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Abstract 

The breeding method has been implemented in the NASA Seasonal-to-Interannual 

Prediction Project (NSIPP) Coupled General Circulation Model (CGCM) with the goal of 

improving operational seasonal to interannual climate predictions through ensemble 

forecasting and data assimilation. The coupled instability as cap'tured by the breeding 

method is the first attempt to isolate the evolving ENSO instability and its corresponding 

global atmospheric response in a filly coupled ocean-atmosphere GCM. Our results 

show that the growth rate of the coupled bred vectors (BV) peaks at about 3 months 

before a background ENSO event. The dominant growing BV modes are reminiscent of 

the background ENSO anomalies and show a strong tropical response with 

wind/SST/thermocline interrelated in a manner similar to the background ENSO mode. 

They exhibit larger amplitudes in the eastern tropical Pacific, reflecting the natural 

dynamical sensitivity associated with the presence of the shallow thermocline. 

Moreover, the extratropical perturbations associated with these coupled BV modes reveal 

the variations related to the atmospheric teleconnection patterns associated with 

background ENSO variability, e.g. over the North Pacific and North America. A similar 

experiment was carried out with the NCEP/CFS03 CGCM. Comparisons between bred 

vectors from the NSIPP CGCM and NCEP/CFS03 CGCM demonstrate the robustness of 

the results. 

Our results strongly suggest that the breeding method can serve as a natural filter to 

identify the slowly varying, coupled instabilities in a coupled GCM, which can be used to 

construct ensemble perturbations for ensemble forecasts and to estimate the coupled 

background error covariance for coupled data assimilation. 
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1. Introduction 

Of all the seasonal-interannual climate variabilities, the El Nino-Southern Oscillation 

(ENSO) phenomenon plays one of the most important roles in dominating interannual sea 

surface temperature (SST) variability in the tropical Pacific. Feedbacks through strong 

atmosphere-ocean coupling in tropics characterize the co-variability of wind, SST and 

thermocline (or warm water volume) of ENSO, which induces not only a global impact in 

climate anomalies but also modifies the fkequency of extreme weather events like floods 

or hurricanes. The delayed oscillator mechanism related to tropical waves propagating 

downwellinghpwelling information in the upper ocean (Schopf and Suarez 1987; Suarez 

and Schopf 1988; Battisti 1988) can explain many features of ENSO. Jin (1997) further 

emphasized the importance of the variations of warm water volume in the upper ocean 

. with a warm water mhargehischarge mechanism. It has been shown that the coupled 

'- dynamic/thermodynamic mechanisms, i.e., the thermocline and Ekman feedbacks, 

responsible for delayed or recharge/discharge oscillators, can explain both the west-east 

asymmetry in the climate mean state and the ENS0 variability in the equatorial Pacific 

basin (Cai 1995; Jin 1996; Dijkstra and Neelin 1999; Van der Vaart et al. 2000; and Cai 

2003). Those studies point to the essential role of oceanic memory associated with 

oceanic wave dynamics. Through the SST that serves as the lower boundary of 

atmosphke, the oceanic memory dominates the atmospheric seasonal-intemmual 

variability- Therefore* being able to estimate seasonal-interannual variations of SST 

becomes a crucial factor for successfully predicting seasonal-interannual variability like 

ENSO. In order to accurately describe the SST and its uncertainties, it is necessary to 

consider variations of subsurface temperature since they are intimately related to SST 
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through thermocline feedback and Ekman-layer dynamics. 

In the last two decades, ENSO prediction skill with dynamical models has been 

steadily improving due to the establishment of the tropical observation network, 

especially the TAO/TRITON mooring arrays, and a better representation of air-sea 

interaction processes in coupled ocean-atmosphere models. The Zebiak and Cane model, 

an intermediate coupled ocean-atmosphere model (Zebiak and Cane 1987, hereafter ZC), 

has been widely used for ENSO studies. However, the presence of errors in the initial 

conditions limits the forecast performance (Latif et al. 1998). More sophisticated 

initialization methods have been shown to be important in improving ENSO prediction. 

For example, data assimilation schemes and ensemble forecasts provide some 

information on the uncertainties embedded in the initial conditions (Chen et al. 1995, 

Rosati et al. 1997 and Ballabrera et al. 2000). Recently, Chen et al. (2004) demonstrated 

that the retrospective forecast from the latest version of this model, due to an 

improvement of the data assimilation to the ZC model, can have a good skill up to two- 

year. They also argued that the evolution of El Nino is controlled to a large degree by 

self-sustaining internal dynamics, suggesting that model-based predictions of El Nino 

depend more on the oceanic initial conditions rather than on unpredictable atmospheric 

noise. 

Several operational forecast centers around the world now use a coupled general 

circulation model (CGCM) to forecast ENSO events with an average lead-time around 

six months. A summary of ENSO forecasts from different operational centers can be 

found under http://iri.columbia.edu/climate/ENSO/currentinfo/. Current ensemble 

forecasts are based on one of two approaches for the initialization process: the “two tier” 

4 



and the “one tier” configuration (i.e., double or single stage configuration). In the widely 

used two-tier system, a single forecast of SST anomalies is used to generate an ensemble 

of atmospheric forecasts (Bengtsson et al. 1993). Since it neglects the coupled nature of 

the initial perturbations, this approach does not project the ENS0 mode on those 

perturbations. This hardly seems optimal to for seasonal and interannual prediction. The 

one tier or single stage configuration of CGCM introduced by European Centre for 

Medium-Range Weather Forecasts (ECMWF) (Stockdale et al. 1998) generates all the 

ensemble forecasting members via a coupled ocean-atmospheric model in order to have 

the perturbation growing under a coupled configuration. The NSPP forecast ensemble, 

also a one-tier system, includes perturbations in both the atmosphere and ocean, but the 

initial perturbations are generated independently. Although coupled instabilities will 

eventually develop in these one-tier systems, they still handicapped by not including 

coupled uncertainties ‘in the initial perturbations for ensemble predictions. Therefore, 

there is a need for ensemble ENS0 prediction systems to include coupled initial 

perturbations and feedbacks. 

The breeding method (Toth and Kalnay 1993,1997) and singular vectors (Emco and 

Vukicevic 1992; Buizza and Palmer 1995; and Palmer et al. 1998) are two of the main 

methods used operatio~lly for generating effective ensemble members in ensemble 

forecasts with an atmospheric GCM model. Studies of the growth of error/growing 

modes related with coupled oceadatmosphere instabilities have generally focused on 

obtaining singular vector (SV) fiom a lineadadjoint propagator of intermediate models 

(e-g., the ZC model). Chen et al. (1997) showed that the error growth depends on d e  

phases ofthe ENS0 and the seasonal cycles, even though initial and final SVs are 
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insensitive to both. It should be pointed out that their analysis was done using the linear 

propagator with SST perturbations only, neglecting the coupled nature of the 

perturbations of other variables. Xue et al. (1997 a,b) used a reduced EOF space 

spanning the ZC solutions in order to be able to compute the SV for all model variables 

in a full tangential linear ZC model. They showed that the growth rate and singular 

vectors are similar to Chen et al. (1 997) when choosing an SST norm. However, with an 

energy norm, the wind and thermocline fields become more important than the SST. Fan 

et al. (2000) found that SST plays a very important role in seasonal (3-6 months) 

predictability, and pointed out that using the analysis error covariance as a n o m  in 

calculating SV yields quite different results than the frequently used energy norm. The 

strong dependence of singular vectors on the choice of norm (i.e., the definition of the 

“size” whose growth is to be maximized) and the choice of optimization time, become 

limitations when applying this method to a complex system like CGCMs because of 

existence of various types of instabilities over a whole spectrum of scales. It is difficult 

to cleanly separate these modes and to keep the coupled instability as the dominant 

growing mode, since the adjoint model, being linear, can be swamped by the presence of 

much faster growing atmospheric and oceanic instabilities (Peiia and Kalnay, 2004). 

Toth and Kalnay (1 996) suggested applying the breeding method in a coupled 

ocean-atmosphere system to isolate ENS0 coupled instabilities. The bred perturbations 

are a superposition of the leading Lyapunov vectors (dominant instabilities) in the 

dynamical system and the advantages of this method are that it is simple, efficient and 

independent of the choice of norm. Cai et al. (2003) first tested the breeding method in a 

coupled system using the ZC model. They found that bred vectors are capable of 
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describing the characteristics of coupled instabilities associated with the ENS0 

development. They found that the growth rate is weakest at the peak time of the ENSO 

states (both positive and negative) and slrongest between the events. Urilike the singular 

vectors, the coupled bred vectors are insensitive to the choice of norm and very sensitive 

to the background ENSO phase and the time of the year. Their results also suggest that 

the presence of the “spring-barrier” in the ENSO prediction skill is related to the coupled 

instability. Filtering out the coupled bred mode fiom initial perturbations greatly 

increases the time for doubling forecast error and reduces the “spring-ba~~ier~~. They also 

found that using a pair of plus/m.inus bred vectors as ensemble perturbations led to a 

significant improvement in the ensemble mean forecast. These results illustrate the 

potential impact of coupled bred vectors in both ensemble prediction and data 

assimilation for ENSO predictions. Pe5a and Kalnay (2004) tested the breeding method 

. for coupled Lorenz models with distinct time scales to mimic the interaction between a 

~ slow “coupled tropical ocean-atmosphere system” and an “extratropical atmosphere”. 

They found that breeding is able to isolate the slow modes of the coupled system when 

rescaling intervals and amplitudes are chosen fiom physically appropriate scales and the 

rescaling factor is obtained fiom the slow component of the system. In contrast, 

Lyapunov and Singular vectors are unable to isolate the slow modes, because they are 

based on linear models, and are therefore dominated by the fast modes. 

The results with simpler models encourage us to implement the breeding method in 

a more complicated and complete model, like a CGCM, that includes many types of 

instabilities, without sacrificing resolution or simplifylng model physics. As a first step, 

we examine in this paper the growing coupled instabilities obtained using breeding in a 
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fully coupled general circulation model. Our objective is to identify the characteristics of 

bred vectors associated with the ENSO mode derived from the CGCM and to investigate 

whether an ENSO-related coupled instability can be isolated from weather noise using 

the breeding method. Specifically, in this paper, we would like to address the following 

questions: (1) Can breeding be used to identify the coupled, slowly growing-ENS0 

instability and isolate it from other short term, small scale instabilities such as weather 

noise? (2) How does the coupled instability evolve with the background ENSO 

variability? and (3) Are the main characteristics of coupled bred vectors reproducible 

with two different coupled ocean-atmosphere GCMs? 

The structure of the paper is as follows. In section 2, we give a brief description of 

the NSIPP coupled model, which has been used to generate coupled bred vectors. A brief 

discussion about the ENSO variability in the NSIPP model is also included in section 2. 

Section 3 describes how the breeding method is applied in a coupled GCM. Section 4 is 

devoted to describe the main characteristics of coupled bred vectors derived in the NSIPP 

model. A comparison of the results obtained from NSIPP and fiom NCEPEFS03 is also 

presented in section 4. A brief summary and discussion of the next phase of our research 

are included in section 5. 

2. The NSIPP coupled global circulation model and its ENSO variability 

In this study, we test the breeding method on the NSIPP coupled ocean-atmosphere 

general circulation model, in a perfect model scenario. The NSIPP coupled model is a 

fully coupled global ocean-atmosphere-land system developed at NASA Goddard Space 

Flight Center (GSFC) (Miller et al. 2004; Vintzileos et al. 2003). It is comprised of the 

NSIPP-atmospheric model (AGCM, Bacmeister and Suarez 2003; Bacmeister et al. 
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2000), the Poseidon ocean model (OGCM, Schopf and Loughe 1999, and the Mosaic 

land surface model (LSM, Koster and Suarez 1992). The NSPP AGCM uses a finite- 

difference C grid in the horizontal and a generalized sigma coordinate in the vertical. An 

important feature of this AGCM is its inclusion of an empirical cloud diagnostic model 

and a relaxed Arakawa-Schubert cumuIus/bounda&ayer parameterization. The OGCM 

is a Poseidon quasi-isopycnal model designed with generalized horizontal and vertical 

coordinates. The current NSIPP version uses a reduced-gravity formulation and an 

embeddqd surface mixed layer following Sterl and Kaltenberg (1994). The isopycnal 

region is treated in a quasi-isopycnal fashion, in which layers do not vanish at outcrops 

and remain a thin minimum thickness at all grid points. The treatment of horizontal 

mixing within the model is implemented with high order Shapiro filtering. The NSlPP 

CGCM employs the Goddard Earth Modeling System (GEMS) to couple the atmosphere, 

. ocean and land models. The ocean and atmosphere exchange idormation once a day. 

- Operational forecasts and hindcasts indicate that forecasts for the Niiio3 index’ remain 

skillful up to 9 months lead-time, depending on the starting month. Forecast information 

can be found under htto://nsipp.~sfc.nasa.~ov/. 

A 50-year simulation run has been made with a research version of the NSIPP 

CGCM identical to the operational model except for a slightly coarser resolution 

(AGCM: 3.75’ in longitude by 3 O  in latitude and 34 sigma layers; OGCM: 1.25’ in 

longitude by 1/2O in latitude and 27 layers). This integration is referred to as the “control” 

or “background” run in this paper. The Niiio3 index obtained fiom this control run (not 

shown) exhibits a realistic ENSO-like variability, although its biennial component is 

’ The Ni503 index is defined as the spatial average of SST anomalies (control) in the NSo3 domain (150’E- 
9O’W, 5’S-SON). The BV Niiio3 index is defined in the same way except that the BV SST perturbations are 
used instead of SST anomalies. 
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stronger than observed. In agreement with observations (Boulanger and Menkes 1995, 

1999), the control run simulation shows warm anomalies at the thermocline level prior to 

the SST anomalies. This indicates that air-sea interaction processes and coupled 

instabilities can be reasonably represented by the CGCM. The spatial patterns of the 

coupled ENS0 variability of the control run are presented in the left panels of Figs. 4-6 

and will be discussed together with the presentation of the bred vector spatial structure in 

Section 4. 

3. Breeding method with the coupled NSIPP CGCM 

We used 10 years of the control run, from model year 2020 to 2029, to perform 

breeding experiments (discussed in the next section) under a “perfect model scenario”, 

i.e., assuming that the control run is the “truth” (or analysis in a forecast system). The 

breeding method (Toth and Kalnay 1993, 1996, and 1997) originally developed to 

“breed” fast growing modes for short-to-medium-range atmospheric ensemble 

forecasting was implemented in the NSIPP CGCM. The breeding cycle includes the 

following steps (Fig..l): (1) add a random perturbation on the initial analysis fields (both 

oceanic and atmospheric restart files); (2) make a one month forecast (coupled breeding 

run) starting from the perturbed fields; (3) take the difference between the breeding and 

the control runs; (4) rescale the difference field (referred to as the “bred vector”) to the 

same size as the initial perturbation; (5) add the rescaled bred vector field to the next 

analysis field; and (6) repeat steps (2) to (5),  adding the coupled bred perturbations onto 

analysis fields and evolving them with background flow, which forms the “breeding 

cycle”, throughout the 10 years. Thus, bred vectors are perturbations aligning along 

favorable growing directions, periodically resized and added to the next analysis field in 
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each of&e breeding cycles. Bred vectors are essentially a finite-time, non-linear 

extension of local Lyapunov vectors, representing the preferred instability directions of 

the evolving basic flow. Under the “perfect model scenario”, the analysis fields are 

considered to be the truth so that both analysis and forecast fields refer to the same 

control run. 

‘ 

When the system contains many merent types of instabilities, like the coupled 

ocean-atmosphere model, the initial (or rescaled) perturbation amplitude and the 

rescaling time interval are the two parameters that can be used to select the type of the 

instability that shows up in the bred vectors (Toth and Kalnay 1993,1997; P e a  and 

W a y  2004). The BVs consist of perturbations related to instabilities whose saturation 

amplitude is well above the range of amplitudes allowed, and whose growth rate is 

largest, since perturbations related to slower-growing instabilities are damped more 

strongly by the rescaling cycle. For example, convective instabilities will quickly 

-51 saturate at very small amplitude when breeding in a global atmosphere. A similar 

situation appears in the instability of a coupled atmosphere-ocean system, but in this case 

the coupled atmospheric signal that we are seeking has smaller amplitudes than the 

atmospheric “weather noise”. Therefore, choosing an atmospheric m e m e  of the 

amplitude for the rescaling would not be an effective way of retaining the slower growing 

coupled perturbations (Peiia and W a y ,  2004). For this reason, the variables we choose 
. .  

to rescale the perturbations should be primarily based on oceanic quantities whose 

variability is dominant at the seasonal to interannual time scales. Moreover, the rescaling 

time interval in a breeding cycle plays a crucial role for capturing coupled instabilities 

corresponding to seasonal to interannual time scales and for isolating them fkom weather 
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noise. Choosing a rescaling time interval of one month allows saturation of the fast 

growing weather noise. 

We implemented the breeding method in the NSIPP global CGCM by choosing the 

period of rescaling as one month and a Nik3  SST root-mean-square norm (RMS), as in 

Cai et al. (2003) in the Zebiak and Cane model. We chose the RMS SST amplitude 

within the tropical Pacific domain (15OS-15"N and 12O0E-90"W) of 0.085"C, or about 

10% of the background SST variability. In the perfect model configuration, the control 

run is used as both the analysis and the background (first guess). The breeding cycle is 

simplified by adding the perturbations to the control run, rather than to an analysis, and 

the bred vectors are the rescaled difference between the perturbed run and the control run. 

Two independent breeding runs were made starting from two independent random 

perturbations, which were created by taking the difference between two model states at 

randomly chosen months. Each run contains 123 months, starting from model year 2019 

September to year 2029 December. The starting month is chosen so that the first major 

warming event takes place about 2 years into the breeding run to ensure the coupled bred 

modes are closely associated with ENSO. The first three months of the breeding runs are 

treated as a transient period allowing the bred vectors to grow from random perturbations. 

The analysis presented below is derived fi-om the remaining 120 breeding cycles (120 

months). We found that the two independent 10-year breeding cycles yielded very 

similar bred vectors (not shown), so that we combine the two bred vector perturbations as 

a single time series of 20 years to reduce sampling errors. Hereafter, we will refer to the 

combined bred vectors as BV perturbations. 

4. Bred vectors in the NSIPP coupled model 
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4.1. Growth rate of coupled bred vectors 

Bred vectors represent, by construction, the instabilities that grow on the background 

flow. An example of the instabilities captured by the coupled bred vectors is shown in 

Fig. 2, a snapshot of the bred vector SST field (contours) together with the corresponding 

background SST field (shading) on July 1 of the model year 2024. It shows that the bred 

vector field has large amplitude along the sharp temperature gradient in the equatorial 

cold tongue, coinciding with the backgound waves along the edge of the cold tongue. 

The bred perturbation seems to suggest that the instability tends to make the waves break. 

Clearly, the formation of tropical instability waves is captured by the bred vectors. 

Although the bred vectors may include both coupled and uncoupled ocean instabilities 

such as those shown in Fig. 2, we illustrate in the remaining part of the paper that a 

significant portion of the instabilities are related to coupled ENSO dynamics. 

‘ The growth rate of the coupled bred vectors is calculated based on the chosen 

’ 
rescaling norm of the perturbation field within the tropical Pacific region: 

where NG is the total number of model grid points in the Niiio3 region and f is the model 

time in months. In other words, we measure the growth rate of bred vectors by their 

amplification factor within a month. In the 1 0-year experiment, the typical value of the 

growth rate in one month of the NSPP coupled model varies around 3 to 5 (not shown), 

which is much larger than the coupled instability found by Cai et al. (2003) for the ENS0 

mode in the ZC model, about 1 to 3 per month. This is to be expected since the growth 
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rate in the coupled GCM includes both coupled and uncoupled instabilities of any kind, 

such as the tropical wave instability shown in Fig. 2. We interpret the growth rate of 3-5 

per month as consisting of a noisy background growth rate of (mostly uncoupled) 

instabilities of about 3 per month (a component essentially absent in the ZC model), plus 

a coupled growth of about 1-2 per month, associated with the ENSO signal that we are 

seeking. 

In order to test whether there is a component of the perturbation growth (above the 

background noisy growth rate of about 3 per month) evolving upon the coupled ENSO 

background state (rather than growing randomly), we calculate the ladlead correlation 

between the growth rate and the absolute value of the background Niiio3 index. We use 

the absolute value of the Niiio3 index in order to account for the large amplitude of both 

positive and negative SST anomalies. It is evident in Fig. 3 that the growth rate of 

coupled bred vectors tends to be largest about 3-4 months prior to the time at which the 

background ENSO amplitude reaches its maximum stage (positive or negative). There is 

also a relatively weaker growth at about 4 months after the maximum stage of the 

background ENSO. These results are qualitatively in good agreement with the results 

obtained with the ZC model in Cai et al. (2003). The results shown here suggest that the 

breeding method can serve as a natural filter to identify the slow, coupled instability 

related to ENSO variability by selecting the proper rescaling parameter in the breeding 

cycle. Therefore, we can expect that projecting the initial perturbations of ensemble 

members onto ENSO-related growing errors should improve predictions in an ensemble 

forecast system, as in Cai et a1 (2003). 

4.2. The structure of the coupled BV mode 
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The spatial patterns of the coupled BV can be identified by constructing regression 

maps for both oceanic and atmospheric variables against the BV Niiio3 index, defined as 

the spatial average of BV SST in the N503 domain. This regression filters out 

perturbations unrelated with ENSO, like the tropical equatorial instability shown in Fig.2. 

We will compare those maps with the background regression maps constructed with the 

same regression method but using the background Nifio3 index in order to determine 

whether the coupled BV modes can capture the growing features associated with 

background ENS0 variability. 

The oceanic global regression maps for the background fields show the typical 

tropical variability corresponding to the ENSO mature stage (Fig. 4(a)-(c)). These 

patterns include a large warming extended from the east to central equatorial Pacific, a 

" deepening thermocline in the eastern equatorial Pacific, and an accompanying shallowing 

feature off the equator in the western basin, and a basin-wide eastward current anomaly. 

The regression maps for the BV fields are shown in Fig. 4(d)-(f). The coupled BV mode 

exhibits a strong signal in the equatorial Pacific and fairly weak variability away from the 

tropics. The patterns of the coupled BV mode are reminiscent of those in the background 

state except that the BV mode is more confined to the east and to the equator. This 

feature is physically meaningful, since it reflects a larger sensitivity to perturbations of 

the background flow in the shallower thermocline in the east along the equator. It is also 

consistent with the delayed oscillator theory, which considers that the perturbations grow 

primarily over the eastern equatorial basin. It is known that in the mean the easterly wind 

stress is balanced by the zonal pressure gradient, which piles up warm water in the 

western basin, resulting in a thermocline that slopes down toward the west. The shoaling 
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thermocline in the east implies that the thermodynamic feedback between SST and near 

surface ocean variables is much stronger in the east than in the west. As a result, oceanic 

perturbations in the eastern basin will be easily amplified through positive feedbacks 

from air-sea interaction. 

The atmospheric components of the ENS0 mode derived from the control run and 

the BV field are displayed in Fig. 5. We first examine the tropical Pacific domain to see 

the direct impact related to boundary heating anomalies. Fig. 5 shows that the patterns in 

the BV fields have many features in common with the patterns of the background state, 

namely, westerly wind perturbations located in the central equatorial Pacific and the 

baroclinic structure in the height fields corresponding to the location of BV SST in Fig 

4(d). In addition, the BV outgoing radiation reflects an enhanced convection activity in 

the eastern basin. These features reinforce the conclusion that the leading coupled BV 

mode is related to the coupled instability. 

It is of interest to point out that the coupled BV also reflects the sensitivities in 

extratropical regions associated with background ENS0 atmospheric teleconnections. 

Shown in Fig. 6 are the regression maps of surface pressure and geopotential at 200mb in 

Northern Hemisphere for the background state and for the BV field. The teleconnection 

patterns of the background state indicate a low-pressure anomaly over the North Pacific 

and a high-pressure anomaly over North America. This barotropic structure is very 

robust and extends to a high altitude. It is induced by wave-train patterns associated with 

the large scale heating in the tropics. For BV maps, strong responses can also be 

identified in those regions, especially where background regression maps show a strong 

gradient, for example in the mid Pacific at 30"N and east coast of North America. Wave- 
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train patterns can also be found in BV regression maps. In the Southern extratropical 

region (not shown), atmospheric regression maps show a teleconnected pattern associated 

with background ENSO, and related BV dynamical sensitivities. 

In order to show how the coupled BV mode evolves with the background ENSO 

evolution as in Cai et al. (2003) with the ZC model, we construct leadflag regression 

maps against the time series of the amplitude of the background Nz03 index with a 

leadhag time up to 6 months (Fig- 7). It is clear that the temporal evolution of the 

coupled BV mode is highly related to the background ENS0 evolution. It shows that in 

the eastern basin the coupled BV mode leads the large amplitude of the background 

ENSO events by several months. The signal is clearly coming fiom the coupled 

dynamics because an increase of the ocean heat content and a warm SST anomaly in the 

. eastern basin as well as the presence of westerly wind anomalies all lead the background 

ENSO events by about 2-3 months. This coincides with the timing of the maximum 

.growth of the coupled BV mode which also leads the background ENSO events by 3 

months (Fig. 3). It is seen &om Fig. 7 that west of 1 30°W, BV surface height and zonal 

wind stress exhibits a lag response of the background ENSO of about 3 months. 

There€ore, using the breeding method, we show that the dominant instability in the 

NSIPP GCM model is initiated in the eastern basin and that the signal is a coupled 

instability. 

4.3. Comparison of the NSIPP and the NCEPKFS03 Bred Vectors 

Similar breeding experiments were carried out with the coupled forecast system 

model (CFS03) developed in the National Centers for Environmental Prediction (NCEP). 

The atmospheric component uses the current version of medium range forecast (MRF) 
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global model with a spectral truncation of 62 waves (T62) in the horizontal (equivalent to 

nearly 200 Km) and 64 vertical levels in sigma coordinate (Kanamitsu 1989; Kanamitsu 

et al. 1991; Caplan et al. 1997; Wu et al. 1997). The ocean component is the GFDL 

Modular Ocean Model V.3 (MOM3) with 40 layers in the vertical (Pacanowski and 

Griffies, 1998). The zonal resolution is 1" and the meridional resolution is 1/3" between 

10"s and 10"N, gradually increasing through the tropics until it is fixed at 1" poleward of 

30"s and 30"N. 

Two independent breeding experiments were performed by choosing the last 4 years 

from a 23-year perfect model experiment as the background state. This 4-year period 

covers a warm event which matures at the model ye& 2 1 ,2  years into the breeding run. 

The rescaling factor for perturbations is based on the SST norm in the whole tropical belt 

(10s-1ON) and the perturbation size was chosen as 0.1"C. As in the breeding 

experiments perforrned with the NSIPP CGCM, we chose one-month as the rescaling 

period. Like the NSIPP coupled experiments, the two BV runs for the NCEP system 

were very similar despite having been started with different random perturbations so that 

their results are processed as a single &year time series. Comparisons between the 

results from the NSIPP and the NCEP/CFS03 coupled system are made for the purpose of 

demonstrating the robustness of the bred vectors in coupled GCMs2. 

Fig 8 (a)-(f) are background oceanic regression maps of two coupled GCMs. The 

oceanic components from the two GCMs successfilly produce fundamental features of 

ENSO. Their differences also reflect differences of numerical schemes in the model 

dynamics or different choices of physical parameterizations. The meridional structure of 

Unfortunately, the experiments performed at NCEP were erased, so that we have only a limited number of 2 

diagnostic comparisons available. 
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warming and thickening surface height (Figs. 8(a)-(b)) in the NCEP/CFS03 GCM in the 

Eastern Pacific is wider than that of the NSIPP GCM (Figs. 8(d) and (e)). In addition, the 

regressed surface height of NCEP/CFSO3 shows the southern branch of the shoaling 

pattems off the equator extends more southward instead of being meridionally limited as 

in the NSlPP case. This can also be seen in the SST and zonal current patterns. Despite 

those distinctions, the bred vectors from the two coupled systems have significant 

similarities link4 with the background ENSO. To compare BV structures, we show the 

EOF modes of oceanic variables. Fig. 9(a)-(c) are the first EOF mode of the BV SST and 

first two modes for the BV thermocline &om the NSIPP CGCM and Fig. 9(d)-(f) are the 

same modes using BV from NCEP/CFSO3. Despite the fact that these are two different 

CGCMs, with very different background evolution, there is a strong resemblance between 

the BV EOF modes. Both d e  leading modes (J3OF1) in NSIPP and NCEP/CFSO3 bred 

vectors based on SST show an ENSO-associated warm feature in the tropical Eastern 

Pacific, farther east than in their respective background (not shown). Reflecting the 

merent mean structures and background ENS0 variabilities from a merent coupled 

system, the NCEPKFSO3 BV SST EOFl extends over a larger spatial scale, covering the 

whole Niiio3 domain while the BV SST EOF 1 from NSIPP model is confined to east of 

130"W and is meridionally limited. These two EOFl modes respectively explain 11% 

and 14% variance &om the total growing SST perturbations. This suggests that the 

coupled growing perturbations associated with ENS0 variability represent at least 10% 

of the total growing perturbations due to a variety of histabilities that appear in a coupled 

GCM. Thefact that the Ieading EOF rnodesfiom BVfieIds in both coupled systems show 

an ENSO-like structure confirms our conjecture that the breeding method is capable of 
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capturing the coupled instabiliv even in the presence of other types of instabilities in the 

fu lb  coupled GCM model. Moreover, this mode is robust and dominant. Even if we 

enlarge the domain for the EOF analysis to a global domain, the same mode appears, 

showing fairly weak oceanic amplitude in the extra-tropics. This indicates that the 

breeding method can help to identify the largest growing error projecting on the ENSO 

variability in a global coupled model and can be applied to a model with full, complete 

physics such as a GCM, with the full resolution of model output. 

Similar natural sensitivities in the eastern Pacific can also be found in the BV 

thennocline fields of both systems (Figs. 9 (b), (c), (e) and (Q). Both leading EOF modes 

of the BV thermocline have a deepening feature along the equator and shoaling features 

off the equator, except that the EOFl from NCEPEFS03 extends almost across the whole 

basin. In addition, both EOF2 modes have a dipole pattern along the equator and 

establish a wave couplet off the equator in the western basin. All the information above 

reveals that oceanic perturbations will develop as KelvinEossby wave packages, 

propagating the upwelling/downwelling signals in the tropical region. It should be noted 

that the EOFl of the BV thermocline is close to the EOFl of BV SST and there is a high 

correlation between their corresponding leading principal components (not shown). 

These two modes represent the dominant growing coupled instability, which has been 

also been obtained by the BV oceanic regression maps. The robustness of the results 

from two different coupled models supports our hypothesis that bred vectors are 

associated with the background ENSO variability. The differences between the BVs 

indicate that bred vectors are sensitive to model behavior. For example, different vertical 

mixing schemes adopted in ocean models will have an impact on thermocline variations 
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particularly in the shallow mixed layer region. 

Based on the regression maps against with BV Nifio3 index (not shown) in the 

tropical region, we can also deduce that the coupling strengths are different in the two 

coupled GCMs. In both ocean components, a 1-meter variation (deepening) in BV 

thermocline corresponds to 0.1 "C warming in the eastern Pacific. The Corresponding BV 

zonal wind stress shows a perturbation of 1.5 Nm-2 from the NSIPPAGCM, and it 

prevails in the central basin. In contrast, the corresponding stress perturbation is only 0.5 

Nm-' in NCEP/CFS03 case. In addition, the regressed BV surface pressure and 

geopotential height for the NCEP/CFS03 model are less organized in the tropics &an for 

the NSIPP coupled model. This seems to suggest that perturbations are more strongly 

coupled in the NSIPP CGCM in the tropical domain. 

There are also similarities between the two systems in the extratropical ENSO- 

associated teleconnection patterns. Fig. 10(a),@) are the regression maps of BV surface 

pressure from the two coupled models. Similar responses can be identified from the 

eastern basin of the North Pacific to the North Atlantic despite the different responses for 

other locations. This type of information should be particularly valuable for ensemble 

forecasting since the robust feature teleconnected to ENSO variability will remain and 

influence other locations. 

5. Summary 

In this study, we demonstrated for the first time the feasibility of applying the 

breeding method to a global coupled ocean-atmosphere general circulation model to 

obtain ENS0 coupled instabilities. The results from the BV fields derived fiom the 

NSIPP coupled model show that the breeding method is capable of obtaining the fast 
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growing coupled modes associated with ENSO variability. Potential predictive impact 

has been shown in the BV growth rate, by the fact that the maximum growth leads the 

wadco ld  event by about three months. Therefore, the growth rate can be viewed as a 

precursor to background ENSO variability. In particular, the amplitude of the BV in the 

eastern tropical Pacific increases before the development of the background El Nifio 

events. Therefore, the bred vectors contain ENSO-related perturbations that can be used 

as the initial perturbations for ensemble forecasting for improving ENSO forecast skill. 

The three-month lead time in our results (compared with 6-12 months for the ZC model) 

may seem to be too short for improving current ensemble forecast system. However, we 

conjecture that this relatively short time-lead is partially due to the fact that the ENSO 

cycle in this long simulation is more biennial than 3-7 years. This biennial time scale 

shortens the “growing season” of bred vectors because of the relatively fast pace of the 

evolving background state. We would expect to obtain a longer lead time from a BV 

growth rate derived from the NSIPP operational system since it will reflect the real 

oceanic memory from the observations during initialization, although the shorter time-lag 

may be also associated with the presence of other weather and oceanic instabilities. 

One of the main tasks in our study has been to extract the physical growing mode 

from the total growing variability, separating its signal from noise associated with 

weather and other instabilities. We used regression BV maps to illustrate that the ENSO- 

associated features can be captured by the breeding method. For the oceanic fields, the 

variability mainly comes from the tropical Pacific and has many features in common with 

the background ENSO variability. The mean structure makes the eastern equatorial 

Pacific, with a shallow thermocline, the region of strongest dynamical sensitivity. 
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Corresponding to the BV oceanic fields, the atmospheric BV response is also reminiscent 

of the background ENSO features (e.g. a surface pressure anomaly field with a sea-saw 

pattern from west to east) in the tropical Pacific, indicating that the dominant mode of BV 

is indeed related to ENSO-associated coupled instabilities. In addition to the coupled 

chasacteristics shown in the tropical domain, the extratropical circulation anomalies 

associated with these coupled BV display a wave-train like teleconnection pattern over 

d e  North Pacific and North America. The patterns are known to be strongly 

teleconnected to ENSO variability. 

The robustness of the coupled BV modes has been demonstrated by comparing bred 

vectors derived from the NSIPP CGCM and NCEP/CFSO3 CGCMs. In an EOF analysis 

applied to BV fields, the leading EOF modes for both systems show similar ENSO- 

related features (warmingldeepening thermocline) in the tropical eastern Pacific, 

. 
indicating that the leading fast growing mode is due to the ENS0 coupled instability. In 

addition, a strong resemblance between these two independent experiments can be found 

in many fields, even in those atmospheric teleconnected regions associated with 

background ENSO development. Our results indicate that the breeding method can serve 

as a natural filter to isolate the slowly-varying, coupled instabilities in a coupled GCM. 

Furthermore, global sensitivities associated with the coupled instability initiated fi-om the 

tropical Pacific can be retained even though the rescaling is simply done in the tropical 

Pacific. 

We conjecture that capturing the coupled bred vectors may benefit data assimilation 

and ensemble forecasting and improve ENSO prediction skill, as shown in Cai et a1 

(2003 j for the ZC model. Therefore, the next stage of our research is to employ these 
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methods in the NSIPP operational system. In particular, we plan to test whether the 

ensemble forecasts with coupled BVs as initial perturbations are more effective than 

current ensembles that use random perturbations introduced in the separate components. 

Corazza et a1 (2002) found that in a quasi-geostrophic system, a hybrid 3DVar 

background error covariance augmented with the inner product of BVs improved the 

analysis and the forecasts. Similarly, for the coupled system, the BVs should give the 

structure of the “errors of the month”, so that these structures could be used to augment 

the background error covariance of the current Optimal Interpolation data assimilation 

scheme and improve the assimilation and forecast of the ENSO-related instabilities. 
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Figure Captions 

Figure 1 

the unperturbed (control) model integration in a perfect model setting. The difference 

between the unperturbed and perturbed forecasts yields the bred vectors. The growth rate 

is computed as the ratio of the final to the initial size. 

Schematic diagram showing a continuously evolving breeding cycle upon 

Figure 2 

perturbation (contours: CI = 0.15 “C) evolving with the background flow (shading with 

an interval of 1°C fiom 21°C to 30°C) on July 1 of the model year 2024. The dotted 

A snapshot of SST in Eastern Pacific showing the bred vectors 

contours of the BV indicate negative values. 

Figure 3 

of the background Niiio3 index. 

Leadflag correlations between the BV growth rate and the absolute value 

Figure 4 Oceanic regression maps in the global domain. Left panels are the 

background fields and right panels the BV fields. (a) SST anomaly (“C); (b) 220 

anomdy (m); (c) surface zonal current anomaly (ms- I ) ;  (d) BV SST (“C); (e) BV 220 

(m); and ( f )  BV surface zonal current (ms-I). Background fields are regressed with the 

background Niiio3 index and BV fields regressed with the BV Niii03 index. The scales of 

BV fields are arbitrary but the ratio among BV variables (both oceanic and atmospheric 

variables) is retained as in the original BV fields. 
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Figure 5 

equatorial Pacific basin. (a) wind field anomaly at 850mb (ms-’); (b) surface pressure 

anomaly (mb); (c) geopotential anomaly at 200mb (m2s-2); (d) outgoing long wave 

radiation (Wm-2); (e) BV wind field at 850mb (ms-’); (9 BV surface pressure (mb); 

(g) BV geopotential at 200mb (m2s-2); and (h) BV outgoing long wave radiation (Wm-2). 

The same as Figure 4 except for the atmospheric regression maps over the 

Figure 6 

Pacific portion of the Northern Hemisphere. (a) background surface pressure anomaly 

The same as Figure 4 except for atmospheric regression maps over the 

(mb); (b) background geopotential anomaly at 2001nb (rn’s-’); (c) BV surface pressure 

(mb); and (d) BV geopotential at 200mb (m2s-2). 

Figure 7 Lead/Lag regression maps along the equator for BV oceanic fields against 

the absolute value of the background Niiio3 index. (a) SST (C); (b) surface height (in); 

and (c) zonal wind stress (Nm’2). The contours are arbitrary but the ratio among BV 

variables is retained as in the original BV fields. 

Figure 8 

tropical Pacific domain. Left panels are the NSIPP anomalies of NSIPP and the right 

panels the NCEP/CFS03 anomalies. (a) NSIPP SST (“C); (b) NSIPP surface height (m); 

Background oceanic regression maps for two coupled GCMs in the 

(c)  NSIPP surface zonal current (ms-’); (d) NCEP SST FC); (e) NCEP surface height (m); 

and ( f )  NCEP surface zonal current (ms-’). The regression maps of NSIPP (NCEP) fields 

are computed using the NSIPP (NCEP) Niiio3 index, respectively. 
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Figure 9 

NSIPP and NCEP/CFSO3 CGCMs. (a) EOFl of NSIPP BV SST; (b) EOFl of NSIPP BV 

The leading EOFs of the BV SST and 220 perturbations derived from the 

220; (c) EOF2 of NSIPP BV 220; (6) EOFl of NCEP BV SST; (e) EOFl of NCEP BV 

220; and ( f )  EOF2 of NCEP BV 220. The scale is arbitrary. 

Fignre 10 Atmospheric regression maps of BV 500mb geopotential height in in the 

Northem Hemisphere (m). (a) for NSIPP and (b) for NCEP/CFSO3. Both fields are 

computed against their own BV NGo3 indices. 
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i’ 

perturbed forecast bred vector 

I I 
I 1 one month time 

Figure 1 Schematic diagram showing a continuously evolving breeding cycle 
upon the unperturbed (control) model integration in a perfect model setting. 
The difference between the unperturbed and perturbed forecasts yields the bred 
vectors. The growth rate is computed as the ratio of the final to the initial size. 

32 



1 

1 
14bW l3bW 12UW 1 i O W  

Figure 2 A snapshot of SST in Eastern Pacific showing the bred vectors 
perturbation (contours: CI = 0.15 "C) evolving with the background flow 
(shadings with an interval of 1°C fiom 21°C to 30°C) on July 1 of the model 
year 2024. The dotted contours of the BV indicate negative values. 
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Figure 3 Leadlag correlations between the BV growth rate and the absolute 
value of the background Niiio3 index. 
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Figure 4 Oceanic regression maps in the global domain. Left panels are the 
background fields and right panels the BV fields. (a) SST anomaly (“C); (b) 220 
anomaly (m); (c) surface zonal current anomaly (ms-I). (d) BV SST (“C); (e) BV 
220 (m); and ( f )  BV surface zonal current (ms-I ) .  Background fields are 
regressed with d e  background N503 index and BV fields regressed with the BV 
Niiio3 index. The scales of BV fields are arbitrary but the ratio among BV 
variables (bod oceanic and atmospheric variables) is retained as in the original 
BV fields. 
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Figure 5 The same as Figure 4 except for the atmospheric regression maps over the 
equatorial Pacific basin. (a) wind field anomaly at 850mb (ms-I); (b) surface 
pressure anomaly (mb); (c j  geopotential anomaly at 200mb (m2s-'); (d) outgoing 
long wave radiation (Wm- ); (e) BV wind field at 850mb (ms-I); (0 BV surface 
pressure (mb); (g) BV geopotential at 200mb (m2s-'); and (h) BV outgoing long 
wave radiation (Wm-2). 
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. Figure 6 The same as Figure 4 except for atmospheric regression maps over the 
Pacific portion of the Northern Hemisphere. (a) background surface pressure 
anomaly (mb); (b) background geopotential anomaly at 20Omb (m2s-’); (c) BV 
surface pressure (mb); and (d) BV geopotential at 20Omb (m2s-2). 
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( c )  BV zonal windstress vs. IBackground NIN031 

Figure 7 LeadLag regression maps along the equator for BV oceanic fields against 
the absolute value of the background Niiio3 index. (a) SST ("C); (b) surface height 
(m); and (c) zonal wind stress (Nm-2). The contours are arbitrary but the ratio 
among BV variables is retained as in the original BV fields. 
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Figure 8 Background oceanic regression maps for two coupled GCMs in the 
tropical Pacific domain. Left panels are the NSIPP anomalies and the right panels 
the NCEP/CFSO3 anomalies. (a) NSIPP SST (“C); @) NSIPP surface height (m); 
(c) NSIPP surface zonal current (ms-I); (d) NCEP SST (“C); (e) NCEP surface 
height (m); and ( f )  NCEP surface zonal current (ms-I). The regression maps of 
NSIPP (NCEP) fields are computed using the NSIPP (NCEP) Nifio3 index, 
respectively. 
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Figure 9. The leading EOFs of the BV SST and 220 perturbations derived from the 
NSIPP and NCEPKFS03 CGCMs. (a) EOFl of NSIPP BV SST; (b) EOFl of 
NSIPP BV 220; (c) EOF2 of NSIPP BV 220; (d) EOFl of NCEP BV SST; (e) 
EOFl of NCEP BV 220; and ( f )  EOF2 of NCEP BV 220. The scale is arbitrary. 
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(a) NSIPP regressed BV 500mb geopotential height 

60E 12011 0 0 

(b) CFSO3 regressed BV 50Omb geopotential height 

Figure 10 Atmospheric regression maps of BV 50Omb geopotential height 
in in the Northern Hemisphere (m). (a) for NSIPP and (b) for NCEPKFS03. 
Both fields are computed against their own BV N503 indices. 
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