Advanced Life Support

Joe Chambliss EC1
281-483-9204
http://advlifesupport.jsc.nasa.gov
June 22, 2004
Advanced Life Support Roadmap

- AIR
 - Basic research
 - Concept feasibility proven
- WATER
 - Critical function verified
 - Component/breadboard validation (laboratory environment)
- CROP PRODUCTION
 - Fundamentals modeling
 - Operational envelope determination
- FOOD PROCESSING
 - Concept feasibility proven
 - Scale-up parameters determined
- SOLID WASTE PROCESSING (RESOURCE RECOVERY)
 - Basic research
- THERMAL CONTROL
 - Model development

RESEARCH AND TECHNOLOGY DEVELOPMENT
Advanced Life Support Topics

1. Fundamental Need for Advanced Life Support
2. ALS organization
 • Areas of research and development
 • Project management techniques
3. Requirements and Rationale
4. Past Integrated tests
5. The need for improvements in life support systems
6. ALS approach to meet exploration goals
 • Candidate groups of systems
7. ALS Projects showing promise to meet exploration goals
8. GRC involvement in ALS
Human Life Support System Requirements

<table>
<thead>
<tr>
<th>Consumables</th>
<th>Kilograms per person per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.84</td>
</tr>
<tr>
<td>Water</td>
<td>23.4</td>
</tr>
<tr>
<td>Drinking</td>
<td>1.62</td>
</tr>
<tr>
<td>Water content of food</td>
<td>1.15</td>
</tr>
<tr>
<td>Food preparation water</td>
<td>0.79</td>
</tr>
<tr>
<td>Shower and hand wash</td>
<td>6.82</td>
</tr>
<tr>
<td>Clothes wash</td>
<td>12.50</td>
</tr>
<tr>
<td>Urine flush</td>
<td>0.50</td>
</tr>
<tr>
<td>Solids</td>
<td>0.6</td>
</tr>
<tr>
<td>Food</td>
<td>0.62</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wastes</th>
<th>Kilograms per person per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>1.00</td>
</tr>
<tr>
<td>Water</td>
<td>23.7</td>
</tr>
<tr>
<td>Urine</td>
<td>1.50</td>
</tr>
<tr>
<td>Perspiration/respiration</td>
<td>2.28</td>
</tr>
<tr>
<td>Fecal water</td>
<td>0.09</td>
</tr>
<tr>
<td>Shower and hand wash</td>
<td>6.51</td>
</tr>
<tr>
<td>Clothes wash</td>
<td>11.90</td>
</tr>
<tr>
<td>Urine flush</td>
<td>0.50</td>
</tr>
<tr>
<td>Humidity condensate</td>
<td>0.95</td>
</tr>
<tr>
<td>Solids</td>
<td>0.2</td>
</tr>
<tr>
<td>Urine</td>
<td>0.06</td>
</tr>
<tr>
<td>Feces</td>
<td>0.03</td>
</tr>
<tr>
<td>Perspiration</td>
<td>0.02</td>
</tr>
<tr>
<td>Shower & hand wash</td>
<td>0.01</td>
</tr>
<tr>
<td>Clothes wash</td>
<td>0.08</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24.9</td>
</tr>
</tbody>
</table>
Human Life Support System Requirements

Open-Loop Life Support System
Resupply Mass - 12,000 kg/person-year
(26,500 lbs/person-year)

- Water 89%
- Oxygen 2.5%
- Food (dry) 2.2%
- Crew Supplies 2.1%
- Gases lost to space 2.1%
- Systems Maintenance 2.1%

10,680 kg
(23,545 lbs)
(2827 gallons)
Mass Cost of Human Mars Mission Using Today’s Technologies

The NASA Exploration Team [NExT]
Advanced Life Support (ALS)

ALS research and technology development provides technology options that either address:

- **Bioastronautics Critical Path Roadmap (BCPR) risk**
- **Improved efficiency (lower mass, power and volume)**

 - Closure of the air, and water loops is critical

 • Solid Waste, Thermal Control improvements contribute to efficiency

 - Technology development is undertaken after rigorous systems analysis including the current baseline (ISS and Shuttle) systems.

 - Technology maturation is accomplished through validation and demonstration in integrated test beds and flight experiments

 • ALS takes technologies from very low Technology Readiness Level concepts (TRL 1-3) to mature technologies at TRL 6 via test and analysis

 • Make the technology available for consideration in an exploration vehicle
WHY MUST WE DEVELOP NEW ALS SYSTEMS?

Shuttle/ISS life support technologies are mass, power and resupply intensive.

Lunar and Mars missions
- a high degree of closure of oxygen and water regeneration loops and efficient low mass thermal management is required.
- subsequent closure of the food loop along with containment and recycling of solid wastes must be pursued.

Lunar or planetary bases - greater autonomy of life support system reduces the dependency on resupply missions, thereby increasing safety and reducing cost.

Pertinent Connections to BCPR

<table>
<thead>
<tr>
<th>Risk #</th>
<th>Risk Title</th>
<th>ISS</th>
<th>Moon</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Maintain Acceptable Atmosphere</td>
<td>G</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>44</td>
<td>Maintain Thermal Balance in Habitable Areas</td>
<td>G</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>45</td>
<td>Manage Waste</td>
<td>G</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>46</td>
<td>Provide and Maintain Bioregenerative Life Support Systems</td>
<td>G</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>47</td>
<td>Provide and Recover Potable Water</td>
<td>G</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>48</td>
<td>Inadequate Mission Resources for the Human System</td>
<td>Y</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Many enabling questions are addressed in the seven principal risks listed above.
This effort also addresses enabling questions for shared risks of other Bioastronautics disciplines.
ALS IMPLEMENTATION

Coordinating Center: JSC

The JSC EC Advanced Life Support Manager administers the overall Advanced Life Support Budget for JSC, ARC, KSC, MSFC, (GRC in 05)

Participants

– NASA Field Centers, including ARC, GRC, JPL, JSC, KSC, MSFC and their affiliated institutes.
– NASA Research Partnership Centers including BST, CAMMP, CSP, ES-CTSC, FTCSC, and WCSAR.
– Principal investigators with research and technology offerings sponsored through other programs such as EPSCoR and congressional earmarks.
– Contractors and small business concerns who respond to competitive contracts and SBIR/STTR program solicitations.
– Assistance and collaboration will be sought by experts within existing flight programs including ISS, Shuttle, and Project Constellation.

Funding

– Funding for tasks is implemented through the most appropriate method.
– Funding methods include: NASA Research Announcements, Technology Development Proposals, Technical Task Agreements, Competitive Procurements.

Leveraging

– SBIR, STTR, EPSCoR, GSRP, NRC, Code R/T/M, SFF, NASA CO-OP Program
Advanced Life Support Program Element Organization

Advanced Life Support Office (JSC)

Manager - B. M. Lawson
Dpty. Manager Research - D. Barta
Dpty. Manager Engineering - J. Chambliss
Schedule & Budget Analyst – P. Bashinski

Engineering Manager - S. Down
Systems Engineer – J. Keener
Administrative Assistant - C. Whatley

ALS Integration

Flight Experiments and Integrated Testing Manager
P. Bethke (acting) with D. Treat

Education/Outreach Manager
G. Koerner (acting)

Systems Integration, Modeling & Analysis (SIMA) Manager
Mike Ewert with T. Hanford

Supporting R&TD NASA Centers

ARC R&TD
M. Kliss, Lead

KSC R&TD
J. Sager, Lead

MSFC R&TD
J. Perry, Lead

External Principal Investigators

NRA
SBIR/STTR
GSRP
NRC, Other

External Research and Technology Development Groups

ALS NASA Specialized Center of Research & Training
C. Mitchell/Purdue Univ.

Environmental Systems Commercial Space Technology Center
(W. Sheehan, Univ. of Florida)

Center for Food & Environmental Systems for Human Exploration of Space (Tuskegee Univ.)
D. Mortley

Center for Space Sciences (Texas Tech University)
J. Smith

ALS Technical Elements

Air Revitalization Element
E. Smith, Lead
• Research
• Technology Devel
• Testing

Water Recovery Element
L. Shaw, Acting Lead
• Research
• Technology Devel
• Testing

Solid Waste Management Element
J. Fisher, Lead
• Research
• Technology Devel
• Testing

Crop Systems Element
R. Wheeler, Lead
• Research
• Technology Devel
• Testing

Thermal Control Element
D. Westheimer, Lead
• Research
• Technology Devel
• Testing

International ALS Working Group
NASA, Japan, Canada, ESA, Russia

Science & Technology Working Group
Al Sacco, Chair

External Advisory Group
Advanced Life Support (ALS) Areas

- Air Revitalization Systems
- Crop Systems
- ALS Flight Experiments
- Advanced Thermal Control Systems
- Advanced Water Recovery Systems
- Systems Integration Modeling & Analysis
- Solid Waste Management
- Integration & Test

Research Centers:
- JSC (38) 9 19
- ARC (39) 5 5
- KSC (46) 4 xx

Manpower:
- TDP (39)
- NRA (26)
Augmentation Major Products

Air
- Gas Supply (2)
- CO₂ Removal (3)
- Advanced CO₂ Reduction
- Regenerative Trace Contaminant Control
- Efficient, Low Noise Air Flow System

Water
- Advanced Biological Primary Water Processor
- Ultrafiltration
- Next Generation Phys/Chem Primary Water Processor
- Reverse Osmosis
- Brine Dewatering
- Post Processors
- Alternative Disinfection Technologies

Bioregenerative Systems
- Sustained Crop Production Testing
- Hypobaric Plant Test Chambers
- Mineral and Water Recycling Testing
- Vegetable Production Unit EDU
- Microbial Risk Assessments

Thermal
- Advanced Coldplate Development
- Humidity Control Device
- Structural Radiator Prototype
- Evaporator Prototype
- Sublimator Prototype

Solid Waste
- Compactor
- Stabilization & Containment
- Water Recovery Technology
- Mineralization Technology

Ground Test
- 20’ Chamber Certified for Reduced Pressure Testing.
Past ALS Testing

Lunar Mars Life Support Test Project

<table>
<thead>
<tr>
<th></th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase II A</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>15-days</td>
<td>30-days</td>
<td>60-days</td>
<td>91-days</td>
</tr>
<tr>
<td>Dates</td>
<td>Completed August '95</td>
<td>Completed July '96</td>
<td>Completed March '97</td>
<td>Completed December '97</td>
</tr>
<tr>
<td>Crew Size</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Technologies</td>
<td>Air revitalization using crops with P/C</td>
<td>Regenerative P/C technologies</td>
<td>ISS life support technologies</td>
<td>Integration of physicochemical & biological technologies</td>
</tr>
<tr>
<td>Regeneration</td>
<td>Air</td>
<td>Air & water</td>
<td>Air & water</td>
<td>Air, water, solid waste, food</td>
</tr>
</tbody>
</table>
Lunar Mars Life Support Test Project

Phases III: 91-day, 4-Person Tests

- Biological Water Recovery System
- Carbon Dioxide Removal System
- Carbon Dioxide Reduction System
- Oxygen Generation System
- Solid Waste Incinerator

Control Room

VPGC Wheat Harvest

Phase III Crew (left to right, Nigel Packham, Laura Supra, John Lewis, Vickie Kloeris)
ALS Integrated Test Plans Support the Exploration Timeline

- First Uncrewed CEV Flight
- 1st Crewed CEV Flight
- 1st Human Mission to Moon
- Lunar landing outpost
- Last year for lunar landing

CEV ECLSS Tech Test System A

Lunar Outpost
Tech. Test System B&C

Lunar Outpost Bioregenerative Test System C

6 year prime contractor lead-time
Advanced Life Support Approach for Supporting NASA Exploration

• Preliminary analysis shows the exploration program will require at least three different environmental control systems architectures
 – A) a short duration, open-loop system architecture;
 – B) a zero-g, medium duration system architecture; and
 – C) a partial-g, long duration system architecture.

• Technologies for these systems need to be matured to technology readiness level (TRL) 6, to lower program risk and to provide mature technology selections for the vehicles’ integrating contractors.

• A technology development program that will demonstrate these technologies on the ground in an integrated fashion prior to committing to flight designs is essential.
Parameters for Human Life Support Across Mission Scenarios

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (Human Tended)</td>
<td>7 – 14 days (Roundtrip)</td>
<td>1 – 5 days</td>
<td>1 – 18 months</td>
<td>12 – 24 months (Roundtrip)</td>
<td>1 – 45 days</td>
<td>17 – 20 months</td>
<td>1 – 7 days</td>
</tr>
<tr>
<td>Air Revitalization</td>
<td>Open</td>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
<td>Open</td>
<td>Closed ISRU</td>
<td>Open</td>
</tr>
<tr>
<td>Water Recovery</td>
<td>Collection and Storage</td>
<td>Collection and Storage</td>
<td>Closed ISRU</td>
<td>Closed</td>
<td>Collection and Storage</td>
<td>Closed ISRU</td>
<td>Collection and Storage</td>
</tr>
<tr>
<td>Waste Management</td>
<td>Stored</td>
<td>Stored</td>
<td>Volume Reduction</td>
<td>Volume Reduction</td>
<td>Volume Reduction</td>
<td>Volume Reduction</td>
<td>Stored</td>
</tr>
<tr>
<td>Food Systems</td>
<td>Conventional Stored</td>
<td>Conventional Stored</td>
<td>Conventional Stored with Fresh Food Augmentation</td>
<td>Extended Shelf Life with Fresh Food Augmentation</td>
<td>Extended Shelf Life</td>
<td>Extended Shelf Life with Fresh Food Augmentation</td>
<td>Extended Shelf Life</td>
</tr>
<tr>
<td>Thermal Systems</td>
<td>LP-BR</td>
<td>LP-DR</td>
<td>HP-DR</td>
<td>HP-DR</td>
<td>LP-BR</td>
<td>HP-DR</td>
<td>LP-BR</td>
</tr>
</tbody>
</table>

Closed Air is 75% by Mass
Closed Water is 90% by Mass
ISRU –Investigate and utilize as appropriate
Regenerative Systems will be selected over consumable systems
System A: Short-duration, micro-g
System B: Long-duration, micro-g
System C: Long-duration, planetary surface, partial-g
Mars Mission Concepts
Mars Planetary Base – A Sustainable Presence

• Permanent presence
• Power and volume: significantly more is available
• Hypoogravity environment
• Types of systems:
 • Integration of physicochemical and biological technologies
 • Closure of air & water loop
• Food: staple foods grown, processed by food system, contribute substantially to caloric requirements and to air and water regeneration
• Solid waste management:
 • may be processed to recover resources
• EVA: Extensive with overnight stays
• Communication:
 • highest degree of crew autonomy
ALS Projects Showing Promise for Exploration

• ALS Proposed Projects show great promise to meet exploration goals
 – Sabatier- CO2 reduction
 – Advanced Trace Contaminant Control
 – Advanced CO2 removal and reduction system
 – Biological Water Processor
 – Rotating Reverse Osmosis
 – Vapor Phase Catalytic Ammonia Removal System
 – Cascade Distillation System
 – Low power two-phase Active Thermal Control System
 – Advanced thermal and humidity control
 – Multi application gravity insensitive heat pump
 – Solid waste management compaction
 – Dry and Wet Pyrolysis
 – Lyophilization (Freeze Drying)
 – Vegetable Production Unit

• Ground and Flight experimentation is needed to establish capabilities
• To evaluate technologies Systems Integrated Modeling and Analysis and integrated testing is needed
Glenn Research Center
Contribution to ALS

- FY05 ALS plans call for GRC support to provide expertise in assessing microgravity and fluid physics areas related to ALS technologies
 - GRC to provide design tools, experimentally validated components, trade studies and trouble shooting
 - Two-phase separation processes
 - Gas tolerant pumping assemblies
 - Evaporative cooling techniques
 - Condensing HXs
 - Gas/Liquid separation devices
 - Liquid/Solid Separation of waste products
 - Reactor bed processes in micro and partial gravity
 - Design tools and techniques to address fine generation
 - Fluid flow processes in filtration assemblies
 - GRC to serve as technical monitor for NSCORT effort related to biofilters for trace contaminant removal
 - Related to water distribution, choking or channeling and nutrient supply
Acronyms

- BST – Bioserve Space Technologies NASA Research Partnership Center, University of Colorado.
- BWP - Biological Water Processing
- CAMMP – Center for Advanced Microgravity Materials Processing. Northeastern University, Boston, Massachusetts.
- CSP – Center for Space Power. Texas A&M University.
- EPSCoR – Experimental Program to Stimulate Competitive Research.
- FTCSC – Food Technology Commercial Space Center. Iowa State University.
- GSRP – Graduate Student Researchers Program
- LTV - Lunar Transit Vehicle
- LLV - Lunar Landing Vehicle
- LO - Lunar Outpost
- MTV - Mars Transit Vehicle
- MLV - Mars Landing Vehicle
- MH - Mars Habitat
- NRC – National Research Council Fellowships
- PR - Pressurized Rover
- P-C - Physiochemical
- SBIR/STTR – Small Business Innovative Research/Small Business Technology Transfer
- SFF – Summer Faculty Fellowships
- WCSAR – Wisconsin Center for Space Automation & Robotics