Development Status for the Stennis Space Center LIDAR Product Characterization Range

Vicki Zanoni
NASA Earth Science Applications Directorate
Stennis Space Center

Judith Berglund, Kenton Ross
Lockheed Martin Space Operations – Stennis Programs
Stennis Space Center

ASPRS 2004 Annual Conference and Technology Exhibition
Denver, CO, May 23-28, 2004
Introduction

- Government agencies, research institutions, and industry are using LIDAR imagery for a range of applications.
- USGS and NASA Stennis Space Center will collaborate to characterize LIDAR data products.
- A number of products are available with limited insight on data characteristics.
- NASA Stennis LIDAR Characterization Approach
 - Utilize in-flight test range to characterize LIDAR data product accuracy
 - Develop LIDAR product characterization range at Stennis
 - LIDAR product characterization is the next phase of the NASA V&V range development.
LIDAR Characterization Range
Initial Development Approach

• Characterize vertical and horizontal accuracy

• Primary emphasis, initially, is on vertical accuracy
 – Vertical accuracy of LIDAR products is highly dependent on land cover type
NDEP Guidelines for Digital Elevation Data Accuracy Assessment

- NDEP recommends using a minimum of 20 checkpoints (30 preferred) in each of the ground cover categories representing the area for which digital elevation modeling will be performed.
- The following ground cover categories are identified as the most common:
 - Open terrain
 - Tall weeds and crops
 - Brush lands and low tress
 - Forested areas fully covered by trees
 - Urban areas with dense man-made structures
- NDEP categories not universally applicable
- Ground cover categories should be relevant to the application and study area
NDEP Vertical Accuracy Definitions

- **Fundamental Vertical Accuracy** – calculated using only open terrain checkpoints
 - This value can be used to equitably evaluate and compare vertical accuracy among data sets
 - Calculated at the 95 percent confidence level as a function of vertical RMSE

- **Supplemental Vertical Accuracy** – calculated for other ground cover categories (non-open terrain)
 - Calculated non-parametrically as the 95th percentile, since errors will likely not follow a normal distribution
 - 95 percent of the errors have absolute values equal to or less than the accuracy

- **Consolidated Vertical Accuracy** – utilized when 40 or more checkpoints are combined for 2 or more ground cover types, representing both open terrain and other categories
 - Calculated non-parametrically as the 95th percentile, since errors will likely not follow a normal distribution
 - 95 percent of the errors have absolute values equal to or less than the accuracy
Stennis Characterization Range

• The Stennis characterization range is built within the Stennis “Fee Area”
 – Approximately 5 mi. x 5 mi. in size
 – Relatively flat terrain
 • ~14 m change in elevation across site
 – Land cover:
 • Buildings
 • Roads
 • Canals
 • Pine Forests
 • Wetlands
 • Open grass
 – Characterization Targets
 • Geodetic network
 • Concrete edge targets
 • Radiometric targets and atmospheric instrumentation
Stennis Space Center LIDAR Range Development

- Stennis LIDAR range development began prior to release of Draft NDEP Guideline
 - Initial range survey planned according to North Carolina Floodplain Mapping Program Issue Paper 37

- Land cover categories selected intended to represent the 5 common categories identified by NDEP

- Some categories were selected, even though they were not extensive within Stennis site
Stennis Land Cover Category A

- Bare earth/short grass
 - “short grass” is grass that is regularly mowed
 - all Stennis points are in “short grass” areas
Stennis Land Cover Category B

- High grass/weeds
 - “high grass” may be mowed or burned 1-2 times per year

Native Grasses
Stennis Land Cover Category C

- Brush / low trees
 - Mostly pine re-growth
 - Uneven canopy allowed, with heights ranging from high grass to up to one or two 4-meter trees within a 5-meter radius from the checkpoint.
Stennis Land Cover Category D

- Fully forested
 - Fairly even canopy, 4 meters or greater in height
 - Mostly pine forest in upper canopy
Stennis Land Cover Category E

- Urban
 - Asphalt and concrete surfaces

Two Ages of Asphalt
Stennis LIDAR Range Checkpoint Requirements

• Location
 – Each check point separated from nearby obstacles by a distance equivalent to the height of the obstacle plus 5 meters.
 • Allows for < 45° incidence angle plus 5 meters horizontal error.
 – Each check point separated from the boundary between forest and another category by the height of the forest canopy plus 5 meters.

• Terrain Slope
 – In accordance with the NDEP Guidelines (2003), checkpoints were selected in areas of flat or uniformly sloping terrain (slopes 20% or less) for 5 meters in all directions.
 – Flat terrain was preferred to minimize the effect of horizontal error on vertical error estimates.
• Number of Points
 – 20 check points in each land cover category, based on NDEP Guidelines (2003), except for high grass/weeds
 – 31 points were collected for the “high grass/weeds” category to account for the possibility that some of those points may have been recently mown

• Distribution of Points
 – Check points will be well-distributed within each category, especially perpendicular to the direction of flight so that they fall under multiple flight lines. (N.C. Floodplain Mapping Program Issue Paper 37)
 – Within Stennis sties, it will not be possible to meet the more quantitative NDEP Guidelines (2003) suggestions including that at least 20% of checkpoints be in every quadrant of the area of interest and that all points be separated by at least 10% of the diagonal distance across the area of interest.
 • Fully forested category is possible exception
Stennis LIDAR Range Survey Techniques

• All non-forest check points are surveyed with real-time kinematic (RTK) GPS.
 – Each RTK GPS check point is occupied twice according to the procedure laid out in the NDEP Guidelines (2003).

• All forest check points are surveyed with conventional topographic survey by total station.
 – The conventional surveys are being anchored with twice-occupied RTK GPS reference points or A order monuments.
 – Total station survey of the forest check points determines the vertical component by trigonometric leveling.
 – If this does not meet the error budget requirements for a specific LiDAR characterization, the vertical component for forest points could be surveyed later by differential leveling.
 – A follow-on differential leveling effort is not covered in the estimated budget.

• The Accuracy$_z$ (LE95) of check points set to date is 4.2 cm. The Accuracy$_r$ (CE95) for their horizontal error is 1.1 cm.
Survey Status

- Completion of surveying is awaiting additional funding
- Goal is to survey a minimum of 20 points in each land cover category
Stennis Current and Proposed Check Points

SSC Lidar Range Checkpoints

Legend

- SSC Fee Area

Cover Type

- A - Bare-Earth, Short Grass
- B - High Grass, Weeds
- C - Brush, Low Trees
- D - Fully Forested
- E - Built-Up
Methods and targets for characterizing the following aspects of LIDAR data products should be explored:

- Planimetric (X,Y) accuracy
- Vertical (Z) accuracy
 - Reflectance dependencies or effects
- Height discrimination
 - Minimum resolvable height separation for multiple return systems
- Sampling density
- Image quality of intensity-based imaging systems
 - Edge response
 - Radiometry
 - Signal-to-noise
Planimetric/Horizontal Accuracy of Digital Elevation Data

- Horizontal error is more difficult than vertical error to assess in the final elevation product
 - Land surface often lacks distinct topographic features needed (e.g. bare earth DEMs)
 - Need products with visible features that have been GPS-located

- Possible assessment approaches listed by NDEP Guideline (2003)
 - Coordinates of the four corners of rooftops of several buildings are accurately surveyed (in addition to ground control points surrounding these buildings) and compared with LIDAR calibration flights flown over the calibration area from multiple directions.
 - Acquire very high-resolution elevation data where well-defined surface features such as narrow stream junctions, small mounds, or depressions can be identified. Compare surveyed horizontal coordinates with those derived from the high-resolution elevation dataset.
 - Use of intensity data to identify features on the ground and compare their surveyed horizontal coordinates with those derived from the LIDAR intensity images
 - Corresponding intensity data must be earth-referenced by the same process used for the elevation data
Potential Ideas for Targets to be Developed

- **Horizontal Accuracy**
 - Building edges
 - Pattern of retroreflectors on ground, on structure, or across water body
 - Dark target with reflectors on edge

- **Intensity Imagery**
 - Surface model of SSC edge target

- **Dependence on pulse footprint size**
 - Wire/grid “tree” or trellis structure with substructure (artificial canopy)
 - Sloped wires
 - Netting at angles

- **Height Discrimination**
 - Box structures of various sizes and heights;
 - Large scale stairs such as stadium seating at a ball field
 - Retroreflectors placed on structures of different heights
 - Pattern of retroreflectors on angled grid
Buildings – Various Heights

Building 1100

Army Assembly Facility

Data Buoy Facilities
Uniform Slopes
Linear Features

- Electric Lines
- Steam Line on the Army Facility
Painted Manhole Covers

- 136 painted/surveyed man-hole covers located throughout SSC fee area
- Paint reflectance nominally 50%
- Manhole cover diameters range between 0.6 and 2.9 meters
- Manhole cover centers have been geolocated by GPS to <3 cm horizontal accuracy and <6 cm vertical accuracy
Edge Features

Two Ages of Asphalt

Edge and Grayscale Target Array, as imaged by QuickBird
Short and Tall Grasses, Bare Soil

Native Grasses

Mixed Lawn Grasses

Exposed Soil at the Landfill
Variety of Forest Cover and Density

- Dense Pine Regeneration
- Slash Pine with Gallberry Understory
- Slash Pine with Waxmyrtle Understory
- Slash Pine with Regeneration
 Hardwood/Brush Understory
Riparian Areas

Drain with Mixed Pine Hardwood

Forested Wetland
Water Features

Locks on the Canal

Cooling Pond
Interesting Features

Water Towers

“B” Test Stand

“A” Test Stand
4. TITLE AND SUBTITLE
Development Status for the Stennis Space Center LIDAR Product Characterization Range

5a. CONTRACT NUMBER
NAS13-650

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Earth Science Applications Directorate, Code MA00, Bldg. 1100, SSC, MS 39529
Lockheed Martin Space Operations - Stennis Programs, Remote Sensing Directorate, Bldg. 1105, SSC, MS 39529

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
NASA Earth Science Applications Directorate, Code MA00, Bldg. 1100, SSC, MS 39529

10. SPONSORING/MONITOR'S ACRONYM(S)
NASA ESA

11. SPONSORING/MONITORING REPORT NUMBER
SSTI-2220-0007-ESAD (Original)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Publicly Available STI per form 1676

13. SUPPLEMENTARY ES
Presentation at the ASPRS 2004 Annual Conference and Technology Exhibition, Denver, CO, May 23-28, 2004

14. ABSTRACT
This presentation describes efforts to develop a LIDAR in-flight product characterization range at Stennis Space Center. as the next phase of the NASA Verification & Validation activities. It describes the status of surveying efforts on targets of interest to LIDAR vendors as well as the potential guidelines that will be used for product characterization.

15. SUBJECT TERMS
LIDAR, characterization, verification & validation, accuracy assessment, land cover, NDEP Guidelines, targets, ground control points

16. SECURITY CLASSIFICATION OF:
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19b. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER (Include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>UU</td>
<td>31</td>
<td>Vicki Zanoni</td>
<td>(228) 688-2305</td>
</tr>
</tbody>
</table>

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.