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Abstract 

This paper presents the design and implementation of the Discrete Fourier 
Transform@FT) algorithm on a reconfigurable processor system. While highly 
applicable to many engineering problems, the DFT is an extremely computationally 
intensive a* Consequently, the eventual goal of this work is to enhance the 
execution ofa  floating-point precision DFT algorithm by off loading the algorithm 
from the computing system. This computing system, within the context of this research, 
is a typical high performance desktop computer with an may of field programmable gate 
mays(FPGAs). FPGAs are hardware devices that are configured by software to execute 
an algorithm. If it is desired to change the algorithm, the software is changed to reflect 
the modification, then download to the FPGA, which is then itself modified. 
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This paper will discuss methodology for developing the DFT algorithm to be 
implemented on the FPGA. We will discuss the algorithm, the FPGA code effort, and the 
results to date. 

Introduction 

The DFT is a useful but computational intensive algorithm for engineering 
applications. To implement the DFT requires N2 complex multiplications. For a 1024- 
point DFT, this represents 1,048,572 complex multiplies.' To enhance processing speed, 
we wish to move the DFT to an FPGA from the microprocessor*. That is, we desire to 
move the application fiom s o h a r e  to hardware. 

In order to do this, the instruction set of the reconfigurable floating-point vector 
processor that has been developed allows the reuse of particular op-codes for different 
instructions that are loaded into the FPGA. This combination of microcomputer/ small 
instruction set provides the performance advantages of a reduced instruction set 
microprocessors as well as the benefits of a large instruction set offered by a complex 
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instruction set microprocessors. A standard instruction set architecture is utilized and a 
methodology for mapping the digital signal processing algorithm onto the reconfigurable 
processor system is applied. 

The instruction set architecture includes a very flexible data path that contains 
floating-point function cores that can be tailored for each application. A complex 
function core developed for the DFT application is presented, with the input data being 
either complex or real. It consists of several simple floating-point function cores 
including: a floating-point adder, a floating-point multiplier, and a floating point 
multiply-accumulate core. The reconfigurable processor uses a sinekosine look-up table 
for computing the necessary trigonometric functions. 

A data array can be a size other than 2N but it is still desirable to use Fourier 
analysis, in such a case the DFT is obvious candidate. The desired algorithm should use 
an array less than 1024, however it is important that the processing be able to manipulate 
data that is not of size 2N. 

There are examples of Fourier transform being implemented on FPGAs314 These 
algorithms suffered fiom being implemented in a fixed-point format andor restricted to 
only real input data format of sizes 2N. Furthermore, there are examples of comparing a 
DSP processor to a FpGA.5 Using the floating-point reconfigurable processor system, 
the best of both worlds, the DSP processor and the FPGA, is combined and demonstrated 
using the DFT algorithm. 

The Field Programmable Gate Array 

Field Programmable Gate Arrays (FPGAs) are logic devices that offer in-circuit 
hardware reconfigurability. The same integrated circuit can be used for an entirely 
different function at a later date. With this technology, we envision a single hardware 
Unit that could be used for many common functions. The ability to do extensive image 
processing on-board a spacecraft is an example of the application of this technology. 

Reconfigurable computing (RC) is an emerging technology that utilizes FPGAs to 
implement computation intensive algorithms at the. hardware level. A reconfigurable 
computer, within the context of our research, is a general-purpose processor with a hgh- 
speed connection to one or more FPGAs. Since particular hardware architecture is 
implemented for each application, typical RC systems can achieve acceleration rates that 
are several orders of magnitude faster than current desktop computers. Furthermore, 
research has shown a reduction in computational time using RC technology, but very 
little has been done on using floating-point digital signal processing algorithm applying 
RC technology. 

While using a reconfigurable computer can be effective in reducing overall 
application execution time, much of the process of algorithm development is manual and 
requires skills in both hardware design and software development. Hardware description 
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languages, i.e. VHDL* and Verilog, are typically used to model the hardware that is 
developed for each application. Thrs is followed by extensive simulation of these 
models. Once the model is verified, the models are mapped to an FPGA using 
commercial tools for FPGA placement and routing. Finally, software is written to 
download the bitstream produced from placement and routing onto the FPGA as well as 
to initialize memory and manage overall execution of the application. 

Our approach has been to develop a reconfigurable microcomputer instruction set 
architecture (ISA) that supports a small number of instructions that are tailored for each 
application. A large portion of the ISA is fixed to simplifl compilation of a hardware 
description language(HDL) model of the system. This microcomputer architecture 
includes a very flexible data path containing unique function cores that execute floating- 
point vector instructions. Floating point data is used to facilitate system debugging and 
functional verification. 

A function core is loaded into the ISA prior to program execution defining the 
instruction used for a particular op-code. Subsequently a different function core can be 
loaded into the ISA and the same op-code reused for a completely different instruction. 
Hence, there is a one-to- one mapping of op-codes to assembly language instructions. In 
this paper we present a function core that was developed for the DFT algorithm. 

The next section will discuss the details of the DFT algorithm, a sample application for 
proving the concepts presented in this paper follows. The paper concludes with the 
presentation of the DFT results compared to a simulation. 

The DFT Algorithm 

The Discrete Fourier Transform takes a signal from the time domain to the frequency 
domain by the relationship given by equation 1 and is defined as for each output sample, 
x, as: 

X ( K )  = Cc(n)* exp(-j* 2 *x * n * k / ~ )  
N-1 

n=O 

Where k is the index of the output sample 
n is the index of the input sample 
c is the input sample 
N is the total number of inputs 
J= Sqrt(-l) 

Equation 1 : Discrete Fourier Transform 

The output of the magnitude of X(k) as a function of k will produce a spectrum between 
(-F) and +F. 

-~ 

* Very High Speed Integrated Circuits(VHS1C) Hardware Description Language(VHDL) 
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Using this definition, we wish to implement an RC system that uses floating-point 
arithmetic that fits on a single FPGA chip while enhancing software performance. 
Equation 2 is an expansion of Equation 1 to a form better for implementation. 

Where C ,the sum, is over the range k=O to N-1 for all cases and 6 k  = nk/N 

Equation 2: Expansion of DFT Equation 

The Processing Element 

A simple model of the system is seen in figure 1. The FPGA or processing 
element(PE) consist of two sections, a control unit and data processing unit which 
contains the function core. The function core is the application being implemented which 
in this case is the DFT. 

FPGA or Processing ElementPE) 1 
Control Unit Data Unit 

DFT 
Function 

Core 

Figure 1 : DFT Function Core 

The Control Unit, which handles processing for all hardware modules/ 
instructions, manages memory readwrite transactions as well. This unit will also 
supervise instruction fetch, decode, and execution. Lastly, it will determine when 
instruction processing is completed and turns control back over to the HostMemory 
interface. 

The data unit contains several memory address registers and counters for 
indexing. Furthermore, the data unit contains a register file of 8 32-bit registers and 
counters for determining when vector instructions are completed. The data unit can 
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contain up to seven function cores. Each function core has one or more 32-bit inputs and 
simple control functions. The function core can be independent or made-up of other 
fimction cores. These function cores make up the floating-point functions. 

FPGA Implementation of the DFT 

A high level description of the DFT is shown in figure 2. Each 32 bit input is complex 
where Xrealin represent the real input value and Ximagin represents the imaginary 
component. K is the output index and is represented by 10 bits. DFTADFT tells the PE 
to execute the normal DFT or its inverse. We use -1 for DFT and 1 for Inverse DFT. To 
start processing, the Enable flag is set to 1 and processing ends when Empty flag has 
been set and saying the data buffer is depleted. 

XREALIN(32) 
XIMAGlN(32) 
K ( W  Floating Point DFT Core 
DFT/IDFT(32) 
ENABLE 

I ;  OUTPUTS 

XREALOUT(32) 
XIMAGOUT(32) 

DONE 

I 

READYTOEMPTY 1 
I 

I EMPTY 
I 1 I I 

Figure 2: High Level Description of DFT 

Similar to the input, the output is complex and denoted by Xrealout and Ximagout 
for the real and imaginary values of output, respectfully. Readytoempty flag indicates 
FPGA processing is done. Finally, the Done flag tells when the processing pipeline is 
completed or flushed. 

In figure 3, DFT process is depicted. This algorithm is derived in Equation 2. 
Using the product of the output index, K and the sample number, n the algorithm 
generates the table look-up address. This address represents the sdcosine angle, theta, 
we are interested in at this point. A maximum of 2"lO or 1024 angles can be generated 
by this table with each sidcos value being 32 bits value. This represents the largest DFT 
we can process. The details of the complex multiply instruction is shown in figure 4: 
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Figure 3: FPGA Processing of DFT 
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xr cose xi Sin 8 xi cose xr sine 

Figure 4: FPGA Complex Multiplication 
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This VHDL code was compiled and tested. Next, this code is synthesized. This 
process creates logic gate connections. Finally, the place and route is performed. In this 
step, the output of the synthesis is mapped physical to the FPGA part. The code can now 
be executed on the FPGA. 

To test the algorithm, an input of a 20 Hz sin wave sampled at 1/128 times a second was 
generated. This gives a resolution of 12.8 Hz per cell. Depicted in Figure 5 is a 
comparison of the output of a 1 0-pt DFT using FPGA and comparing the results with the 
output of a simulation using the same data. Within reasonable error, the peak is as 
expected about 2 cells away fiom the center. 

DFT RESULTS 

--e FPGA 
+MATLAB 

1 2  3 4 5 6 7 8 9 10 

Sample no. 

Figure 5: Graph of Comparison output of Simulation vs. FPGA DFT 

Conclusion 

Figure 5 depicts the output X@) as a function k. As predicted, it shows a 
spectrum centered on f-0. This spectrum represents frequencies between +/- 64Hz. As 
seen in figure 5, there is a high correlation between the output generated by the FPGA 
and the simulation. The largest error can be observed at the center, where the frequency 
is equal to 0, at n between 5 and 6. 
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Future Work 

We have successfully implemented the DFT algorithm on the FPGA with an 
accuracy equal or surpassing a commercially accepted package. We have three 
objectives for the future at this time. First of all, while there was little error between the 
FPGA calculation and the simulation, there is enough to generation interest as what is 
causing this discrepancy, particular at zero. The next step will be to expand to larger 
examples to determine the functionality of the FPGA under more computational stressful 
conditions. Finally, we will implement a floating-point FFT on the FPGA and determine 
its performance. 
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