PCB Design With HDL Designer

- Motivation
 - Time savings
 - Money savings
 - Simplicity

- Approach
 - Use single tool for PCB and FPGA design
 - More FPGA designs than PCB designers
 - Use HDL designer for schematic capture
PCB Design With HDL Designer
Design Process

- PCB Design Process (Minimal):
 - Schematic Capture
 - Displaying Reference Designators and Component Information on Schematic
 - Netlist Creation and Conversion
PCB Design With HDL Designer
Schematic Capture - Symbols

- Part Symbols
 - HDL Symbol Editor
 - Part Name
 - Part Number
 - Package Type
 - Pin Name (or Port Name)
 - Pin Number
PCB Design With HDL Designer
Schematic Capture - Symbols
PCB Design With HDL Designer
Schematic Capture – Schematic Diagrams

- Schematic Diagrams
 - HDL Block Diagram Editor
 - Part Information from Part Symbol
 - Pin Number
 - Package Type
 - Part Number
 - Connection Information
 - Nets
 - Reference Designators
PCB Design With HDL Designer
Schematic Capture – Schematic Diagrams

Package List
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

Declarations
Ports
\(a \) : \text{end} logic
\(b \) : \text{end} logic
\(c \) : \text{end} logic
\(\text{pin}_a \) : \text{end} logic

Diagram Signals
\(\text{VCC} \) : \text{end} logic
\(\text{GND} \) : \text{end} logic

Component Declarations
\(\text{pin}_{-}0 \) = "1" (string)
\(\text{pin}_{-}1 \) = "2" (string)
\(\text{pin}_{-}2 \) = "3" (string)
\(\text{pin}_{-}3 \) = "4" (string)
\(\text{pin}_{-}4 \) = "5" (string)
\(\text{pin}_{-}5 \) = "6" (string)
\(\text{pin}_{-}6 \) = "7" (string)
\(\text{pin}_{-}7 \) = "8" (string)
\(\text{pin}_{-}8 \) = "9" (string)
\(\text{pin}_{-}9 \) = "10" (string)
\(\text{pin}_{-}10 \) = "11" (string)
\(\text{pin}_{-}11 \) = "12" (string)
\(\text{pin}_{-}12 \) = "13" (string)
\(\text{pin}_{-}13 \) = "14" (string)

ports
\(\text{pin}_{-}0 \) = "I" (string)
\(\text{pin}_{-}1 \) = "2" (string)
\(\text{pin}_{-}2 \) = "3" (string)
\(\text{pin}_{-}3 \) = "4" (string)
\(\text{pin}_{-}4 \) = "5" (string)
\(\text{pin}_{-}5 \) = "6" (string)
\(\text{pin}_{-}6 \) = "7" (string)
\(\text{pin}_{-}7 \) = "8" (string)
\(\text{pin}_{-}8 \) = "9" (string)
\(\text{pin}_{-}9 \) = "10" (string)
\(\text{pin}_{-}10 \) = "11" (string)
\(\text{pin}_{-}11 \) = "12" (string)
\(\text{pin}_{-}12 \) = "13" (string)
\(\text{pin}_{-}13 \) = "14" (string)

Part Numbers
\(\text{part}_{-}0 \) = "part_{-}008" (string)
\(\text{pkg}_{-}type \) = "dip44" (string)
PCB Design With HDL Designer
VHDL Coding

- Issue – Where to include Pin Numbers in VHDL?
 - Comments
 - Possible
 - VHDL Attributes
 - Good Approach but not displayed on Block Diagrams in HDL Designer
 - VHDL Generics
 - Chosen Approach but displays pin numbers as a block of text
PCB Design with HDL Designer
Netlist Conversion

Issue – How can a PADS netlist be produced?

Comments

Possible

VHDL Attributes

Good Approach but not displayed on Block Diagrams in HDL Designer

VHDL Generics

Chosen Approach but displays pin numbers as a block of text

```vhdl
GENERIC(
    pin_a0 : string := "1";
    pin_a0 : string := "2";
    pin_a1 : string := "3";
    pkg_type : string := "dip14";
    part_num : string := "part_ac04"
);
```
Conclusion

- Approach can be used PCB design
 - Would like Vendor to study modifications to HDL Designer
 - Schematic Display
 - PCB netlist output options
 - Design Rule Checking
 - Part List Generation