Advanced Environmental Monitoring Technologies

Darrell Jan, Ph.D.
Advanced Environmental Monitoring & Control
Program Element Manager
Life Detection Science & Technology Office
NASA/Caltech-Jet Propulsion Laboratory

June 22, 2004
Apollo 12 photograph, taken by lunar module pilot Alan Bean, mission commander Pete Conrad retrieves parts from the Surveyor.
Monitoring & Controlling the environment

- Air
- Water
- Plant chambers
- Food and Food Preparation surfaces
- Gradual buildup of toxic species
- Hazardous events
- Chemical
- Biological

Water processor
Air processor
Control

sensors
actuators
Gradual buildup of harmful chemical or microbials

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>DETECTION LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIORITY 1</td>
<td>ppm</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.1</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.01</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.2</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>0.03</td>
</tr>
<tr>
<td>Perfluoropropene (F218)</td>
<td>10</td>
</tr>
<tr>
<td>Acetone</td>
<td>1</td>
</tr>
<tr>
<td>Octamethylcyclotrisiloxane</td>
<td>0.05</td>
</tr>
<tr>
<td>2-Propanol</td>
<td>3</td>
</tr>
<tr>
<td>Freon 82</td>
<td>5</td>
</tr>
</tbody>
</table>

*Microgravity combustion not shown

Hazardous event such as fire or leakage
ILLUSTRATIVE EXAMPLE:

CANARY
Why a canary?

- Continuous air monitor
- Ground-based heritage
- Doesn’t require skilled operator
- Relatively low mass, low power
 - Can consider placing in several locations
- High sensitivity to many toxic gases
- Multifunctional potential:
 - air
 - water
 - food
 - music
- Probably will work in μgravity
- Built in signal processing
- Edible
Why not a canary?

- Requires fuel (food), water, maintenance
- Generates waste products
- Overload requires complete system replacement
- Quantitative capability suspect
- Limited life
- Difficult to interface and network
- Low precision display
 - Could be hard to read in µg
Why not a canary?

- Requires fuel (food), water, maintenance
- Generates waste products
- Overload requires complete system replacement
- Quantitative capability suspect
- Limited life
- Difficult to interface and network
- Low precision display
 - Could be hard to read in μg
Why not a canary?

- Requires fuel (food), water, maintenance
- Generates waste products
- Overload requires complete system replacement
- Quantitative capability suspect
- Limited life
- Difficult to interface and network
- Low precision display
 - Could be hard to read in μg
Why not a canary?
A canary in water
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Ground-based Commercial technology

- High mass
- High power requirement
- High operator skill
- High capability
- May require gravity

- Lower mass
- Lower power requirement
- Low operator skill
- Low capability
- May require gravity

• Breakthroughs needed to achieve high capability and low mass/power plus autonomy
High Capability & Low Mass/Power + Autonomy = key to future SpaceFlight
Volatilc Organic Analyzer (VOA): measures about 30 volatile organic species

ICES 2003-01-2646 Validation of the Volatile Organic Analyzer (VOA) aboard the International Space Station
Thomas Limero, et al

Major Constituent Analyzer (MCA): Nitrogen, Oxygen, Carbon Dioxide, Water vapor

2000-01-2345
International Space Station Carbon Dioxide Removal Assembly Testing
James C. Knox
Current Practice: Post Flight

Grab Sample Bottles: Thorough analysis
By GCMS, over 100 species

Formaldehyde Badges

ICES 2003-01-2646 Validation of the Volatile Organic Analyzer (VOA) aboard the International Space Station
Thomas Limero, et al

ICES 2003-01-2647 Toxicological Assessment of the International Space Station Atmosphere with Emphasis on Metox Canister Regeneration
John James, et al
Figure 1. Overview of the airflow inside Zarya with opposed panels opened to 90 degrees. This diagram was adapted from Alibaruho et al. (1999) with addition of the flow arrows going from the walls toward the isle through open panels. The goal of the figure is to indicate the potential for disrupted airflow where panels have been opened.
Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight

- 0.5 amu resolution, 1-300 amu range
- Used by astronauts in Shuttle Mission 5A and beyond to detect ammonia and air leaks outside the International Space Station

The QMSA Packaged as the Astronaut’s Trace Gas Analyzer (TGA)

The Quadrupole Mass Spectrometer Array (QMSA)

Smallest flight Mass Spectrometer in the world!
HARDWARE AND DATA ACQUISITION SYSTEM

First Generation Enose: Flight Experiment

Volume: 2000 cm³ Mass: 1.4 kg
Power: 1.5 W ave., 3 W peak
Computer: HP 200LX
Materials:
- container - cast aluminum
- wetted surfaces - glass, PTFE, polypropylene
- seals - silicon rubber

Second Generation ENose

Optimized sensors, faster analysis, improved sensitivity

Volume: 760 cm³ Mass: 0.8 kg
Power: 1.5 W ave., 3 W peak
Computer: Handspring Visor Neo PDA
Materials:
- container - anodized aluminum
- wetted surfaces - alumina, parylene
- seals - Kal-Rez
Red clones are opportunistic pathogen

Liver abscess
Hyperuricemia

Cat scratch disease;
Bone-marrow infection

Halogen-reducers

Endocarditis;
Hepatic granuloma

50 changes

50 changes
Preview of Porter