed by Streett and Hussaini (1991).

The solution procedure is as follows: The intermediate RK velocities (u�) are determined by

solving equation (9). The pressure correction (pm+1) is found by solving (12). Then, the full

RK stage velocities (um+1) are obtained from (11). Upon solving the above system three

consecutive times, full time-step (n+1) velocities are determined, where un+1 = um=3. The

RK coe�cients and time-steps given by Williamson (1980) are

0
@C1

1
C1

2
C1

3

C2

1
C2

2
C2

3

C3

1
C3

2
C3

3

1
A =

0
@ 1 1=2 0

9=4 1=2 �4
32=15 1=2 �153=32

1
A and

8<
:
h1

t

h2

t

h3

t

9=
; =

8<
:

1=3ht
5=12ht
1=4ht

9=
; (13)
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where the sum of the three RK time-steps equals the full time-step (ht).

A signi�cant improvement in the spatial DNS approach over that used in Joslin et al.

(1992) involves the use of staggered grids in the wall-normal direction. The velocities and

the 2-D pressure component are computed at Gauss-Lobatto points as before, and the 3-

D pressure components are computed at Gauss points. With this staggered-grid pressure

solver, reductions of 10-50 percent in CPU time, 30-50 percent in virtual memory, and 50-70

percent in run-time disk requirements were obtained, compared with the nonstaggered-grid

solver. This staggered grid approach a�ects only the pressure equation (12) and is described

in the remaining portion of this subsection.

To obtain the pressure correction (p) for the 2-D and 3-D boundary-layer problems,

solutions of Poisson equations for each RK stage are required. For 3-D simulations with

spanwise periodicity assumed, the pressure correction is determined in transform space where

the Fourier coe�cients are evaluated. In transform space, the Poisson equations become

Helmholtz equations. In order to solve the equations e�ciently, a fast elliptic solver is

required. For this purpose, the tensor-product method described by Lynch et al. (1964) is

used. On a nonstaggered grid, this approach was employed by Danabasoglu et al. (1990,

1991) for the channel problem and by Joslin et al. (1992a) for the boundary-layer problem.

For the present staggered-grid formulation, the discretized equations for the 3-D com-

ponents are

(H � �2nI)pn + pnX
T = Rn (14)

where matrix operations are ordered with respect to (y; x). pn are Fourier coe�cients of the

desired pressure solution p, �n = n� are spanwise wave-number coe�cients of the Fourier

series, I is the identity matrix, XT is the transpose of the streamwise central �nite-di�erence

operator, and Rn are known Fourier coe�cients of the right side of the pressure equation

(12). The following matrix operations determine the wall-normal operator H:

H = IG
GL
D ~DIGL

G
(15)
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where D is a spectral wall-normal derivative operator for the stretched grid, and ~D is the

derivative matrix with the �rst and last rows set to zero. This modi�cation enforces the

homogeneous Neumann boundary conditions required for p on the Gauss-Lobatto grid. The

interpolation matrix IG
GL

operates on variables at Gauss-Lobatto points and transforms them

to Gauss points; the interpolation matrix IGL
G

performs the inverse operation. These opera-

tors are de�ned as

IG
GL

= (C�1

G
)j;k(CGL)k;j and IGL

G
= (C�1

GL
)j;k(CG)k;j (16a)

where

(CG)k;j =
2

Nyck
cos [

(j + 1

2
)�k

Ny

]; (C�1

G
)j;k = cos [

(j + 1

2
)�k

Ny

] (16b)

with j = 0; 1; : : : ;Ny � 1; k = 0; 1; : : : ;Ny; and

(CGL)k;j =
2

Nyckcj
cos [

kj�

Ny

]; (C�1

GL
)j;k = cos [

kj�

Ny

] (16c)

with j = 0; 1; : : : ;Ny; and k = 0; 1; : : : ;Ny. The constants ci are de�ned as ci = 1; i =

1; 2; : : : ;Ny � 1; and c0 = cNy = 2.

Using the tensor-product method described by Lynch et al. (1964), the matrix H may

be decomposed into

H = Q�Q�1 (17)

where � is a diagonal matrix of eigenvalues andQ is the corresponding matrix of eigenvectors.

Temporary matrices are introduced and de�ned:

p̂n = Q�1pn and Gn = Q�1Rn (18)

Substituting (17) and (18) into (14), one obtains

(�� �2n)p̂n + p̂nX
T = Gn; (19)

Equation (19) is used to solve for p̂n, which is then used in (18) to solve for pn. The

solution is then inverse tranformed to physical space. The operators: H, Q;Q�1;� and
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XT are all mesh dependent matrices and need be calculated but once, as is the in
uence

matrix. Since XT is a fourth-order accurate pentadiagonal matrix, the LU-decomposition

method is used and provides and e�cient method to solve for the pressure. The in
uence-

matrix technique is also used for the pressure solver to ensure that the continuity equation

is discretely satis�ed. Details of the in
uence-matrix technique are given by Streett and

Hussaini (1991), Danabasoglu et al. (1991), and Joslin et al. (1992a). Since the pressure

equation (12) is an inviscid calculation, it is well posed provided that boundary conditions on

the normal component of velocity only are enforced. At the end of each full RK time-step, a

non-zero tangential velocity component may therefore arise at the computational boundary.

This is referred to as a \slip-velocity." To alleviate this problem, intermediate boundary

conditions as described by Streett and Hussaini (1991) and Joslin et al. (1992a) are used

and given by

u�� = u
BC

+ hmt

�
(1 +

hmt

hm�1t

)r}m� �
hmt

hm�1t

r}m�1�

�
(20)

where u
BC

= 0 for a rigid wall and u
BC

= uo for an in
ow condition or a wall slot condition

evaluated at the appropriate time in the RK stage.

Disturbances are introduced into the boundary layer by forcing at the in
ow boundary.

At the out
ow, the bu�er-domain technique of Streett and Macaraeg (1989) is used. Brie
y,

the streamwise convective terms are attenuated to zero in a small region that is appended to

the end of the physical domain. As shown by Joslin et al. (1992a) for 
at-plate boundary-

layer 
ow, a bu�er-domain length of approximately three streamwise wavelengths is adequate

to provide an attenuation function that is smooth enough to avoid the re
ection of waves.
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PSE Theory.

In contrast to the spatial DNS approach described above in which the complete Navier-

Stokes equations are solved, the PSE approach seeks approximate solutions to the unsteady

Navier-Stokes equations, which can be obtained by an e�cient marching procedure. Gen-

erally, there are a number of ways to parabolize the Navier-Stokes equations; however, any

acceptable approximation must be able to capture the physics of instability waves. One such

method was �rst suggested by Herbert and Bertolotti (1987); more details of this method and

a comprehensive discussion concerning nonparallel and nonlinear e�ects on Blasius boundary

layers was given by Bertolotti et al. (1992). The underlying notion of the PSE approach is

to �rst decompose the disturbance into an oscillatory wave part and a shape function part.

By properly choosing a streamwise wave number to resolve the wave motion, the govern-

ing equations reduce to a set of partial di�erential equations for the shape functions, which

vary slowly in the steamwise direction and their second-derivatives are assumed negligible.

These PDE's are then parabolized by neglecting the dependence of convected disturbances on

downstream events and by neglecting the second derivatives (@2=@x2) of the shape functions.

Since most of the oscillatory wave motion is absorbed in the streamwise wave number and

the terms neglected in the shape function equations are of order 1=R2, the resulting system

should yield the desired physical results. A brief discussion of the theory is as follows.

For disturbances that are present in the 
ow �eld, periodicity is assumed both in time

and in the spanwise direction. The total disturbance can then be described by the following

Fourier-series expansion:

fu; pg(x; y; z; t) =

NzX
n=�Nz

NtX
m=�Nt

fûm;n; p̂m;ng(x; y) exp[i(n�z �m!t)] (21)

where Nz and Nt are the numbers of modes retained in the truncated series, ! is an imposed

frequency, and � is an imposed spanwise wave number. Equation (21) is substituted into the

governing equations (2) and (3), a set of elliptic equations are obtained for the transformed
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variables fûm;n; p̂m;ng. Because of the wave nature of these transformed variables, a further

decomposition is made into a fast-oscillatory wave part and a slow-varying shape function:

fûm;n; p̂m;ng = f~um;n; ~pm;ng exp[i

Z x

xo

�m;ndx] (22)

In equation (22), the fast-scale variation along the streamwise direction x is represented

by the streamwise wave number �m;n; therefore, the second-order variation of the shape

function in x is negligible. This observation leads to the parabolized stability equations for

the shape functions f~um;n; ~pm;ng. These equations are obtained by neglecting all second

derivatives in the streamwise direction and the terms associated with upstream in
uence. If

�n;m are chosen properly, the evolution of disturbances can be described by the parabolized

equations for the shape functions. Based on decompositions (21) and (22), linear PSE can

be derived for any disturbance with a given frequency and spanwise wave number.

To solve the nonlinear problems, the nonlinear convection terms are placed on the right

side of the governing equations:

F (x; y; z; t) = (u � r)u: (23)

For the PSE approach, the governing equations are solved in wave number space. The

Fourier coe�cients, which are obtained from the corresponding Fourier transform of F in

equation (23), provide a nonlinear forcing to each of the linearized shape-function equations.

These inhomogeneous equations for the shape functions are solved by applying a marching

procedure along the streamwise direction for each Fourier mode.

Both Bertolotti (1991) and Chang et al. (1991) have extended the PSE numerical

approach to the study of compressible boundary layers. The PSE code developed by Chang

et al. (1991) withM
1
' 0 is used for the present comparison with both the DNS results and

the experimental results. A second-order backward di�erencing is employed to integrate the

equations in the streamwise direction, and fourth-order, �nite-di�erence schemes are used to

discretize the normal derivatives.
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DNS and PSE Boundary Condition Treatment.

For the DNS approach, the Navier-Stokes equations with imposed boundary conditions

are solved for full disturbance components, which is equivalent to the left side of equation

(21). For PSE theory, equations (21) and (22) are substituted into the Navier-Stokes equa-

tions (the DNS equations) to produce a coupled system of equations for the unknown Fourier

coe�cients (~um;n; ~pm;n). Boundary conditions are imposed for each Fourier-coe�cient equa-

tion. Because the PSE theory solves a system of equations in Fourier-coe�cient space, more

degrees of freedom exist compared with the DNS.

At the wall, no-slip boundary conditions (i.e., homogeneous Dirichlet conditions) are

enforced for the disturbance equations used by the DNS and the Fourier-coe�cient equations

used by PSE theory. So, both DNS and PSE incorporate the same boundary conditions at

the wall. In the far �eld, homogeneous Dirichlet boundary conditions are imposed for the

DNS computations. This far-�eld condition is exact at in�nity, but to computationally solve

the system using DNS the semi-in�nite domain is truncated.

For the PSE approach, homogeneous Dirichlet boundary conditions are used for all

Fourier-coe�cient equations except for the mean-
ow distortion equations. This nonzero

component arises from assumptions of PSE theory. Unlike the DNS which solves the full

Navier-Stokes equations, PSE theory reduces the equations to a simpli�ed parabolic system

in a manner described in the previous subsection. As a result of this PSE simpli�cation,

the mean-
ow distortion equations become essentially of the boundary-layer equation type.

With boundary-layer equations, the wall-normal velocity component approaches a constant

in the far-�eld. Similarly, the mean-
ow distortion equation in PSE theory, which is the

boundary-layer equation type, incorporates a Neumann boundary condition for the wall-

normal velocity component. This Neumann condition allows the total normal velocity (mean


ow + mean-
ow correction) in the far-�eld predicted by PSE theory to vary at in�nity.

Thus, the far-�eld boundary conditions used by both the DNS and PSE approaches
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are approximate. The spatial DNS far-�eld boundary conditions cannot be changed to

mimic the PSE approach because the DNS cannot accomodate an a priori Fourier-modal

boundary-condition treatment as is present in PSE theory. Changing the Neumann condition

to Dirichlet resulted in numerical instabilities in the PSE approach. As a result, the far-

�eld boundary conditions for PSE theory are di�erent from the boundary conditions for the

DNS approach for the mean-
ow distortion equation. With the present boundary-conditions,

the PSE theory approximate far-�eld conditions should prove more accurate for a far-�eld

boundary �xed close to the wall, and the DNS conditions should prove more realistic for the

boundary far from the wall.

4. Results

The spatial DNS approach has been tested against linear stability theory for grid and

time-step requirements as described by Joslin et al. (1992a). Excellent agreement in the

amplitudes and phase of disturbances was found between the DNS results and linear theory;

those results will not be repeated in this paper. Rather, three vastly di�erent instability

cases have been selected for study: two-dimensional Tollmien-Schlichting wave propagation,

subharmonic breakdown, and oblique-wave breakdown. The reasons for the selection of each

case will be discussed in each subsection below. These test cases serve to provide a com-

prehensive evaluation of the e�ectiveness of PSE theory in predicting convective disturbance

development in boundary-layer 
ows on 
at plates.

2-D Tollmien-Schlichting Wave Propagation.

For this test case, the evolution of an ingested 2-D Tollmien-Schlichting wave is predicted

by PSE theory and compared with the DNS results. Because the nonlinear evolution of a

single 2-D wave o�ers a less complex instability mechanism for the boundary-layer problem,

this test case is a logical �rst choice for evaluating PSE theory.

Bertolotti et al. (1992) performed a similar comparison between DNS and PSE theory

for the u-velocity components of the fundamental and �rst harmonic waves. In their work,
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a body-force term was used in the governing equations to introduce the disturbance for the

DNS. Then a prescribed in
ow (generated by weakly nonlinear theory) was used for distur-

bance initiation for the PSE. Their results showed good agreement between the fundamental

wave and �rst harmonic amplitudes with downstream distance. If a discrepancy in the results

had occurred, one might attribute the di�erence in results to either a PSE theory 
aw or to

the di�erent means by-which the disturbances were forced. The intention here is to remove

the possibility of variations in disturbance forcing, so the results can be compared without

this potential source of confusion. For the present study, the exact same in
ow pro�les and

amplitudes for disturbance forcing are used for both PSE and DNS approaches. As a result,

the outcome of the comparison should not depend on a variation of disturbance forcing.

A 2-D Tollmien-Schlichting disturbance with a root-mean-squared (r.m.s.) amplitude

Ao
1;0 = 0:0025 is introduced into the boundary layer by a forcing at the in
ow for the DNS

as well as for the PSE calculations. (Note: the de�nition of Ao
m;n is given in equation (5).)

Through nonlinear interactions, all other harmonic waves including the mean-
ow distortion

are generated for both DNS and PSE. Calculations are made with an in
ow Reynolds number

R��o
= 688:315 and frequency F = 86. To generate resolved benchmark data to test PSE

theory, the spatial DNS was computed on a grid of 2041 uniformly spaced streamwise nodes

(60 nodes per disturbance wavelength) and 81 wall-normal collocation points. The out
ow

boundary is 442��o from the in
ow boundary, and the far-�eld (or free-stream) boundary is

75��o from the wall. The DNS parameters were chosen based on convergence studies by Joslin

et al. (1992a). For the time-marching scheme, the disturbance period is divided into 320

time steps. For the PSE computational approach, several numerical experiments have been

performed by varying the grid, far-�eld boundary location, and the number of Fourier modes.

These numerical experiments led to the choice of 100 wall-normal grid points; 5 frequency

modes of series (21) (Nt = 6); and a far-�eld boundary located 58��o from the wall.

Figure 1 shows the maximum streamwise amplitudes for the mean-
ow distortion uo,
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fundamental wave u1, and �rst harmonic u2 predicted by PSE theory and compared to

the DNS results with the downstream distance. Both the fundamental waves and the �rst

harmonics are in good quantitative agreement throughout the initial linear region and the

later weakly nonlinear region. The PSE results capture early evidence of the �rst harmonic

between R�� = 690 and R�� = 900 (barely visible), which is in good agreement with the DNS

results. The mean-
ow distortion components are in good agreement throughout the initial

linear region; however, a discrepancy begins to occur downstream at an apparent \notch" in

the results at R�� = 1400. This notch will be explained by looking at the pro�les of the mean-


ow distortion. At the local streamwise location R�� = 1519, �gure 2 shows comparisons

of the streamwise velocity component. The fundamental (TS) wave and harmonics (not

shown) are in good quantitative agreement, even in regions of high gradients. Similar to the

discrepancy in the mean-
ow distortion amplitudes shown in �gure 1, a comparison of the

streamwise velocity (uo) pro�les illustrates a comparable di�erence. Although not shown

here, the comparison of the mean-
ow distortion at smaller Reynolds numbers gives much

better agreement, as expected from �gure 1. The notch in the mean-
ow distortion results

identi�ed in �gure 1 arises from the change of pro�le contributions. Initially, the positive

value of the pro�le near the wall has a larger amplitude than the retarded, or negative,

pro�le amplitude. At the downstream location near R�� = 1400, the negative portion of the

mean-
ow distortion becomes the dominant amplitude, and the amplitude of the positive

pro�le near the wall begins to decay. Shown in �gure 3, comparisons of the wall-normal

velocity (vo) pro�les indicate a larger discrepancy between DNS and PSE theory results.

This discrepancy is due to the homogenous Neumann boundary conditions used in the far

�eld for the mean-
ow distortion equations in PSE theory. As in the traditional boundary-

layer equations approach, this boundary condition leads to a nonzero, wall-normal mean-
ow

velocity component in the far-�eld, as discussed in some detail in the previous section. As

shown in �gure 3, the wall-normal component vo approaches a constant for PSE theory. In
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the present case, the modi�ed far-�eld normal velocity (i.e., the Blasius solution plus the

mean-
ow distortion) in PSE theory is shown in �gure 4 with the Blasius solution. The

maximum di�erence in the mean 
ows occurs near the location of the maximum amplitude

of the fundamental wave and corresponds to the largest di�erence in the mean-
ow distortion

components shown in �gure 1.

In this �rst test problem of 2-D Tollmien-Schlichting wave propagation, the results from

DNS and PSE theory agree very well for the fundamental and harmonic waves. However,

a discrepancy exists in the mean-
ow distortion component. This discrepancy is a result of

the di�erence in the far-�eld boundary-condition treatment for the two appoaches.

Subharmonic Breakdown.

A well-understood breakdown scenario in an incompressible boundary layer on a 
at

plate involves 2-D disturbances and the emergence of aligned and staggered 3-D distinct vor-

tex structures through spanwise vortex stretching and tilting, or some indistinct, nonunique

combination of vorticities in the later stages. These vortex patterns are referred to as funda-

mental, subharmonic, and combination resonant modes, respectively, and may be described

by secondary instability theory. The goal here is to use this test case for PSE validation;

however, secondary instability theory will not be discussed. For a good review of secondary

instabilities, refer to the work by Herbert (1988). For the present study, the subharmonic

mode of secondary instability breakdown will be computed and the results compared with

the experiments of Kachanov and Levchenko (1984) (hereafter, K&L). Previously, Fasel et

al. (1990) used spatial DNS and Herbert (1991) used PSE theory and compared their com-

puted subharmonic breakdown results with the K&L experimental data. The results for

both the computation and theory were in relatively good agreement with the experiments.

In Herbert's work, comparisons between PSE theory and the spatial DNS results of Fasel et

al. (1990) agreed well quantitatively for the modes shown; however, as discussed with the

previous 2-D test case, the PSE and DNS approaches used di�erent methods to introduce
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the disturbance. The 3-D disturbances were introduced into the DNS computations by wall

suction and blowing while the PSE disturbances were introduced at the in
ow.

In the present study, the subharmonic breakdown mechanism is revisited. So that a

detailed evaluation of the PSE theory results is possible, both DNS and PSE theory must

use the same initial disturbance amplitudes and pro�les, which are obtained from linear and

secondary instability theory. Furthermore, physical features of the K&L experiments di�ered

from the earlier computations by both Fasel and Herbert with respect to some of the modal

trends. In the present paper, an explanation for these discrepancies will be sought.

For spatial DNS, computations are performed on a grid of 1021 uniformly spaced stream-

wise nodes, 81 wall-normal collocation points, and 5 symmetric-spanwise nodes. In the

streamwise direction, the out
ow boundary is 442��o from the in
ow boundary; the far �eld

boundary is 75��o from the wall; and the spanwise boundary consists of a length equal to

one half of the spanwise wavelength, or �z=2 = �=�. (Note that the spanwise computational

length would be �z for the general, nonsymmetric computation.) For the time-marching

scheme, the disturbance period is divided into 320 time steps, and time is advanced using

a three-stage Runge-Kutta method. For the PSE computational approach, 100 wall-normal

grid points are used; 7 frequency modes and 3 spanwise modes from series (21) are used, and

the far-�eld boundary is 58��o from the wall.

The prescribed primary and subharmonic disturbances are obtained at the Reynolds

number R��o
= 732:711 and the primary frequency F = 124 (which correspond to the exper-

iments of K&L). The primary wave has an in
ow amplitude of Ao
2;0 = 0:0048 (r.m.s.). The

subharmonic mode has an in
ow amplitude of Ao
1;1 = 0:145� 10�4 (r.m.s.) and corresponds

to a mode with spanwise wave number � = 0:2418.

Figure 5 compares the maximum amplitudes predicted by PSE theory with the results

from DNS. For this test case, note the extremely good quantitative agreement between PSE

theory and DNS for the growth rates of the fundamental and the dominant harmonic modes;

19



even the mean-
ow distortion components are in good agreement. PSE theory and DNS

pro�les are compared in �gure 6 at the local (downstream) Reynolds number R�� = 1067.

The predictions made by PSE theory are in good overall quantitative agreement with DNS

results. From these comparisons, the accuracy of the PSE predictions has been established

for this test case.

The second goal is to understand the modal discrepancies identi�ed from the comparison

with the experiments. In �gure 7, the DNS results are compared with results of the K&L

experiments. Furthermore, the computed pro�les are in good agreement with the K&L

experiments as shown in �gure 8 at the downstream location where R�� = 1049. Both the

earlier DNS results of Fasel et al. (1990) and PSE results of Herbert (1991) indicated good

agreement with the K&L experiments, similar to the present results. But, if the results

are examined more carefully on a mode-by-mode basis, modal inconsistencies can be found

and lead to distinct di�erences in the interpretation of the computational and experimental

results. In particular, the primary wave (F ) and its harmonics (2F; 3F ) begin to decay much

sooner downstream in the experiments (R�� ' 990) than in the computations (R�� ' 1070).

This observation can be seen clearly in �gure 9; the fundamental waves of DNS and the

experiments are shown with downstream development. A reason for this di�erence will be

brie
y explored.

Based on linear stability theory, the discrepancy in the 2-D fundamental mode (shown

in �gure 9) can be attributed to the fact that each wave may have a di�erent frequency. The

fundamental wave in the experiments reaches a peak amplitude and then decays upstream

of the theoretical wave, which suggests that the experiment has a larger e�ective frequency

than in the computations and the theoretical predictions. Furthermore, K&L note that a

pressure gradient of no more than a 0.8 percent per one meter may have been present in

the experiments. From linear theory, stability results are known to be very sensitive to

pressure gradients. If a small, unmeasurable adverse pressure gradient was present, then the
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fundamental wave would reach larger amplitude levels, as recorded. Individually, the e�ects

of pressure gradient and frequency di�erences can not explain the di�erences between the

computational and experimental results. So to determine the combined e�ect of frequency

and pressure-gradient variations on the fundamental wave F and harmonics 2F; 3F , PSE

theory is used to re-compute the subharmonic instability case.

Using linear stability theory as a guide, a frequency F = 140 and a small adverse

pressure gradient �h = �0:02 are selected for another computation using PSE theory. The

pressure gradient parameter �h = �0:02 which corresponds to dp=dx = 0:9 percent per unit

length is of the same order as the possible error given in the experiments. Figures 10 and

11 compare these new results with the previous DNS results and experiments. As shown in

�gure 10, with this modi�cation of the frequency and base 
ow, the growth and decay rates

of the fundamental wave are in much better agreement with the experiments downstream

of R�� = 900. The growth rates prior to R�� = 900 amplify di�erent frequencies in the

experiments and computations. In �gure 11, the computed primary mode (F ) and higher

modes (2F; 3F ) more closely follow the trend toward decay exhibited in the experiments;

however, the growth rates of the subharmonic-based modes (F=2 and 3F=2) have increased

notably as a result of the higher frequency. The earlier PSE and DNS results more closely

match the subharmonic and its harmonics in the experiments. Although it is unlikely that

such a large frequency discrepancy from F = 124 noted in the experiments occurred, it is clear

that the available experimental data is not su�cient to reproduce the results numerically.

Oblique-Wave Breakdown.

The �nal test case used in the evaluation of PSE theory is oblique-wave breakdown. This

oblique-wave breakdown procedure is due to the nonlinear interactions of a pair of oblique

waves. Because of this nonlinearity, no adequate formal theory is available to explain the

breakdown process; however, similar mechanisms have been studied by Hall and Smith (1991)

with asymptotic methods. Hall and Smith discussed the vortex-wave interactions within a
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large wave number and Reynolds number limit. To quantify the mechanisms of interest in the

�nite Reynolds number range, DNS and possibly PSE theory are the only options available

to study the wave interactions.

Because this alternative route to, or mechanism of, transition is nonlinear, limited re-

search has been done for oblique-wave breakdown. It is worth mentioning a few of the

interesting papers that are available. Schmid and Henningson (1992a) studied bypass tran-

sition by introducing a pair of large-amplitude oblique waves into channel 
ow. The evolu-

tion of disturbances was computed with temporal DNS. They found that the development

of the oblique waves was dominated by a preferred spreading of the energy spectra into

low streamwise wave numbers, which led to the rapid development of streamwise-elongated

structures. Schmid and Henningson (1992b) also looked at small-amplitude wave pairs over

a variety of parameters. They suggest that the mechanism of energy transfer is primarily

linear. Fasel (1991), Fasel and Thumm (1991), and Bestek et al. (1992) computed this new

breakdown structure in a compressible boundary layer. They describe the physical structure

as \honeycomb-like" to identify a distinction from the secondary instability �-like struc-

tures. Chang and Malik (1992) used PSE theory to examine the breakdown of supersonic

boundary layers because the dominant �rst mode is an oblique wave in supersonic 
ows.

Chang and Malik found that even waves with amplitudes as small as 0:001 percent that are

initiated at the lower branch can lead to transition in this breakdown scenario, depending

on the frequency of the induced oblique waves. Finally, Joslin et al. (1992b) presented

the preliminary results (computed by both spatial DNS and PSE theory) of oblique-wave

breakdown in incompressible boundary layers. This paper presents a more comprehensive

discussion of oblique-wave breakdown in incompressible boundary layers, and PSE theory is

again evaluated for accuracy in predicting this nonlinear 
ow development.

The pro�les for the oblique-wave pair are obtained from linear stability theory for the

Reynolds number R��o
= 900, a frequency ! = 0:0774, and spanwise wave numbers � = �0:2.
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Spatial DNS computations are performed on a grid of 901 uniformly spaced streamwise nodes,

61 wall-normal collocation points, and 10 symmetric-spanwise modes. In the streamwise

direction, the out
ow boundary is 465��o from the in
ow boundary; the far-�eld, or free-

stream, boundary is 75��o from the wall; and the spanwise boundary consists of a length

equal to one half of the spanwise wavelength, or �z=2 = �=�. For the time-marching scheme,

the disturbance period is divided into 320 time steps. For the PSE computational approach,

100 wall-normal grid points are used; 7 frequency modes and 7 spanwise modes of series (21)

are used; and the far-�eld boundary is 58��o from the wall.

The input modes are represented by equation (5), which are truncated to four terms.

The disturbance forcing consists of modes (1,1) and (1,-1), or (!; �) and (!;��), and their

complex conjugates (-1,1) and (-1,-1). Theoretically, if these modes self-interact initially,

then only certain higher modes are likely to be excited (supplied energy). These higher

modes are: (0,0), (0,2), (2,0), and (2,2), etc.

In the �rst test case, the oblique waves each have the small amplitude Ao
1;1 = 0:001. In

�gure 12, the primary disturbance (1,1) and the higher modes that were predicted by PSE

theory are compared to the DNS results. The comparison shows that the modes are in quan-

titative agreement. Of the modes that were likely to be excited, all received energy initially.

The streamwise vorticity component (0,2) grows rapidly because of the self-interaction of

the oblique-wave pair. All other modes grow more slowly downstream than the streamwise

vortex, and these other modes contain less energy by orders of magnitude. As a result of

the rapid growth of the vortex mode (0,2), the oblique waves interact with the vortex which

leads to an ampli�ed harmonic (1,3). This (1,3) mode gains energy su�cient to overtake

the other initially excited modes, but insu�cient to overtake the oblique waves. As shown

in �gure 12, the vortex modes self-interact to supply energy to the (0,4) mode, which has

roughly the same growth rate as the (0,2) mode. Although the computations were discon-

tinued, the disturbances will eventually decay and will not lead to transition because the
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primary oblique waves decay after they pass the upper branch of the neutral curve, and all

other modes are decaying or becoming neutrally stable. Similar to the previous test cases,

PSE theory pro�les are compared with the spatial DNS for accuracy. In �gure 13, stream-

wise disturbance velocity pro�les are shown for the downstream location R�� = 1178. PSE

theory predictions agree very well with the DNS results for all modes shown. Note, PSE

theory captures the near-wall structure evident in the fundamental wave pro�le in �gure 13,

in agreement with the DNS results.

For a �nal computation, the oblique waves are introduced with larger amplitudes Ao
1;1 =

0:01. The computed primary disturbance (1,1) and higher modes are shown in �gure 14.

Again, the modes predicted by PSE theory are shown to be in agreement with the DNS

results. Similar to the small amplitude case, the small wave numbermodes gain initial energy.

The vortex mode (0,2) is again the dominant, higher order mode. The self-interaction of

the wave pairs and the interaction with the streamwise vortex lead to a rapid cascade of

energy to the other modes. Rather than the meager growth and downstream decay, these

higher modes now grow with growth-rate characteristics similar to the vortex mode. The

vortex and harmonics rapidly overtake the introduced waves (1,1) and breakdown occurs.

At breakdown, the spectrum undergoes a �lling so both the DNS and PSE computations

are underresolved near the downstream end of �gure 14. Further evidence that the onset of

transition from laminar to turbulent 
ow has begun, the skin-friction curve begins to rise.

Finally, a comparison of local disturance pro�les yields the good agreement between PSE

and DNS comparable to the low amplitude comparison of �gure 13.
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5. Concluding Remarks

In this paper, PSE theory results were evaluated for accuracy in predicting convective

disturbance evolution on a 
at plate. PSE theory predictions were compared with spatial

DNS results for 2-D Tollmien-Schlichting wave propagation, subharmonic breakdown, and

oblique-wave breakdown.

For 2-D Tollmien-Schlichting wave propagation, the modes predicted by PSE theory

were in very good quantitative agreement with the DNS results, except a small discrepancy

in the mean-
ow distortion component was discovered and attributed to far-�eld boundary-

condition di�erences.

For the test case of subharmonic breakdown, the PSE theory results were in very good

quantitative agreement with the DNS results for all modes, even the mean-
ow distortion

component. Also the present study supports the PSE and DNS comparison made by Herbert

(1991) for subharmonic breakdown.

The present computations were in good qualitative agreement with the experiments of

Kachanov and Levchenko (1984). In light of some modal discrepancies between computations

and experiments, a possible explanation was given. By introducing a small, adverse pressure

gradient in the basic 
ow and allowing for a small e�ective frequency variation in the distur-

bance, the computations predicted modal trends which were similar to the experiments for

the fundamental disturbance.

For the complicated test case of oblique-wave breakdown, all modes predicted by PSE

theory were shown to be in good quantitative agreement with the DNS results, even for the

mean-
ow distortion component. Furthermore, these oblique-wave pairs were shown to self-

interact to excite a streamwise vortex structure, which agrees with the �ndings of Schmid

and Henningson (1992a, 1992b). If the initial wave amplitudes are above a threshhold,

the interaction of these waves and the vortex can lead to a breakdown that bypasses the

secondary instability stage. Irrespective of the initial amplitudes, the streamwise vortex
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mode becomes the dominant, higher-order mode. This dominance is signi�cant because the

presence of small roughness elements may generate oblique wave packets that can interact

and lead to the increased presence of streamwise vorticity.

Relevant to the applied engineering community, is the fact that PSE theory has accu-

rately predicted the disturbance development for 2-D Tollmien-Schlichting wave propogation,

subharmonic breakdown, and oblique-wave breakdown on a 
at plate. A di�erence in the

far-�eld boundary-condition treatment for the PSE method was identi�ed which may cause

mean-
ow distortion variations; however, all other components appear to be a�ected very

little as a result of this far-�eld treatment. In the near future, PSE theory will be a use-

ful tool for the engineer, and for certain types of 
ow problems, the use of PSE theory is

expected to increase. However, because of the assumptions that underlie PSE theory, its

application to problems other than those for which it has been adequately tested must be

done with caution. For example, can PSE theory handle the potentially absolute instability

of a recirculation bubble? Studies of the kind presented in this paper are necessary to provide

veri�cation of new theories and to study the unknown complex physics of various 
ows.
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Figure 1. Amplitude growth with downstream distance, from two-dimensional wave with

amplitude Ao
1;0 = 0:0025 (r.m.s.).
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Figure 2. Streamwise (u) mean-
ow distortion and fundamental wave pro�les with normal

distance from the wall at the local Reynolds number R�� = 1519.
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Figure 3. Normal (v) mean-
ow distortion and fundamental wave pro�les with normal dis-

tance from the wall at the local Reynolds number R�� = 1519.
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Figure 4. Normal component of the mean 
ow (Vo) at the far-�eld boundary.
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Figure 5. Maximum amplitude growth with downstream distance for the primary wave

[F = (2; 0)], subharmonic [F=2 = (1; 1)], and various higher harmonics [2F = (4; 0); 3F =

(6; 0); 3F=2 = (3; 1)].
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Figure 6. Streamwise disturbance pro�les at the downstream location where locally R�� =

1067 for subharmonic breakdown. [F = (2; 0); 2F = (4; 0); F=2 = (1; 1); 3F=2 = (3; 1)]
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Figure 7. Amplitude growth with downstream distance for the primary wave [F = (2; 0)],

subharmonic [F=2 = (1; 1)], and various higher harmonics [2F = (4; 0); 3F = (6; 0); 3F=2 =

(3; 1)] at y = 0:26�.
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Figure 8. Streamwise disturbance pro�les at the downstream location where locally R�� =

1049 for subharmonic breakdown. [un = unF ]
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Figure 9. Amplitude growth with downstream distance for only primary waves at y = 0:26�.
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Figure 10. Amplitude growth with downstream distance for the previous primary waves and

a primary wave computed with a frequency and pressure-gradient varitation at y = 0:26�.
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Figure 11. Amplitude growth with downstream distance for the primary wave [F = (2; 0)],

subharmonic [F=2 = (1; 1)], and various higher harmonics [2F = (4; 0); 3F = (6; 0); 3F=2 =

(3; 1)] at y = 0:26�.
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Figure 12. Amplitude growth with downstream distance, from an oblique-wave pair, each

with amplitude Ao
1;1 = 0:001.
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Figure 13. Streamwise disturbance velocity pro�les at a downstream location where locally

R�� = 1178 for the oblique-wave case with Ao
1;1 = 0:001.
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Figure 14. Amplitude growth with downstream distance, from an oblique-wave pair, each

with amplitude Ao
1;1 = 0:01.
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