INTRODUCTION

While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space is inadequate for 1G [1]. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures [2]. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays (Figure 1).

PILOT STUDIES

Pilot studies were performed to evaluate the potential of the system to stimulate the neurovestibular system. Twenty subjects were tested running on a dual-track treadmill in simulated curve walking scenes. Subjects also participated in an extended trial consisting of walking 30 minutes in one randomly assigned condition. Before and immediately following testing, subjects ran a timed obstacle course. Results revealed that the combination of visual and proprioceptive stimuli provided by the VR system and the movement of the treadmill respectively, will significantly increase the stimulus to the neurovestibular system.

TREADMILL DESIGN

The proposed treadmill has been designed to function with two belts and four actuators to both elevate and incline the tracks independently (Figure 2). Along with dual speed control, this arrangement will enable the system to replicate motion found during ascending and descending hills, going over rough terrain, turning corners and climbing stairs. Working in conjunction with the VR display, the treadmill system will provide an immersive environment for testing effects on the neurovestibular system.
The system’s motion is governed by six independently controlled axes: two AC motor-driven treads and four servo-driven linear actuators. The system can be simplified as a hierarchical structure composed of three levels and ten components (Figure 3). The highest level of the hierarchy is the main user interface which governs all functions of the system, including manual control, programmed control, and path generation. It is also responsible for synchronizing the system’s motion with its visual display. The user interface level communicates directly with the motor controller and visualization application. The visualization application, created by NASA, uses a “morphing hallway” algorithm to create a visual environment that simulates motion in three dimensions, as well as a variety of terrains including stairs. This application outputs the visual effects to a display unit. The motor controller is responsible for the motion of the motors. This component is linked to the user interface via component object model (COM) interface. The controller is responsible for the PID control of the servomotors and the translation of the user interface’s mnemonic code to machine code. The lowest level of the hierarchy represents the hardware of the system. This level is responsible for providing the physical stimulation to the subject. It is composed of the visual display and the actuation devices working through the treadmill frame.

Biomechanical testing will concentrate on establishing the extent to which the treadmill will stimulate the neurovestibular system. This will include motion analysis, electromyography, accelerometry and pupil tracking data. It is expected that these biomechanical parameters indicating neurovestibular response will differ significantly while walking and running on a standard treadmill from those recorded using the novel virtual reality dual track system.

REFERENCES

ACKNOWLEDGEMENTS
The authors would like to thank the John Glenn Biomedical Engineering Consortium for support and funding of this project.

*Susan E. D’Andrea, Ph.D.
Department of Biomedical Engineering/ND20
The Cleveland Clinic Foundation
9500 Euclid Avenue
Cleveland, OH 44195

Phone: 216.444.5347
Fax: 216.444.9198
Email: dandreas@bme.ri.ccf.org
A Dual Track Actuated Treadmill in a Virtual Reality Environment

A Countermeasure for Neurovestibular Adaptation in Microgravity

Susan E. D’Andrea PhD, Jay G. Horowitz PhD, Philip A. O’Connor MS and Michael W. Kahelin BS

The Cleveland Clinic Foundation

NASA Glenn Research Center
Research Objectives

- To design and develop an exercise countermeasure
- Challenge the postural control system
- Exercise balance and locomotor reflexes
- Alleviate adverse adaptations to the neurovestibular system

- Address multiple physiological systems
 - Neurovestibular
 - Musculoskeletal
 - Cardiovascular
Neurovestibular Adaptations in Microgravity

- Space motion sickness, visual reorientation illusions, inversion illusions
- Post flight modifications to posture, balance, locomotion, head-eye coordination
Challenging the Neurovestibular System

- Balance reflexes are supported by vestibular, visual and proprioceptive sensory systems.
- Design a countermeasure which can adjust the relationship between the visual, vestibular and proprioceptive signals.
- Facilitate the re-adaptation of neurovestibular system to a gravity environment.
Disorientation and inability to perform landing, egress or other physical tasks

Impaired neuromuscular coordination and/or strength

Impaired cognitive and/or physical performance due to motion sickness

Possible chronic impairment of orientation or balance function due to microgravity

Vestibular contribution to cardio-regulatory dysfunction

Risk Level

HIGH

LOW
Earth Applications

- In the US, 2 million adults have balance disorders or impairment from dizziness.
- Eighty million adults have experienced clinically significant dizziness problems at some point in their lives.
- Balance related falls account for one half of accidental deaths in the elderly.
- Countermeasures can help physicians diagnose and treat patients with neurovestibular diseases.
System Components

- Virtual Reality Display
- Dual Track Treadmill
- Software Interface
- Motion Control System
• Independently operated tracks
 • Speed
 – Curves
 • Elevation
 – Stairs
 – Rough terrain
 • Inclination
 – Hills
Virtual Reality System

- Visualization was developed with state-of-the-art virtual reality techniques at NASA Glenn Research Center.

- To optimize for performance and flexibility, the illusion of motion was created by morphing a single segment of hallway and sliding textures along the walls.

- Graphics will port easily to immersive display devices, such as stereoscopic Head Mounted Display.

Click here to play movie
Hardware Configuration

Motion Control Process

6k Motor Controller

D/A Card

Tread Motor Controllers

Tread Motors

Gemini Motor Drives

Linear Actuators
Software Overview

Pre-Runtime

- Master Control Console – Setup File
 - Tuning Parameters, Scaling Factors Home Position
- Array of VR Commands
- Tab Delimited Text File
- VR Visual Display Program

Runtime

- Load Path Created In Matlab Path Generation Tool
- Array of Actuator Positions and Tread Velocities
- Tab Delimited Text File
- 6k Controller – Motion Control
- Tread Motor Controller
- Master Control Console
- Synchronization Via TCP
Path Generation

Matlab® Path Generation Program

- Select Points On XZ Plane and Spline
- Select Points On XY Plane and Spline
- Pick Points On Mean Velocity Profile and Spline
- Insert Intervals of Stairs and Rough Terrain
- Input Sample Rate And Duration of Trial
- Output Array With 4 Actuator Positions And 2 Tread Speeds
- Output Array With Curvature and Inclination

Hill Simulation Program

- Duration (min): 1
- Degree of Inclination

Speed
- Increase

Path plot

Left 4deg
- Time (min): 1
- Degree of Curvature

Right 4deg
- Time (sec): Right = Red, Left = Blue
- Speed

Fast
- Up
- Down

Fast Speed
- Speed
- Time (sec)
Pilot Studies

• Biomechanical Testing
 – 20 subjects
 • 7F, 13M
 • Average age 25
 – Obstacle course
 – Tested in 4 conditions for 3 minutes each
 • Control
 • Visual only
 • Treadmill only
 • Treadmill and visual
 – Extended trial
 • 30 minutes at one randomly assigned condition
Neurovestibular Adaptation Results

Comparison of the range of gaze velocity in four experimental conditions.

Timed Obstacle Course Results
Treadmill Construction
Acknowledgements

- Ed Eucker
- Samantha Lane
- Ari Levine
- Dr. John Oas
- Brian Sauer