Gas-Liquid Flows and Phase Separation
by
John McQuillen

Strategic Research to Enable NASA's Exploration Missions
June 22 - 23, 2004
Cleveland, Ohio
Common Issues for Space System Designers

- Ability to Verify Performance in Normal Gravity prior to Deployment.
- **System Stability**
- Phase Accumulation & Shedding
- **Phase Separation**
- Flow Distribution through Tees & Manifolds
- **Boiling Crisis**
- Heat Transfer Coefficient
- Pressure Drop

Two Phase Flow Facility
Space-Based Technologies
Using Two Phase Flow

Exploration Vision

Technology Development

ADVANCED LIFE SUPPORT SYSTEMS
• Condensing heat exchanger
• Wastewater processing
 – Distillation systems
 – Evaporation systems
• Storage transport systems
• Two-phase tolerant pumps
• Low pressure liquid drainage

THERMAL CONTROL SYSTEMS
• Working fluids for internal/external systems
• Heat pump
• Two-phase tolerant pump
• Thermal bus
• Multiple heat source
 – Multiple temperatures
• Systems
 – EVA, ECLSS, Power

NUCLEAR POWER CONVERSION SYSTEMS
• Two-phase distribution problems in condenser manifold
• Gas bubbles in pump
• Interaction between components
• Liquid droplet carry over into turbine inlet
• Thermal transients affecting fatigue of the boiler

Output
Design Tools • Engineering Handbooks • Models

Applied Research
Boiling • Condensation • Phase Separation • Two-Phase Stability

Microgravity Fluid Physics Branch
Glenn Research Center at Lewis Field
Partial Listing of Where Gas-Liquid Flows are in Life Support Systems

<table>
<thead>
<tr>
<th>Stream Type</th>
<th>Air Revitalization</th>
<th>Water Reclamation</th>
<th>Thermal Management</th>
<th>Solid Waste Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabin Humidity Condensate</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spills</td>
<td></td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Dish Washing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laundry</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Sabatier CO₂ Reaction</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Solids Drying</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Food Processing</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Life Support Systems

• Commonality of Source Stream
 – Aqueous-based Working Fluid (Water)
 – Into Waste Water Tank
 – Low Pressure Inlet
 – Gas Phase Present
 – Particulate Matter may be Present

• Differences
 – Dissolved Matter \rightarrow Fluid Property Effects
 – Batch vs. Continuous Input
 – Flow Rates
 – Void Fraction
Thermal Management Systems

Heat Source Temperature

- $T_{\text{Source}} \approx 50 \, ^\circ\text{C}$
- $T_{\text{Source}} \approx 20 \, ^\circ\text{C}$
- $T_{\text{Source}} \approx 2 \, ^\circ\text{C}$

- $T_{\text{Source}} > T_{\text{Radiator}}$
- $T_{\text{Source}} < T_{\text{Radiator}}$

Pumped Loop

Vapor Compression
Vapor Compression Cycle

Two Phase Issues

Evaporators

Liquid Droplet Carryover

Lubricant Management

Parallel Channel Instability

2Ø Separator

2Ø ΔP & Heat Transfer Coefficient

System Stability

Flight Demo

Condenser
The Effect of Reduced Gravity on Gas-Liquid Flows

Negating the Effect of Buoyancy

- Axisymmetric flows
- Reduced Hydrostatic Pressure
- Spherical Bubbles vs. Ellipsoid
- No Gravity-Induced Shearing:
 - Gas Phase Rising relative to Liquid Falling
- Co-flow of Gas and Liquid Phases.

Radial void fraction distributions

- □ upward
- △ downward
- ○ microgravity
What Do We Know?
Flow Regimes

- 3 (½) Flow Regimes: Bubble, Slug, Annular (Transitional Slug Annular)
- Multiple Models that work well
 - Constant Void Fraction
 - Weber Number Model
 - Suratman Number Criteria
What Do We Know?
Pressure Drop

- Modified Homogenous Equilibrium Model works well
 - Mixture Density
 - Mixture Velocity
 - Liquid Viscosity
Wall Friction Factors f_L in Bubbly Flow:

Reduced Gravity Two Phase Flow:
- $D=6$ mm, $D=10$ mm, $D=19$ mm,
- $D=12.7$ mm, $D=40$ mm

Single-Phase Flow:
- $D=6$ mm, $D=10$ mm, $D=19$ mm

Blasius, Poiseuille relationship
Concerns

- Phase Accumulation and Shedding

- Liquid Film Rupture and Dryout
Example: Sabatier Reactor

\[\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2(\text{H}_2\text{O}) + \text{heat} \]

2Ø Issues
- Separator
- Liquid in Gas Outlet Stream
 - Detection
 - Response
- Influence of Fines
Crew Exploration Vehicle
Thermal Management System

- Capsule-type vehicle
- Functional during Orbital, Re-entry, and Post-Landing Phases
- Closed Loop System – Desire No Flash Evaporators
- Heat Load Estimate
 - Fuel Cells: 7 kW at 50 °C
 - Electronics: 3 kW at 40 °C
 - Cabin: 0.5 kW at 7 °C
- Limit Total Radiator Area < 200 ft²
- Body Mounted Radiator
- Working Fluid
 - Non-Toxic
 - Non-Corrosive
 - Low Freezing Point
Why Separate?

• Critical Process or Component that is intolerant of one Phase
 – Centrifugal pumps with gas bubbles
 – Phase Specific Sensors, i.e., hot wires
 – Biological media negatively impacted by gas

• Better System Performance
 – Condensors Work Better if no liquid present at inlet.
 – Control of Phase Distribution into a manifold
Requirements to Consider

• Available Power
 – Mars Transfer Vehicle has MW but for propulsion
 – CEV has up to 10 kW

• Vibration
 – Wear & tear
 – Noise

• System Life
 – Most will be Life of Mission or Vehicle
 – Some systems may have cleanliness/sterile concerns

• Separator Life

• Flow Rate range
 – ml/min to l/min
Requirements to Consider

• Acceleration Environments
 – Pre Launch 1 G
 – Launch – hi-G’s
 – Transit - microgravity
 – De-Orbit – hi-G’s
 – Moon (1/6 G) or Mars (3/8 G)
 – Post Landing 1 G

• Degree of Separation Desired

• Contamination Sensitivity
 – Separation process negatively impacted by solids or immiscible 2nd liquid phase

• Tolerance of “Slugging” or “flooding” Events
 – System capacitance

• Startup & Shutdown
Range of Separator Requirements

<table>
<thead>
<tr>
<th>Stream Type</th>
<th>Near Continuous or Batch</th>
<th>Inlet Void Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabin Humidity Condensate</td>
<td>Continuous</td>
<td>?</td>
</tr>
<tr>
<td>Urine</td>
<td>Batch</td>
<td>Low</td>
</tr>
<tr>
<td>Dish Washing</td>
<td>Batch</td>
<td>Low-Initially</td>
</tr>
<tr>
<td>Laundry</td>
<td>Batch</td>
<td>Low-Initially</td>
</tr>
<tr>
<td>Sabatier CO₂ Reaction</td>
<td>Continuous</td>
<td>High</td>
</tr>
<tr>
<td>Waste Solids Drying</td>
<td>Continuous</td>
<td>High</td>
</tr>
<tr>
<td>Food Processing</td>
<td>Batch</td>
<td>High</td>
</tr>
<tr>
<td>Bioreactor</td>
<td>Continuous</td>
<td>Low</td>
</tr>
</tbody>
</table>
Mechanical Phase Separation

- Centrifuge – Very high G’s
 - Spin outside housing
 - Spin internal float
- Use rotational acceleration to also develop “hydrostatic” pressure rise to pump liquid
 - Rotary Fluid Management Device (Sundstrand)
 - Two Phase Pump (Foster-Miller)
 - MOBI

[Click here to play movie]
Passive Separation: Membranes

- Use of Hydrophilic Membranes and Surfaces to position liquid interface and withdraw liquid.
- Liquid Acquisition Devices (LAD’s) are used in upper stage propellant tanks to ensure start of rocket motor.
- Gas Phase Breakthrough based on bubble point or LaPlace Eqn using membrane pore size.
- Prone to contamination.
Passive Separation: Inertial

- Phase Separation achieved due to inertial differences in liquid and gas phase inertia

Bubble Flow through Tee

Gas Accumulation in Vena Contracta
Passive Separation: Inertial

- Phase Separation achieved due to inertial differences in liquid and gas phase inertia
Passive Separation: Cyclonic

- Two Phase Flow Injected Tangentially into Cylinder.
- Separation driven by Flow
- Cyclones designed for microgravity will work well in multiple gravity levels
Summary

• Guidance similar to “A design that operates in a single phase is less complex than a design that has two-phase flow”\(^1\) is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation.
• While there is still much to learn about two-phase flow in reduced gravity, we have a good start.
• Focus now needs to be directed more towards system level problems.

References

- Low Gravity Two Phase Flow Movies
 http://microgravity.grc.nasa.gov/6712/2phase_flow/2phase.html