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1  Introduction

1.1 Background

Since Fink’s 1977 work (Ref. 1.1) on an airframe noise prediction scheme, there have
been very few efforts to incorporate new technical results into empirical formulations of airframe
noise. This is partly no doubt due to the dormant state of research in the field, in the roughly
decade and half following Fink’s report. However, there has been renewed activity in airframe
noise under the NASA Advanced Subsonic Technology (AST) initiative. Based on early results
of the AST program, an initial report on a new empirical scheme was advanced by Sen et al (Ref.
1.2) in 1997. The present work takes Ref. 1.2 as a starting point and attempts to add a number of
improvements.

One of the main contributions of Ref. 1.2 is a new source-region classification scheme
for high-lift noise. Fink’s scheme was comprised of a landing-gear source and spanwise-constant
high-lift sources (Ref. 1.3). In contrast, the Ref. 1.2 scheme proposed new edge sources and slat
gap sources, based on newly available directional-microphone data.

At the same time, the preliminary nature of the new model was recognized in Ref. 1.2,
principally due to the lack of detailed aerodynamic calculations, but also because new research
on high-lift sources was at that time in its initial stages.

Thus one of the principal tasks in the current project has been the calculation of
aerodynamic quantities of use to empirical noise modeling. A second task has been the
incorporation of new data and new ideas about airframe noise source mechanisms. The most
significant change in this respect is in the landing-gear source model. The empirical basis of this
source has been completely revamped, with explicit attention paid to full-scale source features
that are notoriously absent in previous work.

1.2 Summary of objectives and achievements

The main objectives of this project may be summarized as follows :

greater number of fluid-dynamic parameters

greater detail in source models

more-detailed source classification scheme

detailed landing-gear source model that incorporates full-scale spectral features
larger database of airplanes
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¢ inclusion of high-resolution phased-array data
¢ inclusion of data-based (where available) source directivity models

While progress has been good in all of these areas, it has also been somewhat uneven.
This is mainly due to the relatively large effort expended on aerodynamic calculations.
Consequently, acoustic modeling of the high-lift sources has not been able to take full advantage
of the available aerodynamic database. A related consequence is that the trailing-edge noise
source has not been updated at this point; for this source, Fink’s model thus stands for the time
being. On the other hand, an extensive aerodynamic database is now in place, providing a solid
foundation for subsequent source-model refinements.

Source directivity modeling is another area in which progress was somewhat hampered,

in this case due to a scarcity of experimental data.

The greatest changes at this stage are in the landing-gear model, despite the currently
limited availability of full-scale gear-noise data. The model presented here establishes a totally
new paradigm for landing-gear source components, much as Ref. 1.2 did for sources associated
with the high-lift system.

1.3 References for this chapter

Ref. 1.1 : M.R. Fink, Airframe Noise Prediction method, Federal Aviation Administration
Report FAA-RD-77-29 (1977)

Ref. 1.2:R. Sen, A. Blackner, P. Yee, and R. Stoker, Airframe Noise Generation and Radiation
NASA informal Contractor Report, contract NAS1-20090, Task 2 (1997); also released as
Boeing Document D6-81956TN.

i

Ref. 1.3 :R. Sen, Assessment of the NASA ANOPP method of airframe-noise prediction from a
noise-reduction point of view, Boeing Document D6-81619TN (1995).



2 Acoustic Data Processing

2.1 Introduction

The acoustic database consists of elliptic mirror data for B737, B757 and B777 and
phased microphone array data for B767, DC10 and MD11. The former is also the database used
by Boeing to develop the original component-based prediction models (Yee et al 1996), while
the latter is made available only in recent years (under the NASA AST Program). In addition,
free microphone data are also available for DC10 and MD11, not only at the fly-over location,
but also in other directions. Thus, these data are used to develop directivity models. To derive the
prediction models for the individual components of the high lift system, a methodology is

developed for the data processing, which can be summarized as

analyze the source map to identify major noise sources;

determine sub-regions of main sources;

identify main aerodynamic parameters for each sub-component;
integrate source map to derive far field spectra for sub-components;
calibrate integrated spectra with free microphone data;

apply corrections to small-scale data;

extrapolate data to full-scale at certification conditions.
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In this chapter, this process of processing the acoustic data is described in detail, together
with discussions on the methods and hypotheses used in each step. After the data are processed, a
regression analysis is then applied to derive empirical prediction formula for all the components,
which is described in the next chapter.

2.2 Sub-component Sources

The source maps from the phased microphone array and the elliptic mirror can be used to
identify major sources and hence to define sub-regions for the source integration. To illustrate,
Figure 2-1 shows the source map for the 4.7% DC10 model at 6 kHz with M=0.207 and the flaps
and slats respectively deployed at 35 and 20 degrees. At this frequency, the source map shows a
dominant source at the outboard edge of the outboard flap. Other sources with relatively smaller
amplitudes are also seen at the flap inboard edges and the leading edge slat location. To further
quantify the relative importance of the sources at different locations, we choose a few cuts on the
source map and plot the source strength along these cuts. The cut locations are shown in Figure

2-1 and the source strengths along these cuts are plotted in Figure 2-2. Cut 1 goes through the



dominant source at the outboard edge of the outboard flap. The source strength plot (the top
diagram in Figure 2-2) clearly shows the dominance of this source. Along this cut, the flap
source is at least 15 dB stronger than other sources. When the cuts are taken at other locations,
other sources are revealed very clearly. Cut 2 (the second diagram from the top in Figure 2-2) is
at the inboard flap edges and shows both the flap and the slat sources. At this location, the
amplitudes of these two sources are quite comparable. By comparing the top two diagrams in
Figure 2-2, it is clear that the source at the outboard edge of the outboard flap has much stronger
source strength than those at the slat locations (about 9 dB stronger). This however does not
necessarily mean that the slat sources are less important. This is because though the slat sources
have weaker strengths, they have a much larger source area than the flap source. The far field
noise is determined by the integration of the source strength over the source area. Thus, a weaker
source distribution with a larger source area may lead to more noise in the far field. This also
applies to the trailing edge sources. These sources have weaker strengths but are distributed over
an extensive region basically covering the entire wing span. The bottom two diagrams in Figure
2-2 illustrate this very clearly. Cut 3 in this figure is approximately at the middle span location of
the outboard flap. Two sources are seen at this location, namely the slat source and the trailing
edge source. The trailing edge source is weaker than the slat source by about 1.5 dB (and hence
still weaker than the flap source). Note also that the trailing edge source does not show up at all
in the source map in Figure 2-1 because of the cutoff of the color scheme in the plotting
procedure. The bottom diagram in Figure 2-2 shows the extensive distribution of the trailing
edge sources. This is a cut at a location close to the wing tip where no other sources are present.
However, the trailing edge source is clearly seen there and furthermore its strength is basically
the same as that at the middle span location (Cut 3), indicating almost constant source strength
along the span.

Based the analysis of the source maps and the source strengths at different locations, we
divide the wing area into sub-regions for the component analysis. The sub-regions are used for
source integration to derive far field spectra. They also correspond to sub-components of the
wing/high lift system, each of which may have different noise generation mechanisms. There are
altogether six components

leading edge slat;
outboard flap edge;
inboard flap edge;
trailing edge;
high-speed aileron;
residue noise floor.

® & & ¢ o o
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Two examples of the definitions for the sub-regions are illustrated in Figure 2-3 for the
DC10 and the B767 model. For other models, the sub-regions are similarly defined. It is
appropriate to point out that this definition of sub-regions does involve a certain degree of
arbitrariness, especially in the shapes and sizes of the sub-regions. For example, the high-speed
aileron component is defined as a rectangular region close to the wing tip. This region actually
contains some trailing edge sources. It is not further divided for the sake of simplifying the
computations. The arbitrariness in the definition of the sub-regions, however, does not pose a
severe limitation on the analysis for two reasons. The first is that the sub-regions are always
required to cover the entire wing area so that the sum of the noise components is always equal to
the total noise of the wing, though the noise components themselves may vary with different
definitions of the sub-regions. The second reason is that the sub-regions are required to contain
the respective dominant sources in the regions. Since the dominant sources are much stronger
than other sources within each sub-region, the variations in shape and size of the sub-rcgiori
definition is not very critical in the source strength integration. The integration is dominated by
the major sources. It should also be noted that the locations and the sizes of the sub-regions are
frequency-dependent. As frequency varies, the source characteristics also change. Thus, the
decomposition of the sources should also change with frequency.

2.3 Integrated Spectra

Once the sub-regions are defined, the noise spectra for each sub-component can be
derived by integrating the source strengths. The technique is standard, involving summing all the
beam-forming steering points within a sub-region and dividing the result by the calibration
integral. The latter basically established the relation between the source integration and the far
field spectrum. In summing the source strengths, a local maximum is identified within each sub-
region at each frequency so that contributions more than 6 dB below the local maximum are
ignored in the summation. This is to ensure the exclusion of side-lobes in the integration. This
works well with sub-regions that contain dominant sources with well-defined local maximum.
For sub-regions with no apparent dominant source, such as the residue component and the high-
speed aileron component at some frequencies, the 6 dB cutoff may include some side-lobe
contributions in the integration, which causes spectral build-up in the far field spectral, especially
at high frequencies. This in turn affects the total noise when the components are added. To
demonstrate this, Figure 2-4 shows the integrated component spectra for both the 4.7% DC10
and the 6.3% B767 model. The operation conditions are all shown in the figure. All the major
components show a negative slope, which is expected. The residue term and the high-speed

aileron term, however, show trends of noise increases with frequency. The build-up of the
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spectrum for the two exceptions is due to the fact that there is no dominant source in these two
sub-regions at high frequencies so that the 6 dB cutoff includes contributions from the side-lobes
that are not physically real. Thus, this kind of spectral build-up must be corrected. This is done
mainly by imposing a fall-off with frequency. The precise form of the fall-off is not critical
because the components that need correction are usually not the dominant components; their
contributions to the total noise are not noticeable. An example of this kind of correction is shown
in Figure 2-5 for the B767 model.

With the spectral build-up corrected, the total integrated spectra can be compared with
those taken by free field microphones. Some examples are given in Figure 2-6 for the 4.7%
DC10 model, for which free microphone data are available. The comparisons are clearly
favorable with quite satisfactory results for both the spectral shapes and the absolute amplitudes.
Further comparison can be made for the B737, B757 and B767 models, which are shown in
Figure 2-7 for the inboard flap edge source. The data for the first two (B737 and B757) are taken
by the elliptic mirror while those for the B767 are from the integrated phased microphone array.
Evidently, both the spectral shapes and the absolute levels of the spectra show quite reasonable

comparison, validating the method for deriving the spectra from beam-forming source maps.

2.4 Extrapolation to Full-Scale

According to conventional procedures (Yee e al 1996; Allen et al 1997; Hayes et al
1997), the critical parameter in the extrapolation process is the ratio of the model dimension to
that of the full scale aircraft. This ratio is important because both frequencies and amplitudes are
scaled by it. The extrapolation procedure is quite straightforward and has been previously
described. Thus, it will be described here only very briefly. The process basically involves first
extrapolating the measured wind tunnel data from the microphone locations to unit distance from
the assumed source location. This essentially scales out the effects of spherical spreading, as well
as atmospheric absorption under the test day conditions. The second step is then to scale the
results at unit distance from the source from small scale to full scale, which involves scaling the
frequencies down and amplitudes up, both by the model dimension ratio. The scaled data are
then extrapolated to the far field, typically the certification distance of 394 feet away from the
aircraft center. By doing so, the losses due to spherical spreading and atmospheric absorption at
standard acoustic day conditions are accounted for.

Following this procedure, the small-scale data can be extrapolated to full-scale at
certification conditions. The extrapolated results, however, do not agree well with full-scale
measurements. Some examples are shown in Figure 2-8 for the DC10 model and the B767
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model. The comparisons in this figure are reasonably good for frequencies below about 500 Hz,
but shows significant discrepancies for higher frequencies. The extrapolated data significantly
underestimate the fly-over data in the middle and high frequency region by as much as 10 dB. It
is apparent that our limited database does not allow us to satisfactorily understand the reasons for
these large discrepancies. Thus, we postulate that the small scale of the model aircraft may cause
quite different flow behavior from that of the full scale aircraft, as is commonly described as

Reynolds number effects.

An attempt to derive a correction for the Reynolds number effects has been made recently
(Guo et al 1998). In this case, we argue that the dominant length scale in the flow should be
dependent on the Reynolds number, instead of the physical dimension of the model aircraft.
There are many cases in which the flow is governed by a length scale dependent of the flow
conditions, turbulent boundary layer flow being a typical example where the thickness of the
boundary layer is determined by the local Reynolds number (Blake 1986). If this idea holds for
the flow surrounding the high lift system of the aircraft, it implies that the procedure for the
extrapolation from small to full scale should be modified. In particular, the length scale
extrapolation should depend on the flow conditions, as well as the physical dimensions of the
models. One consequence of this is a quite different frequency scaling law from that in the
conventional approach described earlier in this section. The difference between the two is quite
significant for models smaller than about 10% of the full-scale aircraft. For example, for the
4.7% DC10 model, the scale-down of the small scale frequencies should be done by the factor
0.087, when the Reynolds number effects are taken account of, instead of 0.047 as in the
conventional extrapolation procedures. With this correction alone, the comparison between the
extrapolated data and flight data can be greatly improved. This is demonstrated in Figure 2-9.
Clearly, the comparison between small-scale data and full-scale data becomes much more
satisfactory than that in Figure 2-8. When both frequency and amplitude corrections are applied,
the extrapolated data agree very well with full-scale measurements in the entire frequency
domain. To clearly demonstrate the Reynolds number corrections, the lower diagram (for the
B767 model) also includes the curve without any correction and the curve with only frequency
correction. The set of curves thus shows the progressive improvement achieved by the Reynold
number corrections.
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4.7% DC10 Phased Array Colormap
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Figure 2-1 Source map for the 4.7% DC10 model from phased microphone array data. The source
strengths along the cuts are shown in figure 2.
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The locations of the cuts, together with the flow conditions and high lift system settings, are given in
figure 1.
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4.7% DC10 Phased Array Colormap
Ma = 0.207, 5,= 50", 5, =20
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Separated Array Data: Scaled To Full Scale
4.7% Semispan DC10 Ma=0.285, 5, = 35°, 5, = 20°, P = 1 ATM
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Figure 2-6 Comparisons between integrated spectra and free field microphone measurements.
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Figure 2-7 Comparisons between elliptic mirror data and phased microphone array data.
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3  Regression Analysis of Acoustic Data

3.1 General Approach

In the present study, two sets of data base were used. The integrated output of phased
array microphone data were used to determine one-third-octave spectra at 90°. The directivity
factor for OASPL was determined based on the DC-10 scale model test data. The one-third-
octave spectrum for each airframe noise ( outboard aileron, inboard flap side edge, outboard flap
side edge and slat ) at 90° was determined in two steps.

First, OASPL was correlated to the key aerodynamic and geometric parameters
associated with the component source in concern. Then, (SPL — OASPL) was normalized in
terms of logarithmic Strouhal number. The directivity factor defined as the difference in SPL(6,
f) at 6 = 90° and desired emission angle was determined with the DC-10 scale model test data
over a range of emission angle (10° < 06 < 170°).

3.2 Prediction Method for Component Noise

Airframe noise components considered in the present study are outboard aileron noise,
inboard flap side edge noise, outboard flap side edge noise and slat noise. Acoustic data from a
total of 126 runs were analyzed to develop prediction methods for these airframe noise
components. The far-field acoustic data are projected to the overhead distance (394 ft) of the

certification approach. The data include noise reduction by the atmospheric absorption.

3.2.1  Outboard Aileron Noise:

The aerodynamic and geometry parameters used to correlate to outboard aileron noise
included flow Mach number, angle of attack and semi-span (of wing). Since geometry
information about outboard aileron was not available, the chord of the outboard primary flap
element was used together with the lift coefficient of this flap element. In addition, the outboard
flap deflection angle was also taken into account to address the aileron noise. Using the multiple
linear regression method far-field OASPL(90°) was correlated to these parameters. It was found
that a fixed value for the power index of flight Mach number tends to give some- what larger
values for larger aircraft ( which means that this power index is configuration dependent.) This
difficulty was solved by relating the power index to the semi-span.
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The one-third-octave spectra were normalized in terms of logarithmic Strouhal number
defined using the effective length scale (&) and local flow velocity. In the present study the
length scale factor, £ was assumed to be unity. The normalized spectrum is determined by a
curve-fitting in terms of the 6™ order polynomial equation , which is illustrated in Figure 3-1. In
the following, the OASPL correlation and the formulation for the normalized spectrum are
shown.

OASPL(90°) = 109.7 + n-Log(M) + 3.36Log(Cy- -Sin &) + 3.46Log(Sin )
+3.46Log((E-t)
n=52-58565x(Z~1); Z=b/47.4

SPL(f, 90°) - OASPL(90°) =as X’ + as:X® + ay X* + a3 X’ + 2y X2+ 2 X +a,
X =Log(f-£t/V)

2

a;

ay

3

A

as

6

-14.0467

9.0187

~6.4007

-4.3267

2.1149

5.7254E-1

-7.062E-1

M = Flight Mach number, C, = Lift coefficient for outboard flap (1* flap element),

& = Flap deflection angle, t = Outboard flap edge chord (1* element), a. = Angle of attack,
V = Flight velocity, f = One-third-octave center frequency,
b = Semi-Span, & = length scale factor

Note: Arguments of logarithmic function are non-dimensionalized by reference values.

3.2.2 Flap Side Edge Noise:

The aerodynamic and geometry parameters associated with flap side edge noise modeling
included flight mach number, flap deflection angle, lift coefficient, chord length , cross flow
velocity and circulation.

For both inboard and outboard flaps, only the primary (first) flap element was considered.
The multiple linear regression yielded almost identical power index for inboard and outboard
flap side edge noise components except that for the chord length. The regression analysis showed
that both cross flow velocity and circulation around the primary flap element practically have no
effect on the flap side edge noise. This result may be contradictory to theory. Further detailed
analysis would be needed to investigate this issue. The length scale factor £ was set equal to
unity for both inboard and outboard flap cases.

For inboard flap edge noise modeling, the aerodynamic and geometry parameters related
to the primary flap element of the inboard flap assembly. The regression analysis showed that
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OASPL at overhead direction is proportional to the flight Mach number raised to the 5.3th
power, square of sine of flap angle and roughly square of effective chord length. The lift
coefficient, together with cross flow velocity and circulation, appears to have no effect on the
overall sound pressure level at this emission angle. The normalization of one-third-octave
spectrum was performed in terms of Strouhal number calculated with the effective chord as its
length scale. Figure 3-2 shows the normalized spectra for the inboard flap side edge noise
component. The normalized spectrum is determined by a curve-fitting in terms of the 6™ order
polynomial equation , which is illustrated in Figure 3-2. In the following, the OASPL correlation
and the formulation for the normalized spectrum are shown.

OASPL(90°) = 92.1 + 53.0Log(M) + 20.15Log(Sin &) + 0.5Log(Cy)
+17.8Log(& t) + 0.11Log(V,) + 0.12Log(T")

SPL(f, 90°) - OASPL(90%) = ag X’ + as X’ + ay X'+ a3 X+ a2y X+ a- X +a,
X =Log(f-&t/ V)

a9 a4 ) a3 Ay as ag
-13.1814 | 10.0319 -9.4077 -6.6166 4.0970 1.4162 -1.0740

M = Flight Mach number, C, = Lift coefficient for inboard flap (1* flap element),

8 = Flap deflection angle, t = Inboard flap edge chord (1* element), V, = Spanwise flow velocity,
I" = Circulation, V = Flight velocity, f = One-third-octave center frequency,

€ = length scale factor

Note: Arguments of logarithmic function are non-dimensionalized by reference values.

As mentioned above, the dependency of overall sound pressure level at the overhead
direction for the outboard flap side edge noise component on its related aerodynamic and
geometry parameters is very much similar to that for the inboard flap side edge noise component.
Only difference observed is the dependency on the chord length. It was found that a fixed value
for the power index for the chord length tends to yield somewhat larger values for larger aircraft.
This difficulty, however, was overcome by relating the power index to the semi-span. As for the
inboard flap side edge noise, the one-third-octave spectra were normalized in terms of Strouhal
Number defined using the effective chord length. The normalized spectrum is determined by a
curve-fitting in terms of the 6™ order polynomial equation , which is illustrated in Figure 3-3. In

the following, the OASPL correlation and the formulation for the normalized spectrum are
shown.
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OASPL(90°) = 93.3 + 53.0Log(M) + 20.15Log(Sin 8) + 0.5Log(C))
+m-Log(§-t) + 0.11Log(V,) + 0.12Log(I")

m= 10 x (b3Z* + byZ*> + by-Z + by )

Z =b/47.41

SPL(f, 90°) - OASPL(90°) = ag X’ + as X’ + a2y X'+ 23 X’ + 2y X> +a;- X +a,

X =Log(f-&t/ V)

bO bl b2 b3
4.1204 -6.2200 5.5040 -1.6245

A9 ; ) a ay as ¢
-14.5121 | 9.1991 -4.7859 -3.8899 1.3238 4.1053E-1 | -5.8664E-1

M = Flight Mach number, C, = Lift coefficient for outboard flap (1* flap element),

8 = Flap deflection angle, t = Outboard flap edge chord (1¥ element), V, = Spanwise flow velocity,
I' = Circulation, V = Flight velocity, f = One-third-octave center frequency

b = Semi-span, & = length scale factor

Note: Arguments of logarithmic function are non-dimensionalized by reference values.

3.2.3 _ Slat Noise:

The aerodynamic and geometry parameters used to correlate to slat noise included flow
Mach number, angle of attack, lift coefficient and effective slat chord length. Probably, slat angle
and mass flow rate through the slat gap should be considered in modeling. Unfortunately, these
parameters were not available when the correlation was performed. A detailed analysis of the
data showed that the behavior of DC-10 and MD-11 slat noise is significantly different from that
for other aircraft configurations analyzed in the present study (such as 737, 757, 767 or 777).
Because of this reason, the slat noise data from DC-10 and MD-11 was excluded in the multiple
linear regression analysis. In practical application, however, the slat noise data determined from
B767-400 may be used as a substitute for DC-10 or MD-11. As in the case of aileron noise
modeling, the value of the power index for flight Mach number was defined as a function of
semi-span for better match to the data. Again, the one-third-octave spectra were normalized in
terms of Strouhal Number defined using the effective slat chord length. The normalized spectrum
is determined by a curve-fitting in terms of the 6™ order polynomial equation , which is
illustrated in Figure 3-4. In the following, the OASPL correlation and the formulation for the
normalized spectrum are shown.

OASPL(90°) = 117.4 + n-Log(M) + 10.3Log(Sin o) + 44.5Log(Cy) + 11.5Log(E )
n=10x( cpZ> + c1-Z +¢o); Z=b/47.41
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SPL(f, 90°) - OASPL(90°) = ag¢X® + as:X° + a; X* + a3 X'+ ay X> + ;- X + 2,
X =Log(f£t/V)

Co Cy Cy
7.600 -4.1355 1.7486
a9 a; a a3 4y as as
-12.7289 | 4.05419 -4.3004 -1.8453 1.9039E-1 | 2.1658E-1 -3.9728E-1

M = Flight Mach number, C, = Lift coefficient for slat, t = Slat chord, o = Angle of attack
V = Flight velocity, f = One-third-octave center frequency, b = Semi-span ,
& = length scale factor

Note: Arguments of logarithmic function are non-dimensionalized by reference values.

3.2.4 _ Directivity Factor D(6.f)

The directivity factor which is applied to SPL(90°,f) to define SPL(6,f) was developed
based on the analysis of free microphone data of the DC-10 scale model test. The directivity
factor D(6,f) is related to the reference SPL(90°,f) as

10*Log{D(8,f)} = SPL(8,f) — SPL(90°,f)

As noted in Figure 3-5, the OASPL directivity of DC-10 total airframe noise (excluding
landing gear noise) is relatively flat. In addition, as noted in Figure 3-6, the spectral shape also
shows weak directivity dependency. However, to address observed minor variations in the high
frequency region ( see Figure 3-6) A SPL(6,f) = SPL(6,f) — SPL(90°,f) was defined as quadratic
equation of Strouhal number at each emission angle shown below by applying curve-fitting. The
effective length scale, D was estimated from the peak frequency at 90°, assuming that the peak
Strouhal number is unity.

10*¥Log{D(0,H)} = a» X*+ a;- X +a,
X =X =Log(St), St=f*D/V

The coefficients of this equation are listed in the following table.
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0 Y ay a,
25 -0.3897 -0.5585 -2.13
32 -0.4547 -0.4823 -1.16
39 -0.4792 -0.2639 -0.4
48 -0.5964 -0.0682 0.08
57 -0.5097 -0.0378 0.47
68 -0.4392 0.0494 0.4
80 -0.3839 -0.0588 0.34
90 0 0 0
106 0.1552 -0.0665 -0.85
120 0.1565 -0.1438 -1.39
133 -0.0426 -0.7227 -2.01

3.3 Validation of Prediction Method

Limited comparison of the present model with flyover airframe noise data was made.
Figure 3-7 shows data versus prediction comparison for a narrowbody aircraft (B737) at typical
approach conditions. Reasonably good agreement is noted. The present model seems to capture

general features of airframe noise. Figure 3-8 shows a similar comparison with DC-10 flyover

data. In this comparison, the predicted

SPL does not include landing gear noise. However, due to rather high flight Mach
number (M = 0.26) and a large flap angle (& = 50°), the relative magnitude of landing gear noise

is believed to be much smaller than flap side edge noise or slat noise. Addition of landing gear

noise may slightly increase low frequency noise.
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Figure 3-2 Airframe noise. inboard flap edge : normalized spectra
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4 Landing Gear Noise

4.1 Introduction

Landing gear noise has been regarded as a minor player in the airframe noise generation,
probably due to the misconception that landing gear noise is significant only in the low
frequency region. The Fink model (Ref.1), most widely quoted airframe noise prediction code

considers gear strut and tire as noise source when landing gear noise is addressed.

The length scale for strut or tire is generally large and the aircraft speed at typical
approach conditions is small. This gives a low peak frequency for landing gear noise. A recent
flight test with B777 has indicated, however, that landing gear noise is a significant contributor
to the total airframe noise. This result may indicate that the actual spectrum of the landing gear
noise does not roll off as faster as Fink code predicts but rather rolls off more slowly yielding
high PNL values. It may also indicate that much smaller length scales are involved in the landing

gear noise generation.

A full size landing gear system includes a brake assembly with various dressing items
such as hydraulic pipes, electric wires, holes and bolts in addition to strut, torque links and tires.
It is reasonable to think that these dressings may be relevant to the high frequency noise
generation. Motivated with this idea, a full-scale landing gear with all dressings was tested in the
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