
A Discussion of Using a Reconfigurable Processor
to Implement the Discrete Fourier Transform

Michael J. White*
NASMGoddard Space Flight Center

Signal Processing and Microelectronics Branch
Code 564 Greenbelt, MD 20771

Michael. J. Whiteonasa. gov

Abstract

This paper presents the design and implementation of the Discrete Fourier
Transform@FT) algorithm on a reconfigurable processor system. While highly
applicable to many engineering problems, the DFT is an extremely computationally
intensive a* Consequently, the eventual goal of this work is to enhance the
execution ofa floating-point precision DFT algorithm by off loading the algorithm
from the computing system. This computing system, within the context of this research,
is a typical high performance desktop computer with an may of field programmable gate
mays(FPGAs). FPGAs are hardware devices that are configured by software to execute
an algorithm. If it is desired to change the algorithm, the software is changed to reflect
the modification, then download to the FPGA, which is then itself modified.

1/

This paper will discuss methodology for developing the DFT algorithm to be
implemented on the FPGA. We will discuss the algorithm, the FPGA code effort, and the
results to date.

Introduction

The DFT is a useful but computational intensive algorithm for engineering
applications. To implement the DFT requires N2 complex multiplications. For a 1024-
point DFT, this represents 1,048,572 complex multiplies.' To enhance processing speed,
we wish to move the DFT to an FPGA from the microprocessor*. That is, we desire to
move the application fiom s o h a r e to hardware.

In order to do this, the instruction set of the reconfigurable floating-point vector
processor that has been developed allows the reuse of particular op-codes for different
instructions that are loaded into the FPGA. This combination of microcomputer/ small
instruction set provides the performance advantages of a reduced instruction set
microprocessors as well as the benefits of a large instruction set offered by a complex

Member NTA

*-

instruction set microprocessors. A standard instruction set architecture is utilized and a
methodology for mapping the digital signal processing algorithm onto the reconfigurable
processor system is applied.

The instruction set architecture includes a very flexible data path that contains
floating-point function cores that can be tailored for each application. A complex
function core developed for the DFT application is presented, with the input data being
either complex or real. It consists of several simple floating-point function cores
including: a floating-point adder, a floating-point multiplier, and a floating point
multiply-accumulate core. The reconfigurable processor uses a sinekosine look-up table
for computing the necessary trigonometric functions.

A data array can be a size other than 2N but it is still desirable to use Fourier
analysis, in such a case the DFT is obvious candidate. The desired algorithm should use
an array less than 1024, however it is important that the processing be able to manipulate
data that is not of size 2N.

There are examples of Fourier transform being implemented on FPGAs314 These
algorithms suffered fiom being implemented in a fixed-point format andor restricted to
only real input data format of sizes 2N. Furthermore, there are examples of comparing a
DSP processor to a FpGA.5 Using the floating-point reconfigurable processor system,
the best of both worlds, the DSP processor and the FPGA, is combined and demonstrated
using the DFT algorithm.

The Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are logic devices that offer in-circuit
hardware reconfigurability. The same integrated circuit can be used for an entirely
different function at a later date. With this technology, we envision a single hardware
Unit that could be used for many common functions. The ability to do extensive image
processing on-board a spacecraft is an example of the application of this technology.

Reconfigurable computing (RC) is an emerging technology that utilizes FPGAs to
implement computation intensive algorithms at the. hardware level. A reconfigurable
computer, within the context of our research, is a general-purpose processor with a hgh-
speed connection to one or more FPGAs. Since particular hardware architecture is
implemented for each application, typical RC systems can achieve acceleration rates that
are several orders of magnitude faster than current desktop computers. Furthermore,
research has shown a reduction in computational time using RC technology, but very
little has been done on using floating-point digital signal processing algorithm applying
RC technology.

While using a reconfigurable computer can be effective in reducing overall
application execution time, much of the process of algorithm development is manual and
requires skills in both hardware design and software development. Hardware description

2

languages, i.e. VHDL* and Verilog, are typically used to model the hardware that is
developed for each application. Thrs is followed by extensive simulation of these
models. Once the model is verified, the models are mapped to an FPGA using
commercial tools for FPGA placement and routing. Finally, software is written to
download the bitstream produced from placement and routing onto the FPGA as well as
to initialize memory and manage overall execution of the application.

Our approach has been to develop a reconfigurable microcomputer instruction set
architecture (ISA) that supports a small number of instructions that are tailored for each
application. A large portion of the ISA is fixed to simplifl compilation of a hardware
description language(HDL) model of the system. This microcomputer architecture
includes a very flexible data path containing unique function cores that execute floating-
point vector instructions. Floating point data is used to facilitate system debugging and
functional verification.

A function core is loaded into the ISA prior to program execution defining the
instruction used for a particular op-code. Subsequently a different function core can be
loaded into the ISA and the same op-code reused for a completely different instruction.
Hence, there is a one-to- one mapping of op-codes to assembly language instructions. In
this paper we present a function core that was developed for the DFT algorithm.

The next section will discuss the details of the DFT algorithm, a sample application for
proving the concepts presented in this paper follows. The paper concludes with the
presentation of the DFT results compared to a simulation.

The DFT Algorithm

The Discrete Fourier Transform takes a signal from the time domain to the frequency
domain by the relationship given by equation 1 and is defined as for each output sample,
x, as:

X (K) = Cc(n)* exp(-j* 2 *x * n * k / ~)
N-1

n=O

Where k is the index of the output sample
n is the index of the input sample
c is the input sample
N is the total number of inputs
J= Sqrt(-l)

Equation 1 : Discrete Fourier Transform

The output of the magnitude of X(k) as a function of k will produce a spectrum between
(-F) and +F.

-~

* Very High Speed Integrated Circuits(VHS1C) Hardware Description Language(VHDL)

3

Using this definition, we wish to implement an RC system that uses floating-point
arithmetic that fits on a single FPGA chip while enhancing software performance.
Equation 2 is an expansion of Equation 1 to a form better for implementation.

Where C ,the sum, is over the range k=O to N-1 for all cases and 6 k = nk/N

Equation 2: Expansion of DFT Equation

The Processing Element

A simple model of the system is seen in figure 1. The FPGA or processing
element(PE) consist of two sections, a control unit and data processing unit which
contains the function core. The function core is the application being implemented which
in this case is the DFT.

FPGA or Processing ElementPE) 1
Control Unit Data Unit

DFT
Function

Core

Figure 1 : DFT Function Core

The Control Unit, which handles processing for all hardware modules/
instructions, manages memory readwrite transactions as well. This unit will also
supervise instruction fetch, decode, and execution. Lastly, it will determine when
instruction processing is completed and turns control back over to the HostMemory
interface.

The data unit contains several memory address registers and counters for
indexing. Furthermore, the data unit contains a register file of 8 32-bit registers and
counters for determining when vector instructions are completed. The data unit can

4

contain up to seven function cores. Each function core has one or more 32-bit inputs and
simple control functions. The function core can be independent or made-up of other
fimction cores. These function cores make up the floating-point functions.

FPGA Implementation of the DFT

A high level description of the DFT is shown in figure 2. Each 32 bit input is complex
where Xrealin represent the real input value and Ximagin represents the imaginary
component. K is the output index and is represented by 10 bits. DFTADFT tells the PE
to execute the normal DFT or its inverse. We use -1 for DFT and 1 for Inverse DFT. To
start processing, the Enable flag is set to 1 and processing ends when Empty flag has
been set and saying the data buffer is depleted.

XREALIN(32)
XIMAGlN(32)
K (W Floating Point DFT Core
DFT/IDFT(32)
ENABLE

I ; OUTPUTS

XREALOUT(32)
XIMAGOUT(32)

DONE

I

READYTOEMPTY 1
I

I EMPTY
I 1 I I

Figure 2: High Level Description of DFT

Similar to the input, the output is complex and denoted by Xrealout and Ximagout
for the real and imaginary values of output, respectfully. Readytoempty flag indicates
FPGA processing is done. Finally, the Done flag tells when the processing pipeline is
completed or flushed.

In figure 3, DFT process is depicted. This algorithm is derived in Equation 2.
Using the product of the output index, K and the sample number, n the algorithm
generates the table look-up address. This address represents the sdcosine angle, theta,
we are interested in at this point. A maximum of 2"lO or 1024 angles can be generated
by this table with each sidcos value being 32 bits value. This represents the largest DFT
we can process. The details of the complex multiply instruction is shown in figure 4:

5

XREALIN XIMAGIN

1 ENABLE

Sin0 /32 Cos0’

n $0 K l 6 . l

/
32

Address+ 10

F SIN/COS TABLE

COMPLEX MULTIPLY

Yr

I

yT 32

32

+ I

rp\EN? ACCUMULATOR

COMPLEX ACCUMULATOR

I
1 I

I

ii 32 3- 32

XREALOUT XIMAGOUT

Figure 3: FPGA Processing of DFT

6

.-

xr cose xi Sin 8 xi cose xr sine

Figure 4: FPGA Complex Multiplication

7

This VHDL code was compiled and tested. Next, this code is synthesized. This
process creates logic gate connections. Finally, the place and route is performed. In this
step, the output of the synthesis is mapped physical to the FPGA part. The code can now
be executed on the FPGA.

To test the algorithm, an input of a 20 Hz sin wave sampled at 1/128 times a second was
generated. This gives a resolution of 12.8 Hz per cell. Depicted in Figure 5 is a
comparison of the output of a 1 0-pt DFT using FPGA and comparing the results with the
output of a simulation using the same data. Within reasonable error, the peak is as
expected about 2 cells away fiom the center.

DFT RESULTS

--e FPGA
+MATLAB

1 2 3 4 5 6 7 8 9 10

Sample no.

Figure 5: Graph of Comparison output of Simulation vs. FPGA DFT

Conclusion

Figure 5 depicts the output X@) as a function k. As predicted, it shows a
spectrum centered on f-0. This spectrum represents frequencies between +/- 64Hz. As
seen in figure 5, there is a high correlation between the output generated by the FPGA
and the simulation. The largest error can be observed at the center, where the frequency
is equal to 0, at n between 5 and 6.

8

Future Work

We have successfully implemented the DFT algorithm on the FPGA with an
accuracy equal or surpassing a commercially accepted package. We have three
objectives for the future at this time. First of all, while there was little error between the
FPGA calculation and the simulation, there is enough to generation interest as what is
causing this discrepancy, particular at zero. The next step will be to expand to larger
examples to determine the functionality of the FPGA under more computational stressful
conditions. Finally, we will implement a floating-point FFT on the FPGA and determine
its performance.

References:

‘ Pro&, John G. and Dimitris G. Manolakis, “Digital Signal Processing: Principles, Algorithms, and
Application, 3rdEdition.”, 1996, Prentice-Hall, Upper Saddle River, NJ, pg 459.

Khner,Semion, “Goddard DFT Engine Specification”, Internal Report, 2002.
Botros, N and W. Zakhem, “FFT Processor Using Field Programmable Gate Arrays”, Proceedings of the 3

Fifth h u a l IEEE Internatid ASIC Conference and Exh%it, 1992, Sept 21-25,1992, Rochester, NY,
pages 115-1 18

Szedo, G, V. Yang, and C. Dick, “High Performance FFT Processing using Reconfigwable Logic”,
Conference Record of the ThIy-F-Fifth Asilom Conference on Signals, Systems, and Computers, 200 1,
Pacific Grove, CA, pages 1353-1356 v01.2.
* Bilsby, D.C.M, RL.Walke, and RW.M. Smith, “Comparison of a Programmable DSP and a FPGA to
Real-Time Multiscale Convolution”, IEE Colloquium on High Performance Architecture for Real-Time
Processing, Dec. 12, 1998. London, UK, pages 4/14/6.

4

