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ABSTRACT  

A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is 
being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn 
Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space 
missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, 
aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. 
Performance and mass improvement goals have been established for second- and third-generation Stirling 
radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under 
various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland 
State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of 
modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and 
the University of Minnesota are complementing the code development. A screening of advanced superalloy, 
refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and 
joining characterization as part of developing a high-temperature heater head. A breadboard characterization is 
underway for an advanced controller using power electronics for active power factor control with a goal of 
eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling 
developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. 
These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated 
regenerator to be done by CSU.  

INTRODUCTION 

Under the auspices of NASA’s Project Prometheus, the Nuclear Systems Program, the Department of Energy 
(DOE), Lockheed Martin (LM) of Valley Forge, PA, Stirling Technology Company (STC) of Kennewick, WA, and 
NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for 
possible use on future NASA Space Science missions. The SRG is being developed for multimission use (e.g., in 
environments with and without atmospheres), including providing electric power for unmanned Mars rovers and 
deep space missions. The SRG will provide a high-efficiency power source alternative to Radioisotope 
Thermoelectric Generators (RTG’s). The SRG system efficiency of greater than 20% would reduce the required 
amount of radioisotope by a factor of four or more compared to RTG’s. This significantly reduces radioisotope cost, 
radiological inventory, and system cost. 

LM, under contract to DOE, is the System Integration Contractor for the SRG. LM is now developing the SRG 
engineering unit, with contract options to develop the qualification unit and the first flight units. The SRG concept is 
described by Cockfield and Chan (2002). The SRG is expected to produce about 114 Wdc at beginning-of-mission 
(BOM) using two opposed Stirling convertors and two General Purpose Heat Source (GPHS) modules. The system 
efficiency is projected to be 23% and the BOM specific power about 4.2 We (watts electric)/kg. 

STC first developed the Stirling convertor under contract to DOE and is continuing development as a subcontractor 
to LM. This Technology Demonstration Convertor (TDC) is now being transitioned to a flight prototype convertor. 
A total of 16 TDC’s have been built by STC, and these are now on test at STC, LM, and GRC. The latest four were 
built with additional quality assurance practices that STC has implemented to prepare for flight convertor 
fabrication. GRC provides technical consulting for the TDC development under a Space Act Agreement with DOE. 
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GRC is also conducting an in-house technology project to assist in developing the convertor for space qualification 
and mission implementation. This includes independent verification testing of the TDC’s, heater head life 
assessment, permanent magnet aging characterization, linear alternator evaluations, launch environment 
characterization testing, electromagnetic interference and electromagnetic compatibility characterization and 
reduction, organic materials evaluations, reliability studies, and fastener evaluation (Thieme and Schreiber, 2003; 
Schreiber and Thieme, 2003). GRC has recently begun extended operation of two of the most recent TDC’s built by 
LM and STC, and about 2000 hours of testing have been accumulated to date. Preparations are also underway for a 
planned three-year test of two TDC’s in a thermal vacuum environment. Primary creep testing on the Inconel 718 
material that will be used to build the convertors for the SRG engineering unit and any first flight convertors has 
been completed. Heater head life estimates for a desired reliability have been made for various convertor hot-end 
temperatures, using the latest probabilistic analysis of the GRC IN718 creep data. Heater head structural benchmark 
tests have been started and will be used to calibrate and validate the heater head life assessment model. Long-term 
magnet aging tests of the neodymium-iron-boron (NdFeB) permanent magnets used in the TDC linear alternators 
have reached 18,000 hours. Cure kinetics testing has been completed on the epoxy for the critical magnet/stator 
lamination bond. A plan has been developed for reliability analyses, and this effort is now getting underway. 

GRC has also initiated efforts to develop advanced Stirling technologies. Performance and mass improvement goals 
have been established for second- and third-generation Stirling radioisotope power systems. Multiple efforts are 
underway to achieve these goals, both in-house at GRC and under various grants and contracts. These efforts include 
development of a multi-dimensional Stirling computational fluid dynamics code, high-temperature materials, advanced 
controllers, an end-to-end system dynamics model, low-vibration techniques, advanced regenerators, and a lightweight 
convertor. This paper will discuss the status and recent results for the Stirling advanced technology work. 

STIRLING ADVANCED TECHNOLOGY GOALS 

The overall objective of the advanced technology efforts is to develop a high efficiency, low mass Stirling convertor 
for use with a radioisotope, reactor, or solar concentrator heat source. The current work is focused on improvements 
for the SRG. Figure 1 shows performance and mass improvement goals for second- and third-generation Stirling 
radioisotope power systems. The first-generation system is the SRG currently being developed by LM. Reducing 
mass is the primary focus for the second-generation system, while the third-generation improvements primarily aim 
at improving efficiency. Mass improvements are based on using a lightweight Stirling convertor that significantly 
reduces the convertor mass and an advanced controller using power electronics to eliminate tuning capacitors. The 
goal of improving the high SRG efficiency to even greater values, 30 to 35%, will be pursued by increasing both the 
Carnot efficiency and the percentage of Carnot efficiency that is achievable. Advanced superalloys, refractory metal 
alloys, and ceramics are being evaluated for a high-temperature heater head to increase the convertor temperature 
ratio and thus the Carnot efficiency. Achieving the higher percentage of Carnot efficiency is expected from 
convertor efficiency improvements based on multi-dimensional CFD analysis and improved regenerators. The goal 
is to improve the percentage of Carnot efficiency achieved from its present 45% to 55 to 60%. 
 

 
 

Near Term Mid Term Far Term 

1st Generation

SRG with TDC 
4.2 We/kg 

23% system efficiency 

2nd Generation

6-10 We/kg
25% system efficiency

3rd Generation 

8-10+ We/kg 
30-35% system efficiency 

Stirling Radioisotope 
Generator (SRG) 

Lightweight convertor
Advanced superalloy materials 

Advanced controller 

CFD code development
High-temp. heater head 
Improved regenerator 

FIGURE 1. Stirling Advanced Technology Development Goals. 
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MULTI-DIMENSIONAL STIRLING CFD CODE 

Under grant from GRC, Cleveland State University (CSU) is developing a multi-dimensional Stirling computational 
fluid dynamics (CFD) code to significantly improve Stirling loss predictions and assist in identifying convertor areas 
for further improvements. The University of Minnesota (UMN) and Gedeon Associates, Athens, OH are teamed 
with CSU for this effort. The current status of this code development is given by Tew et al. (2004). Key existing 
one-dimensional Stirling performance and design codes agree reasonably well with each other in terms of overall 
performance but can differ significantly in the magnitude of specific internal losses. Also, one-dimensional codes do 
not rigorously model manifolds and area changes between heat exchangers and expansion/compression spaces in the 
convertor. It is expected that this CFD code should give a significant improvement in the understanding of these 
losses and convertor design areas and, thus, help lead to further performance improvements. It is also expected that 
the development of the code and the supporting validation effort will lead to improvements in the 1-D codes as well. 

The commercial code, CFD-ACE™, developed by CFD Research Corporation, Huntsville, AL has been chosen for 
the CFD code development. A 2-D model of a Stirling convertor is now operational and is being further upgraded to 
include models of the appendix gap and seal regions. Some approximations to actual 3-D geometries, including 
those for the heater and cooler heat exchangers, were necessary for the 2-D axisymmetric model. This initial model 
uses a porous media module, included with the CFD-ACE™ code, for simulating the regenerator matrix. Initial runs 
with the 2-D model have raised questions relative to the use of the porous media module for this application, and 
these issues are currently being investigated. This 2-D model is now being modified at GRC to model the TDC. 
Work on 3-D models has also been started. One key issue is the amount of processing time needed to run a complete 
3-D model of a convertor. GRC has purchased an initial set of eight computers to begin building a parallel cluster to 
significantly increase processing speed.  

A significant amount of the effort underway is aimed at validating the Stirling CFD code. Testing has been 
completed with a “90-degree turn” test section at the UMN. A hot-wire anemometer was recently used to measure 
velocity and turbulence intensity profiles to add to earlier flow visualization test results. Both oscillating flow and 
unidirectional flow tests were completed. These tests are described by Adolfson et al. (2003). Sample velocity (u) 
and turbulence intensity (TI) (TI = urms / |u|) data for oscillating flow are shown in Figure 2. The hot-wire 
anemometer is unable to resolve flow direction so absolute velocity values are plotted. Adolfson states that periods 
of strong acceleration (e.g. 0° <θ <45°) show dissipation of turbulence, whereas periods of deceleration (e.g. 90° <θ 
<135°) show large production of turbulence. This is in agreement with the flow visualization results. CSU modeled 
the UMN test rig for comparing test data to the CFD code; code and test results are compared by Ibrahim et al. 
(2003a). The UMN rig was modeled using 1) laminar flow, 2) a K-ω turbulence model, and 3) a K-ε turbulence 
model. Laminar flow predictions gave good agreement in the stagnation regions while turbulent flow predictions 
with the K-ω model compared well at radial distances further from the stagnation regions. A sample comparison 
with the UMN flow visualization results is shown in Figure 3. Note that the flow features including the large-scale 
vortex generated between the two discs of the “90-degree turn” test section are predicted very well by the code with 
the K-ω turbulent model. A “180-degree turn” test section that better simulates the flow situation in a Stirling 
convertor is now under design; heat transfer will also be measured with this test section. CSU has also recently 
started operation of a test rig to provide further code validation data.  

FIGURE 2. Sample Velocity and Turbulence Intensity Profiles. 
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A second CSU grant effort is studying the effects of oscillating flow and oscillating pressure on heat transfer in the 
Stirling convertor working spaces. The 1-D code SAGE and CFD-ACE™ are being used to analyze test rig data 
taken previously at the Massachusetts Institute of Technology. The goal is to improve heat transfer and loss 
calculations in the 1-D codes and eventually lead to a second law analysis post processor for the multi-dimensional 
CFD code. A second law post processor is included in the 1-D SAGE code. It has proven to be a useful tool for 
segregating and understanding thermodynamic losses in Stirling convertors and thus assisting in the development of 
improved designs that minimize these losses. 

HIGH-TEMPERATURE MATERIALS 

The TDC maximum hot-end temperature is 650 °C, with a design lifetime of about 120,000 hours. The heater head 
is fabricated from the nickel-base superalloy Inconel 718 (IN718). Higher-temperature materials, including 
advanced superalloys, refractory metal alloys, and ceramics are being evaluated to increase the convertor hot-end 
temperature (Bowman, Ritzert, and Freedman, 2004). This would achieve a higher Carnot efficiency based on the 
increased operating temperature ratio, allow an increased cold-end temperature to reduce radiator mass if system 
mass optimizations indicated this was preferable, or some combination of the two. Advanced superalloys could 
allow operation at 750 to 850 °C, while refractory metal alloys and ceramics could achieve up to about 1200 °C for 
these required lifetimes. The maximum hot-end temperature may need to be restricted to about 1050 °C for a 
radioisotope power system to maintain the radioisotope heat source within its temperature limits while operating in a 
vacuum. This maximum hot-end temperature with a refractory metal alloy or ceramic heater head may possibly be 
increased to 1125 to 1200 °C by using a cover gas on the radioisotope heat source to decrease internal temperature 
drops; a combined Stirling convertor/cooler with this heater head and radioisotope heat source could then potentially 
enable an extended-duration surface mission on Venus.  

The Stirling convertor will be operating continuously once the radioisotope fuel is loaded. Under this scenario, creep 
becomes the dominant failure mechanism that needs to be considered for the heater head lifetime. The following 
criteria were used to screen the various candidate materials: 1) creep properties, 2) fabricability, 3) helium gas 
containment, 4) long-term stability/compatibility, 5) ability to form a hermetic close-out seal, and  
6) ductility/toughness (to assist in fabrication, handling, and resistance to foreign object damage).  

Advanced Superalloys 

Based on general superalloy properties, the 120,000-hour life requirement roughly gives a maximum use 
temperature of about 850 °C. The key factors for the superalloy evaluation were creep properties, hermetic sealing, 
and stability. Very little creep data exist for long lifetimes, and the vast majority are for tests with a rupture life of 
less than 10,000 hours. Also, creep properties are sensitive to the sample thickness-to-grain size ratio, and thin-wall 
test data will be needed to properly characterize any material for the thin-walled Stirling heater head. For this study, 
Larson-Miller plots were used to compare creep data. Creep testing will be conducted on any candidate materials to 
supplement the creep database in the literature. Special consideration was given to materials with a high degree of 
stability due to the long-life requirement and also recognizing that long-term data on these materials generally does 
not exist. Joining is a critical material property since superalloys are typically difficult to weld with fusion-welding 
techniques that melt the base metal, due to cracking in post-weld thermal treatments. The empirical parameter of 

Laminar 
K-ω 
Turbulent 
Model 

Flow 
Visualization

FIGURE 3. Sample Comparison Between CFD Predictions and UMN Flow Visualization Experiments. 



NASA/TM—2004-213186 5

2Al+Ti was used evaluate weldability; higher-strength alloys with higher amounts of aluminum (Al) and titanium 
(Ti) are typically the most difficult to weld. Solid-state welding techniques that don’t melt the base alloy such as 
friction, projection, and magnetic pulse welding and other techniques such as brazing, transient liquid phase 
bonding, and diffusion bonding are also being pursued.  

Five candidate nickel-based superalloys were selected for further study. Each has superior creep properties 
compared to IN718, but there are also issues with each that could prevent successful use. The materials selected are 
Udimet 720, IN738LC, IN939, MarM 247, and MA754. These include wrought, cast, and mechanically-alloyed 
superalloys. They also cover a range of potential temperature improvement versus risk tradeoffs. See Bowman, 
Ritzert, and Freedman (2004) for a discussion of the strengths and weaknesses of each of these material candidates. 

Refractory Metal Alloys 

Refractory metal alloys that were given primary consideration included alloys based on molybdenum, niobium, 
tantalum, tungsten, and rhenium. Other candidates were not considered due to limited availability and high cost. One 
issue with the refractory metal alloys is that they typically have a much smaller database than the superalloys, thus 
making long-term life predictions more uncertain. Also, they must be tested in an inert environment due to oxidation 
effects at the hot operating temperature. A significant amount of work was done on refractory metal alloys as part of 
the SP-100 program to develop a 100-kW nuclear space power system that ended in the early 1990’s.  

The most promising refractory metal alloys are those based on tantalum and tungsten. Tantalum alloys are highly 
developed, and ASTAR-811C was chosen as the primary refractory metal alloy for further study. ASTAR-811C is 
promising due to its high melting temperature, high strength, good weldability and fabricability, and ductility at low 
temperatures. One issue is that it is highly affected by processing. At the highest temperatures, tungsten alloys may 
be possible successors to the ASTAR family but now have very limited creep data and issues with respect to 
welding and maintaining non-brittle characteristics. Molybdenum alloys were considered high risk due to concern 
over the alloys maintaining strength and non-brittle characteristics after welding. Niobium alloys were thought to 
have only marginal advantages compared to the high-strength superalloys. 

In addition to ASTAR-811C, rhenium was also chosen for further investigations due to its excellent high-
temperature strength and low-temperature ductility. It also has good weldability and fabricability. However, the 
rhenium database is very limited, so rhenium is considered to be a high-risk candidate but with very high potential 
benefits.  

Ceramics 

Ceramic materials offer a number of significant advantages over superalloys for the Stirling heater head application 
including higher-temperature capability, more creep resistance, and a wider range of thermal conductivities. 
Ceramics may allow tailoring for high radial thermal conductivity and low axial thermal conductivity to control heat 
conduction losses between the hot end and cold end of the Stirling convertor. This loss is especially significant for 
these lower-power level systems. Also, ceramics do not require testing in an inert environment as do the refractory 
metal alloys. Disadvantages of ceramics include a lower coefficient of thermal expansion compared to the metals to 
which they will be attached, higher helium permeability, and higher manufacturing costs.  

A basic ceramic heater head design was generated. This could consist of up to four elements: damage shield, 
ceramic structural component, helium diffusion/permeation barrier, and heat sink. The damage shield is the outer 
structure and protects the heater head during handling and use. A ceramic matrix composite is proposed for the 
damage shield with the fiber reinforcements designed to provide high radial thermal conductivity in the heater and 
cooler heat exchanger regions and low axial thermal conductivity between them (in the regenerator region). The 
ceramic structural component is the main load-bearing component of the heater head. The initial choice is a fully 
dense monolithic silicon carbide, either continuous with or bonded to the damage shield. Monolithic silicon nitride 
is a second choice and may allow easier control of the microstructure to obtain high radial and low axial thermal 
conductivities. A helium diffusion/permeation barrier can be included if test data confirms the need for this. A silica 
coating on the inside of the ceramic structural component will first be investigated; it could also be a metal or metal 
coating. Finally, a heat sink with high thermal conductivity could be attached to interface to the radiator. This could 
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be a fully-dense CVI (chemical vapor infiltration) silicon carbide, either continuous with or bonded to the ceramic 
structural component, or a carbon-carbon composite. 

The primary issues for developing a ceramic heater head are: 1) helium permeability through the ceramic structure, 
2) the ceramic-metal joint, and 3) assembly and testing of the complete heater head structure. Damage tolerance 
must also be addressed. Helium permeability tests are now being run on selected candidate materials.  

ADVANCED CONTROLLER 

Although the controller design can often be application specific, there are many features that are common to most 
controllers for Stirling convertors. Among these are power quality (low ripple), low mass, high efficiency, low parts 
count, high reliability, low volume, and adaptability. Furthermore, as some applications may require very low levels 
of vibratory emissions, the controller could be used to influence the operating dynamics to achieve a finely balanced 
system. GRC has a controller technology effort intended to develop key technologies necessary for these advanced 
controllers. The development will initially address mass and volume reduction and then low-vibration operation.  

The first effort was the development of a controller that is an outgrowth of an SP-100 era controller and is known as 
the digital controller. This controller used digital logic to apply an analog load to maintain control of the convertor. 
The original digital controller had an undesirable characteristic that allowed the alternator output voltage to vary 
slightly as the power output changed. A newer version, the second-generation digital controller, is able to maintain 
constant output voltage. This controller is used in the GRC Stirling Research Laboratory, along with the original 
digital controller and the STC-developed zener diode controller, for general performance testing.  

The first area being investigated for advanced controllers is the elimination of the tuning capacitors found in most 
controllers. These capacitors contribute significantly to the mass and volume of the controller. The linear alternator 
tends to be an inductive device and tuning capacitors are commonly used to correct the power factor back to unity. 
In electrical terms, this results in the current and voltage being in phase with one another; in the context of the 
mechanical spring-mass-damping dynamics of the free-piston Stirling, this results in the damping provided by the 

load being in phase with the velocity of the piston. Techniques are available 
through the use of power electronics to, in essence, force the current that 
flows through the alternator to be in phase with the voltage through high 
speed switching controlled by a microprocessor. This technique has more 
often been applied to control the power supplied to a motor; however, there 
are a few examples of this being used to control or process power being 
generated. This technique is known as Active Power Factor Correction 
(PFC). Two such controllers with Active PFC have been developed at GRC. 
These circuits are referred to as first- and second-generation Active PFC 
controllers. Both circuits have been tested on the bench with Stirling 
convertor simulators. Functional testing of the second-generation Active 
PFC controller with a signal generator is shown in Figure 4. Tests with the 
controllers operating on a Stirling convertor are being planned. 

 
Following development and characterization of the Active PFC technology on a single Stirling convertor, the 
technology will then be applied to a pair of convertors operating in the dual-opposed configuration. This 
configuration provides inherent dynamic balancing of the moving components. While this inherently achieves low 
vibration, it can only do so within the limitations of the manufacturing tolerances. To achieve lower levels of 
vibratory emissions, a technique will be investigated that calls upon the controller to alter the dynamics of one 
convertor relative to the other, to reach a superior level of balance. Some of the options to be explored include 
varying the tuning capacitance applied to one of the alternators or injecting a precise signal into one of the 
alternators to influence the piston motion to improve balance. Similar techniques have been demonstrated in 
cryocoolers at GRC; however, they have not been applied to power convertors. One key difference between power 
convertors and cryocoolers is that the operating frequency is not constant in power convertors. A literature review of 
past work in this area is now being completed. Some previous work completed by STC in low-vibration techniques 
for power convertors is discussed in Thieme, Qiu, and White (2000). 

FIGURE 4. Power and Mosfet 
driver boards for advanced controller 
on test at GRC.

Power and Mosfet driver boards 
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LIGHTWEIGHT STIRLING CONVERTOR 

Sunpower, Inc., Athens, OH has recently won a NASA Research Announcement (NRA) award for Radioisotope 
Power Conversion Technology to develop a lightweight Stirling convertor for radioisotope space power systems 
(Wood and Lane, 2004). This convertor is expected to be significantly lighter than the TDC currently used in the 
SRG. Based on its projected mass and performance, it would approximately double the specific power of a second-

generation Stirling radioisotope power system (producing a nominal DC power output 
of 120 W) to about 8 We/kg. It will be sized for two convertors operating in an 
opposed, balanced configuration and using the heat from two GPHS modules. The 
convertor is projected to have a specific power of nearly 100 We/kg and an efficiency 
of 30% or greater. Sunpower has teamed with Boeing-Rocketdyne, Canoga Park, CA 
for this development. Two generations of convertors will be built. The first will be a 
research convertor designed to allow for tear-down and change out of components. The 
second-generation convertor will demonstrate the final lightweight hermetically sealed 
design. A test bed convertor will also be used to verify efficiency predictions, study 
frequency effects on efficiency, and assist in testing advanced components. Boeing-
Rocketdyne will provide the controller and evaluate high-temperature materials. CSU 
and UMN will provide CFD modeling and heat transfer testing/analysis to assist in 
studying specific convertor losses.  

Sunpower is also developing a lower-power convertor, shown in Figure 5, under a NASA Phase II SBIR. This is 
sized for two convertors operating in an opposed, balanced configuration and using the heat from one GPHS module 
(Wood and Lane, 2004). The first convertor of this effort is now under test and has achieved over 40 W AC output 
with no restriction on heat input. GRC is planning to do a launch environment test of this convertor in 2004.  

REGENERATORS 

Over the last several years, CSU has been conducting a research effort for DOE-Golden to improve the performance 
of solar terrestrial Stirling convertors. CSU has teamed with UMN, Gedeon Associates, and GRC on this effort, 
which has focused on better understanding and improving the Stirling regenerator. The team has studied, both 
experimentally and with CFD analysis, such items as plenum size effects on jetting into the regenerator, flow 
recirculation near the regenerator wall, and measurement of heat transfer rates between the regenerator wires and 
fluid. Recent results are described by Niu et al. (2003a and 2003b) and Ibrahim et al. (2003b). This effort is also 
aiding the development of the regenerator model for the multi-dimensional CFD code. This work is now expected to 
be continued under NASA grant funding. The NASA grant will focus on improving currently-used random fiber 
regenerators and possibly foil regenerators, obtaining a better understanding of detailed regenerator flow fields and 
heat transfer in oscillating flow, and determining heat transfer characteristics of high-porosity Stirling regenerators.  
 
CSU recently won a NRA award for Radioisotope Power Conversion Technology to conduct a research effort for a 
microfabricated regenerator. CSU is teamed with UMN, Gedeon Associates, STC, and Sunpower. Several 
regenerator designs are under consideration, and several possible manufacturing processes and manufacturers have 
been identified. A large-scale mockup of the selected design will be tested at UMN and modeled by CSU and 
Gedeon Associates. A prototype, proof-of-concept regenerator matrix with actual size features will then be built and 
tested in an oscillating flow rig at Sunpower. As a final demonstration, a microfabricated regenerator matrix will be 
tested, as possible, in STC and/or Sunpower convertors. Microfabricated regenerators could potentially improve 
Stirling convertor performance, increase regenerator durability, and improve fabrication consistency.  

SYSTEM DYNAMICS MODEL 

The development of an end-to-end system dynamics model is continuing (Regan, Gerber, and Roth, 2003). This 
model includes the Stirling engine thermodynamics, linear alternator, controller, and load. Simulations of systems 
with multiple Stirling convertors have been performed successfully. A library of various controller models has been 
completed. TDC data has been taken for comparisons with the model predictions, and this comparison has now been 
started.  

FIGURE 5. Mockup of 
Lightweight Convertor 
(courtesy of Sunpower, 
Inc.). 
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CONCLUDING REMARKS 

Stirling advanced technology development efforts are in their early stages, but good progress was made in 2003 
toward achieving the performance and mass improvement goals for second- and third-generation Stirling 
radioisotope power systems. These advanced systems could provide significant performance and mass benefits for 
Mars rovers and deeps space missions and could also allow the use of Stirling radioisotope power systems for 
radioisotope electric propulsion and Venus surface missions. Key work, under a NASA NRA, has begun on the 
development of a lightweight Stirling convertor that is expected to double the system specific power to about 8 
We/kg. Efforts on the multi-dimensional Stirling CFD performance code, high-temperature materials, and advanced 
controllers are progressing well. GRC’s close integration with the team developing the first-generation Stirling 
Radioisotope Generator should provide a good path to eventual use of advanced technology developments. 
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A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the
Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions
may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also
developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the
convertor and the overall power system. Performance and mass improvement goals have been established for second- and third-
generation Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under
various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University
(CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D
version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code
development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have
been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization
is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy
tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent
NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by
Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.






