Formalization of the Integral Calculus in the PVS Theorem Prover

Ricky W. Butler
Langley Research Center, Hampton, Virginia
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Formalization of the Integral Calculus in the PVS Theorem Prover

Ricky W. Butler
Langley Research Center, Hampton, Virginia
Contents

1 Introduction and Motivation 1
2 Riemann Integral: Definition of Partition 1
3 Definition of Riemann Sum 2
4 Definition of Riemann Integral 3
5 Linearity Properties 5
6 Step Functions 6
7 Fundamental Theorem of Calculus 10
8 Conclusion 11

A Why Are PVS Proofs So Much Larger? 12
 A.1 Formalizing Partitions ... 12
 A.2 Step Functions .. 13
 A.3 Complications Due To Working In Type Theory Rather Than Set Theory 14

B Illustration 14
 B.1 Continuous Function Is Integrable 15
 B.2 Formal Proof Sketch of This Theorem 15

C Example of Proof Deficiency in Rosenlicht 20

D User Guide 20
1 Introduction and Motivation

There are several motivations for the development of the integral calculus library for the PVS theorem prover: (1) Increasingly our formal methods team is being called upon to develop analysis techniques that can demonstrate the safety of algorithms and systems used for air traffic management both on the ground and in the air\cite{6,4,3}. This problem domain inevitably requires reasoning about the effect of the software on aircraft trajectories. As aircraft approach the airport and subsequently reach the final approach fix, they follow non-constant speed profiles that can require the use of calculus \cite{4}, (2) The power of the PVS theorem has been growing over the last 10 years. A particularly challenging problem is the formalization and mechanical verification of the classic proofs of integral calculus including the Fundamental Theorem of Calculus. The author has often wondered if theorem proving technology might ever reach the place where it can be a pedagogical aid to the mathematics student and eventually a tool of practical use to the mathematician. The formalization of the integral calculus in PVS should provide a basis for judging how close we are to this goal. (3) The goal of reducing all of mathematics to primitive logic has a long heritage. Russell and Whitehead sought to place all of the mathematics upon the foundation of set theory and classical logic. When the paradoxes were discovered at the beginning of the 20th century, they abandoned their effort. Although mathematicians have not demonstrated much interest in continuing the Russell and Whitehead program, computer scientists have\cite{1}. The Lebesgue integral has been formalized in the Isabelle/Isar theorem prover \cite{11} and the Gauge Integral in Isabelle/HOL as well \cite{8}. Harrison describes the development of the theory of integration in the HOL theorem prover in \cite{9}. L. Cruz-Filipe developed a constructive theory of analysis in the Coq theorem prover in his Ph.D dissertation \cite{5}. Here, we are providing the same mathematical foundations for the PVS theorem prover. This work uses and extends the work done by Bruno Dutertre \cite{7}. He developed the first version of the PVS analysis library which provided definitions and properties of limits, derivatives, and continuity. This work develops the theory of integration through the Fundamental Theorem of Calculus.

In this paper I will provide a summary of the formalization and a few illustrations of the mechanical proofs to emphasize the difference between the rigorous proofs provided by Rosenlicht \cite{12} in his classic text and a mechanically checked proof in PVS \cite{10,13}. The PVS theories and proofs are available at NASA Langley’s formal methods web site \cite{2}.

2 Riemann Integral: Definition of Partition

We begin our formalization of the integral with the definition of a partition. Rosenlicht defines a partition as follows:

Definition. Let $a, b \in \mathbb{R}, a < b$. By a partition of the closed interval $[a, b]$ is meant a finite sequence of numbers $x_0, x_1, ..., x_N$ such that $a = x_0 < x_1 < x_2 ... < x_N = b$.

In PVS a “finite sequence” is record with two fields:

```
finite_sequence: TYPE = [# length: nat, seq: [below[length] -> T] #]
```
To define a partition we create a predicate subtype of finite sequences with the appropriate properties:

\[
\text{integral_def[T: TYPE FROM real]: THEORY}
\]
\[
\text{BEGIN}
\]
\[
a, b, x: \text{VAR T}
\]
\[
closed_interval(a:T, b:{x:T|a<x}): \text{TYPE} = \{ x | a \leq x \text{ AND } x \leq b \}
\]
\[
\text{partition}(a:T, b:{x:T|a<x}): \text{TYPE} =
\]
\[
\{ \text{fs: finite_sequence[closed_interval(a,b)]} \mid
\]
\[
\text{Let } N = \text{length(fs), } xx = \text{seq(fs) IN}
\]
\[
N > 1 \text{ AND } xx(0) = a \text{ AND } xx(N-1) = b \text{ AND}
\]
\[
(FORALL (ii: below(N-1)): xx(ii) < xx(ii+1))
\]
\[
The width of this partition is defined by Rosenlicht as follows:
\]
\[
max\{ x_i - x_{i-1} : i = 1, 2, ..., N \}
\]
\[
\text{In PVS we have:}
\]
\[
width(a:T, b:{x:T|a<x}, P: partition(a,b)): \text{posreal} =
\]
\[
max(\{ l: \text{real} \mid \text{EXISTS (ii: below(length(P)-1)):}
\]
\[
\quad l = \text{seq(P)(ii+1) - seq(P)(ii))}
\]
\[
\text{In PVS it is necessary to include the endpoints of the interval } a, b \text{ as the first arguments of } width. \text{ Note the convenience of } max\{ x_i - x_{i-1} : i = 1, 2, ..., N \} \text{ compared to the PVS formalization. In the PVS definition, there is an existential quantifier which is hidden by the traditional notation.}
\]

3 Definition of Riemann Sum

Definition. If \(f \) is a real-valued function on \([a, b]\) by a Riemann sum for \(f \) corresponding to the given partition is meant a sum

\[
\sum_{i=1}^{N} f(x'_i)(x_i - x_{i-1})
\]

where \(x_{i-1} \leq x'_i \leq x_i \) for each \(i = 1, 2, ..., N \).

Originally the following formalization was attempted:

\[
\text{Riemann_sum(a:T, b:{x:T|a<x}, P: partition(a,b), f:[T->real]): real =}
\]
\[
\text{LET xx = seq(P), N = length(P)-1 IN}
\]
\[
\text{sigma[upto(N)](1,N,(LAMBDAX n: upto(N)):}
\]
\[
f(x_in(xx(n-1),xx(n)))*(xx(n)-xx(n-1)))
\]

using \text{sigma} from the \text{reals} library and defining \text{x_in} as
there were two problems with this formulation, one minor and one serious. First, this will not typecheck (unprovable TCC) because the typechecker does not know that \texttt{sigma} function will not evaluate \texttt{xx(n)} outside of the range 1 to \texttt{N}. The value of \texttt{n-1} in \texttt{xx(n-1)} will actually never go negative, but PVS has no way of knowing this. Second, this definition is deficient in that the value of \(x'\) on which \(f\) is evaluated is provided by \texttt{x_in}. Although it is in some sense \textit{arbitrary}, there is no real quantifier here. The proof of the integral split theorem requires that we quantify over all possible values of \(x'\). See section 6 for more details. Thus, we define the following predicate on partitions and sequences:

\[
x_{\text{in}}(\texttt{aa:T}, \texttt{bb:{x:T}{aa<x}}): \{t: T \mid \texttt{aa} <= t \land t <= \texttt{bb}\}
\]

Given a sequence of \(x\) values, this predicate is true iff the \(i\)th value is contained in the \(i\)th section of the partition.

Now we can define a Riemann sum as follows:

\[
\text{Rie_sum}(\texttt{a:T}, \texttt{b:{x:T}{aa<x}}, \texttt{P:partition(a,b)}, \\
\texttt{xis: (xis?{a,b,P},f:[T->real]): real =} \\
\text{LET } N = \text{length}(P)-1 \text{ IN} \\
\text{sigma}[\text{below}(N)](0,N-1, (\text{LAMBDA } (n: \text{below}(N)): \\
\text{ (P(n+1) - P(n)) * f(xis(n)))})
\]

We note that the index is taken from 0 to \(N-1\) to solve the typechecking problem and the fourth parameter \texttt{xis} provides the values of \(x'\) on which the height of each rectangle can be calculated: \(f(x')\).

It is also convenient to define a predicate that checks whether a particular value equals \texttt{Rie_sum}(\texttt{a,b,P,xis,f}):

\[
\text{Riemann_sum?}(\texttt{a:T}, \texttt{b:{x:T}{aa<x}}, \texttt{P:partition(a,b)}, \texttt{f:[T->real]})(\texttt{S:real}): \text{bool =} \\
\text{ (EXISTS } (\texttt{xis: (xis?{a,b,P}})):: \text{LET } N = \text{length}(P)-1 \text{ IN} \\
\text{ S = Rie_sum(a,b,P,xis,f))}
\]

\section{Definition of Riemann Integral}

Maxwell Rosenlicht provide the following definition of an integral:

\textbf{Definition.} Let \(a, b \in \mathbb{R}, a < b\). Let \(f\) be a real-valued function on \([a, b]\). We say that \(f\) is Riemann integrable on \([a,b]\) if there exists a number \(A \in \mathbb{R}\) such that, for any \(\epsilon > 0\), there exists a \(\delta > 0\) such that \(|S - A| < \epsilon\) whenever \(S\) is a Riemann sum for \(f\) corresponding to any partition of \([a, b]\) of width less than \(\delta\). In this case \(A\) is called the Riemann Integral of \(f\) between \(a\) and \(b\) and is denoted

\[
\int_{a}^{b} f(x) dx
\]
In other words, in order to establish that \(\int_a^b f(x)\,dx = A \), we must show that for any given \(\varepsilon \) there exists a \(\delta \) and a real number \(A \) such that no matter how we partition the interval, if the width of that partition is less than \(\delta \) and \(S \) is the Riemann sum corresponding to that partition, we have \(|S - A| < \varepsilon \).

We begin the formulation of the Riemann integral, by defining the following predicate:

\[
\text{integral?}(a:T,b:{x:T\mid a < x},f:[T\rightarrow\text{real}],S:\text{real}) : \text{bool} = \\
\quad \text{(FORALL (epsi: \text{posreal}): (EXISTS (delta: \text{posreal}):}
\quad \quad \text{(FORALL (P: \text{partition}(a,b)):
\quad \quad \quad \text{width}(a,b,P) < \text{delta} \implies}
\quad \quad \quad \quad \text{(FORALL (R: (\text{Riemann_sum?}(a,b,P,f))):
\quad \quad \quad \quad \quad \text{abs}(S - R) < \text{epsi}))))}
\]

From this definition we can construct a predicate \text{integrable?} and a function \text{integral} which is defined on \text{integrable?} functions:

\[
\text{integrable?}(a:T,b:{x:T\mid a < x},f:[T\rightarrow\text{real}]) : \text{bool} = \\
\quad \text{(EXISTS (S: \text{real}): \text{integral?}(a,b,f,S))}
\]

\[
\text{integral}(a:T,b:{x:T\mid a < x}, ff: \{ f \mid \text{integrable?}(a,b,f) \}) : \\
\quad \{ S : \text{real} \mid \text{integral?}(a,b,ff,S) \}
\]

The uniqueness of the integral was demonstrated in the proof of

\[
\text{integral_unique}: \text{LEMMA a < b AND integral?}(a,b,f,A1) \land \\
\quad \text{integral?}(a,b,f,A2) \implies A1 = A2
\]

Thus, the return type of the function \text{integral} consists of only one possible value. From this we can easily prove

\[
\text{integral_def}: \text{LEMMA a < b IMPLIES}
\quad \left(\text{integrable?}(a,b,f) \land \text{integral}(a,b,f) = s \right) \\
\quad \text{IFF integral?}(a,b,f,s)
\]

Next, we eliminate the restriction that \(a < b \), as follows:

\[
\text{Integrable?}(a:T,b:T,f:[T\rightarrow\text{real}]) : \text{bool} = (a = b) \lor \\
\quad (a < b \land \text{integrable?}(a,b,f)) \lor \\
\quad (b < a \land \text{integrable?}(b,a,f))
\]

\[
\text{Integrable_funs}(a,b) : \text{TYPE} = \{ f \mid \text{Integrable?}(a,b,f) \}
\]

\[
\text{Integral?}(a:T,b:T,f:[T\rightarrow\text{real}],S:\text{real}) : \text{bool} = (a = b \land S = 0) \lor \\
\quad (a < b \land \text{integral?}(a,b,f,S))
\]

\[
\text{Integral}(a:T,b:T,f:\text{Integrable_funs}(a,b)) : \text{real} = \\
\quad \text{IF a = b THEN 0} \\
\quad \text{ELSIF a < b THEN integral}(a,b,f) \\
\quad \text{ELSE } -\text{integral}(b,a,f) \\
\quad \text{ENDIF}
\]
The names were capitalized to distinguish these functions from the more restricted ones.
All of the proofs were straightforward. The total number of proof commands were just a little over 500 in number, including all of the typecheck condition proofs. The only long proof was integral_unique which required 102 proof steps.

5 Linearity Properties

Following Rosenlicht, the first properties of the integral that were proved were the linearity properties:

integral_const_fun: LEMMA a < b IMPLIES integrable?(a,b,const_fun(D))
AND integral(a, b, const_fun[T](D)) = D*(b-a)

integral_scal: LEMMA a < b AND integrable?(a,b,f) IMPLIES
integrable?(a,b,D*f) AND
integral(a,b,D*f) = D*integral(a,b,f)

integral_sum: LEMMA a < b AND integrable?(a,b,f) AND integrable?(a,b,g)
IMPLIES
integrable?(a,b,(LAMBDA x: f(x) + g(x))) AND
integral(a,b,(LAMBDA x: f(x) + g(x))) =
integral(a,b,f) + integral(a,b,g)

integral_diff: LEMMA a < b AND integrable?(a,b,f) AND integrable?(a,b,g)
IMPLIES
integrable?(a,b,(LAMBDA x: f(x) - g(x))) AND
integral(a,b,(LAMBDA x: f(x) - g(x))) =
integral(a,b,f) - integral(a,b,g)

These properties were then used to prove that non-negative functions have non-negative integrals:

integral_ge_0: LEMMA a < b AND integrable?(a,b,f) AND
(FORALL (x: closed_interval(a,b)): f(x) >= 0) IMPLIES
integral(a,b,f) >= 0

Size of proofs:

<table>
<thead>
<tr>
<th>lemma</th>
<th>Proof Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>integral_const_fun</td>
<td>35 lines</td>
</tr>
<tr>
<td>integral_scal</td>
<td>85 lines</td>
</tr>
<tr>
<td>integral_sum</td>
<td>85 lines</td>
</tr>
<tr>
<td>integral_diff</td>
<td>37 lines</td>
</tr>
<tr>
<td>integral_ge_0</td>
<td>94 lines</td>
</tr>
</tbody>
</table>
All of these proofs were easy. However the following simple property (example 2 on page 114 of Rosenlicht):

\[
\text{integral jmp: LEMMA } a < b \text{ AND } a <= z \text{ AND } z <= b \text{ AND } f(z) = cc \text{ AND } (\text{FORALL } x: x /= z \text{ IMPLIES } f(x) = 0) \text{ IMPLIES } \\
\text{integrable?}(a,b,f) \text{ AND integral}(a,b,f) = 0
\]

required 602 proof lines. Lemmas integral_sum and integral jmp were then used to prove the following lemma in 36 steps:

\[
\text{integral chg one pt: LEMMA } a < b \text{ IMPLIES } \\
\text{FORALL } y: a <= y \text{ AND } y <= b \text{ AND } \\
\text{integrable?}(a,b,f) \text{ IMPLIES integrable?}(a,b,f \text{ WITH } [(y) := yv]) \text{ AND } \\
\text{integral}(a,b,f) = \text{integral}(a,b,f \text{ WITH } [(y) := yv])
\]

which shows that if you change a function at one point, then its integral does not change. Of course this could be generalized to show that one can change a countably infinite number of points and not change the value of the integral, but this proof has not been attempted in the PVS system.

The following lemma (named Lemma 1 on page 118 of Rosenlicht) required 338 PVS proof lines:

\[
\text{integrable lem: THEOREM } a < b \text{ IMPLIES } \\
\text{(integrable?}(a,b,f) \text{ IFF (FORALL } (\text{epsi: posreal}): (\text{EXISTS } (\text{delta: posreal}): \\
\text{(FORALL } (\text{P1,P2: partition(a,b))): \\
\text{width}(a,b,P1) < \text{delta AND } \\
\text{width}(a,b,P2) < \text{delta IMPLIES } \\
\text{(FORALL } (\text{RS1: (Riemann sum?}(a,b,P1,f)), \\
\text{RS2: (Riemann sum?}(a,b,P2,f))): \\
\text{abs}(\text{RS1 - RS2) < epsi })))))
\]

This was Rosenlicht’s first major building block for the more difficult theorems. His next step was to develop the necessary apparatus to integrate step functions.

6 Step Functions

Establishing the key properties for integrals involving step functions proved more difficult than was expected. Surprisingly, some of the most difficult challenges occurred in places where visually the proofs were easy to see.

The first step was to provide a definition for a step function. This was accomplished by exploiting the machinery we had already constructed for partitions. We define a predicate that returns true iff the function is constant on the sub-intervals of the partition:
step_function_on?(a:T,b:{x:T|a<x},f:[T->real], P: partition[T](a,b)): bool =
Let N = length(P), xx = seq(P) IN
(FORALL (ii: below(N-1)): (EXISTS (fv: real):
(FORALL (x: open_interval[T](xx(ii),xx(ii+1))):
 f(x) = fv))

Then we define a “step function” to be a function for which there exists a partition for which
step_function_on? holds:

step_function?(a:T,b:{x:T|a<x},f:[T -> real]): bool
 = (EXISTS (P: partition(a,b)): step_function_on?(a,b,f,P))

The first step function that was solved was the simple “square wave”:

Example_3: LEMMA a <= xl AND xl < xh AND xh <= b AND
 (FORALL z: (IF xl < z AND z < xh THEN f(z) = 1
 ELSE f(z) = 0 ENDIF))
 IMPLIES integrable?(a,b,f) AND
 integral(a,b,f) = xh-xl

This was example 3 on page 114. The proof of this lemma in Rosenlicht’s text was 27 lines,
the PVS proof was surprisingly difficult requiring 640 steps.

By showing that a step function is equivalent to a finite sum of these square wave functions,
Rosenlicht’s Lemma 2 (page 119) was proved:

Lemma. A step function is integrable. In particular, if \(x_0, x_1, ..., x_n \) is a partition of the
interval \([a, b]\), if \(c_1, ..., c_n \in \mathbb{R} \) and if \(f: [a, b] \rightarrow \mathbb{R} \) is such that \(f(x) = c_i \) if \(x_{i-1} < x < x_i \)
for \(i = 1, ..., n \), then

\[
\int_a^b f(x) \, dx = \sum_{i=1}^n c_i(x_i - x_{i-1})
\]

In PVS we have:

step_function_integrable?: LEMMA a < b AND step_function?(a,b,f) IMPLIES
integrable?(a,b,f)

step_function_on_integral: LEMMA a < b IMPLIES
FORALL (P: partition[T](a,b)):
step_function_on?(a,b,f,P) IMPLIES
integral(a,b,f) =
LET N = length(P) IN
sigma(0,N-2,(LAMBDA (i: below(N-1)):
 val_in(a,b,P,i,f)*(P(i+1) - P(i))));

where val_in(a,b,P,i,f) is just the value of f in the ith section of the partition P. In PVS
this was defined as follows:

pick(a:T,b:{x:T|a<x},(P: partition[T](a,b)),j: below(length(P)-1)):
 {t:T | seq(P)(j) < t AND t < seq(P)(j + 1)} =
 choose({t:T | seq(P)(j) < t AND t < seq(P)(j + 1)})

val_in(a:T,b:{x:T|a<x},(P: partition[T](a,b)),j: below(length(P)-1),f): real
 = f(pick(a,b,P,j))

Establishing step_function_on_integral required the proof of 8 supporting lemmas and
over 2500 proof steps.

The next key result proved in Rosenlicht is the following proposition from page 120:

Lemma. : The real-valued function f on the interval [a,b] is integrable on [a,b] if and only
for each ε > 0 there exists step functions f₁, f₂ on [a,b] such that

\[f₁(x) ≤ f(x) ≤ f₂(x) \text{ for each } x ∈ [a,b] \]

and

\[\int_a^b (f₂(x) - f₁(x)) \, dx < ε \]

This result, which he simply labeled as a proposition, required 2\frac{1}{2} pages in his book. The
PVS proof was accomplished in two steps. First the forward direction was established:

step_to_integrable: LEMMA a < b AND % Rosenlicht pg 120 forward direction
 (FORALL (eps: posreal):
 (EXISTS (f₁,f₂: [T -> real]):
 step_function?(a,b,f₁) AND step_function?(a,b,f₂)
 AND (FORALL (xx: closed_interval(a,b)):
 f₁(xx) <= f(xx) AND f(xx) <= f₂(xx))
 AND integrable?(a,b,f₂-f₁)
 AND integral(a,b,f₂-f₁) < eps))
 IMPLIES integrable?(a,b,f))

This proof was straight-forward and required only 146 PVS proof steps. However, the reverse
direction was very difficult. The proof of the reverse direction took about 3 man weeks
of effort. First it was necessary to establish that an integrable function is bounded (600 proof
steps):
integrable_bounded: LEMMA $a < b$ AND $\%$ Rosenlicht pg 122

integrable?(a,b,f)

IMPLIES bounded_on?(a, b, f)

where bounded_on?(a, b, f) was defined as

bounded_on?(a,b,f): bool = (EXISTS (B: real):

(FORALL (x: (closed_intv(a,b))): abs(f(x)) <= B))

Then an additional 960 proof steps were necessary to finish the reverse direction.

The next main result proved was that a continuous function is integrable (Pg 123 Rosenlicht)

Theorem. If f is a continuous real-valued function on the interval $[a,b]$ then $\int_a^b f(x) \, dx$ exists.

The PVS version is:

continuous_integrable: LEMMA $a < b$ AND

(FORALL (x: closed_interval(a,b)): continuous(f,x))

IMPLIES integrable?(a,b,f)

The proof given in Rosenlicht is 16 lines while the formal PVS proof is over 1200 lines long. See the appendix for discussion of why there is such a large difference between PVS proofs and traditional mathematical rigor.

The integral split theorem was probably the most difficult result to achieve in PVS. Here is its statement in Rosenlicht (page 123):

Theorem. Let $a, b, c \in \mathbb{R}, a < b < c$, and let f be a real-valued function on $[a,c]$. The f is integrable on $[a,c]$ if and only if f is integrable on both $[a,b]$ and $[b,c]$, in which case

$$
\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx
$$

This theorem is easily stated in PVS as follows:

integral_split: THEOREM $a < b$ AND $b < c$ AND

integrable?(a,b,f) AND

integrable?(b,c,f)

IMPLIES integrable?(a,c,f) AND

integral integrable?(a,b,f) + integral(b,c,f) = integral(a,c,f)

Although the rigorous proof in Rosenlicht was only 2 pages, the PVS proof required the use of 131 lemmas, whose proofs required over 4000 PVS proof commands. As explained in section 3, the Riemann sum was originally defined using x_in:

```plaintext
x_in(aa:T,bb:{x:T|aa<x}): {t: T | aa <= t AND t <= bb}
```
to select the x_is within each subinterval in the partition. Using this definition all of the theorems were completed except the integral split theorem. In the first version of the library, the integral split theorem was included as an axiom, because the time required to prove this lemma was deemed prohibitive at that time. Using this axiom and the other proven lemmas the fundamental theorem was completed. The library was released with the expectation that this integral split lemma would be proved later.

The first indication of a problem with this definition of a Riemann sum, was in an email from David Lester of Manchester University. He pointed out that this definition does not allow you to establish that an integrable function was bounded\(^1\). After receiving his email, the definition was revised, and all of the other lemmas were reproved using the new definition, and finally this integral split theorem was also completed. There are now no axioms in this PVS library.

7 Fundamental Theorem of Calculus

The culmination of this work was the completion of the Fundamental Theorem of Calculus in the PVS theorem prover. The statement of this theorem in PVS is:

\[
\text{fundamental: THEOREM continuous}(f) \land \\
\quad \text{(FORALL x: F(x) = Integral(a,x,f))} \\
\quad \text{IMPLEAS derivable}(F) \land \text{deriv}(F) = f
\]

where `derivable` and `deriv` are defined in the differential calculus part of the analysis library that had been previously developed by Bruno Dutertre of the Royal Holloway & Bedford New College (now at SRI International). These define derivability (i.e. differentiability) and the derivative respectively.

The PVS proof chain analyzer reports that the final completed proof of fundamental depends upon 978 proven lemmas and theorems. The following corollaries were also completed:

\[
\text{fundamental2: THEOREM continuous}(f) \\
\quad \text{IMPLEAS (EXISTS F: derivable}(F) \land \text{deriv}(F) = f)
\]

\[
\text{fundamental3: THEOREM derivable}(F) \land \text{deriv}(F) = f \land \text{continuous}(f) \\
\quad \text{IMPLEAS Integral}(a,b,f) = F(b) - F(a)
\]

Next the concept of the antiderivative was formulated as follows:

\[
\text{antiderivative?}(F,f): \text{bool} = \text{derivable}(F) \land \text{deriv}(F) = f
\]

\[
\text{antiderivative_lem: LEMA} \text{antiderivative?}(F,f) \land \text{derivable}(G) \land \text{deriv}(G) = f \\
\quad \text{IMPLEAS (EXISTS (c: real): F = G + const_fun(c))}
\]

\(^1\)Here you have an integrable function and want to establish that f is bounded. It is not enough to pick an arbitrary x_i value in a interval i to compute the height of the rectangle $f(x_i)$. You need to exploit the fact that no matter what value of x_i you chose, $f(x_i)$ is sufficiently small if indeed the function is integrable. This requires explicit quantification of each x_i for all intervals in the partition.
A functional that returns the antiderivative was also provided:

\[
\text{antideriv}(f: \text{continuous_fun}[T]): \{ \ g g: [T \rightarrow \text{real}] \mid \\
\quad \text{derivable}(g g) \ \text{AND} \ \text{deriv}(g g) = f \}
\]

8 Conclusion

A formalization of the integral calculus in the PVS theorem prover has been completed. The theory and proofs were based on Rosenlicht’s classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proven. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.
A Why Are PVS Proofs So Much Larger?

Obviously providing a complete script of every formal step of one of the key lemmas in this library would require hundreds of pages and the details would be of no interest to the reader2. Furthermore, these proof steps are easily viewed using PVS on our publically available libraries.

Therefore, I thought it might be of interest to the reader to offer some simple examples of how a completely formal proof differs from the traditional rigorous proof offered in a standard mathematics text. This presentation is in no way comprehensive – it highlights only a fraction of the complexities one faces in a completely formal theorem prover.

A.1 Formalizing Partitions

In a classic text book, the following suffices to define a partition of an interval:

\[a = x_0 < x_1 < x_2 \ldots < x_N = b \]

But in a formal system this must be represented as a finite sequence of real numbers:

\[
\text{partition}(a:T, b:\{x:T | a < x\}): \text{TYPE} = \\
\{fs: \text{finite_sequence}[\text{closed_interval}(a, b)] \mid \text{...}\} \\
\]

Formally, \(x_i \) is \(\text{seq}(P)(i) \) where \(P \) is a partition. But that is only a superficial difference. The real problem comes from all of the properties one implicitly knows about these \(x_i \)s:

\[
\text{seq}(P)(0) = a \ \text{AND} \\
\text{seq}(P)(N-1) = b \ \text{AND} \\
(\text{FORALL} \ (ii: \text{below}(N-1)): \text{seq}(P)(ii) < \text{seq}(P)(ii+1))
\]

which are defined in the “...” part of the definition above. From \(i < j \) it is obvious that \(x_i < x_j \), but in PVS whenever one needs this property it has to be brought into the proof manually as a lemma:

\[
\text{parts_order} : \text{LEMMA} \ (\text{FORALL} \ (P: \text{partition}(a, b), ii, jj: \text{below}(\text{length}(P))): \\
ii < jj \ \text{IMPLIES} \ \text{seq}(P)(ii) < \text{seq}(P)(jj))
\]

Even the trivial property that if \(a \leq x \leq b \), then \(x \) must be in one of the subintervals, say \(i \), requires the use of the following lemma

\[
\text{part_in} : \text{LEMMA} \ (P: \text{partition}(a, b)):\n\begin{align*}
a < b & \ \text{AND} \ a <= x \ \text{AND} \ x <= b \ \text{IMPLIES} \\
(\text{EXISTS} \ (ii: \text{below}(\text{length}(P)-1))): \\
& \ \text{seq}(P)(ii) <= x \ \text{AND} \ x <= \text{seq}(P)(ii+1))
\end{align*}
\]

which first must be proved by induction. If you need the trivial property that if \(x \) is inside subinterval \(i \), then it is not in another subinterval \(j \), you must bring in the following lemma:

2A typical proof of say 100 proof steps, produces over 4000 lines of proof trace when each step is replayed.
parts_disjoint: LEMMA FORALL (P: partition(a,b), ii, jj: below(length(P)-1)):
 seq(P)(ii) < x AND x < seq(P)(1 + ii) AND
 seq(P)(jj) < x AND x < seq(P)(1 + jj)
IMPLIES
 jj = ii

If you have established that something is true for an arbitrary subinterval i, and you want
to conclude that it is therefore true for all of [a, b], you need to reference:

Prop: VAR [T -> bool]
part_induction: LEMMA (FORALL (P: partition(a,b))):
 (FORALL (x: closed_interval(a,b)):
 LET xx = seq(P), N = length(P) IN
 (FORALL (ii : below(N-1)):
 xx(ii) <= x AND x <= xx(ii+1) IMPLIES
 Prop(x))
 IMPLIES Prop(x))

and manually instantiate the property of interest. Clearly, this adds a tremendous amount
of time-consuming, tedious work.

In general constructs such as $x_0, x_1, ..., x_N$ inevitably lead to inductions, the details of
which mathematicians such as Rosenlicht rarely delve into.

A.2 Step Functions

There are many properties of step functions that are obviously true from a visual viewpoint,
but require fairly time-consuming proofs in a mechanical theorem prover. For example,
the property that if you add two step-functions, you get another step function is assumed
without proof in Rosenlicht. However, the proof in PVS was surprisingly tedious:

sum_step_is_step: LEMMA a < b AND
 step_function?(a, b, f) AND
 step_function?(a, b, g)
IMPLIES
 step_function?(a, b, f + g)

This lemma required over 350 proof steps and the construction of a function

UnionPart(a:T,b:{x:T|x<a},P1,P2: partition[T](a,b)):
partition[T](a,b) =
set2part(union(part2set(a, b, P1), part2set(a, b, P2)))

that generates a new partition containing all of the x_is from the two step functions being
added together. All of the trivial properties such as the fact that if an x_i is a discontinuity
point on one of the original step functions then it is also one of the discontinuity points in
the generated one must be manually introduced into the proof in order to be used. The
obvious property that the nth sub interval of the new partition must be contained within
some sub interval of the original partitions is
Union lem: LEMMA FORALL (a:T, b: {x:T|a<x}, P1,P2: partition[T](a, b),
n: below(length(UnionPart(a,b,P1,P2))-1)):
in_sect?(a,b,UnionPart(a,b,P1,P2),n,x)
IMPLIES
(EXISTS (k: below(length(P1)-1)):
seq(P1)(k) <= UnionPart(a,b,P1,P2)(n) AND
UnionPart(a,b,P1,P2)(n+1) <= seq(P1)(k+1))

This property requires a tricky proof using the following maximum:

"max[length(P1!1) - 1] \{k: below(length(P1!1) - 1) |
seq(P1!1)(k) <= UnionPart(a!1, b!1, P1!1, P2!1)\}seq(n!1))"

i.e, the largest subinterval index less than n. Similar proofs were needed for the difference of
two partitions, the concatenation of two partitions and several other constructions involving
step functions.

A.3 Complications Due To Working In Type Theory Rather Than
Set Theory

One of the most disturbing things about working in type theory rather than set theory is
that standard operators such as \(\Sigma \), are not unique. There are different versions depending
upon the domain of the function being summed. For example the summation operator
over functions from [nat -> real] is \(\text{sigma} \)\[nat\] whereas the operator for functions
from [upto[N] -> real] is \(\text{sigma} \)\[upto[N]\] and they are not interchangeable even though
upto[N] is a subtype of nat.

Also restrictions of function domains to subdomains can lead to ugliness involving the
PVS prelude restrict/extend functions For example

\[
\begin{align*}
\text{continuous}[\text{closed_interval}[T](\text{seq}(\text{PP})(\text{ii!1}), \text{seq}(\text{PP})(1 + \text{ii!1})))] \\
(&\text{restrict}[T, \\
&\text{closed_interval}[T](\text{seq}(\text{PP})(\text{ii!1}), \text{seq}(\text{PP})(1 + \text{ii!1})), \\
&\text{real}] \\
&(f!1), \\
&x!1)
\end{align*}
\]

in addition to a proliferation of different versions of continuous e.g. \(\text{continuous}[T](f), \),
\(\text{continuous}[\text{closed_interval}(a,b)](f)\), and \(\text{continuous}[\text{closed_interval}[T] \\
(\text{seq}(\text{PP})(\text{ii!1}), \text{seq}(\text{PP})(1 + \text{ii!1})))\].

B Illustration

As noted before, the complete presentation of a PVS proof of a lemma would require dozens
of pages and likely to be of no real interest to the reader. Therefore in this section I merely
provide a proof sketch of a theorem from page 123 of Rosenlicht.
B.1 Continuous Function Is Integrable

Theorem. If f is a continuous real-valued function on the interval $[a, b]$ then $\int_a^b f(x) \, dx$ exists.

Proof. We shall prove this theorem by showing that the criterion of the preceding lemma obtains. Since f is uniformly continuous on $[a, b]$, given any $\epsilon > 0$ we can find a δ such that whenever $x, x'' \in [a, b]$ and $|x' - x''| < \delta$ then $|f(x') - f(x'')| < \epsilon/(b-a)$. Choose any partition $x_0, x_1, ..., x_N$ of $[a, b]$ of width less than δ. For each $i = 1, ..., N$ choose $x_i', x_i'' \in [x_{i-1}, x_i]$ such that the restriction of f to $[x_{i-1}, x_i]$ attains a minimum at a_i' and a maximum at x_i''. Define step functions f_1, f_2 on $[a, b]$ by

$$f_1(x) = \begin{cases} f(x_i') & \text{if } x_{i-1} < x < x_i, i = 1, ..., N \\ f(x) & \text{if } x = x_i, i = 0, 1, ..., N \end{cases}$$

$$f_2(x) = \begin{cases} f(x_i'') & \text{if } x_{i-1} < x < x_i, i = 1, ..., N \\ f(x) & \text{if } x = x_i, i = 0, 1, ..., N \end{cases}$$

Then $f_1(x) \leq f(x) \leq f_2(x)$ for all $x \in [a, b]$. Furthermore for each $i = 1, ..., N$ we have $|x_i' - x_i''| \leq x_i' - x_i'' \leq \delta$, so that $|f(x_i') - f(x_i'')| < \epsilon/(b-a)$ and therefore $f_2(x) - f_1(x) \leq \epsilon/(b-a)$ for all $x \in [a, b]$. Therefore

$$\int_a^b (f_2(x) - f_1(x)) \, dx < \max \{ f_2(x) - f_1(x) : x \in [a, b] \} \cdot (b-a)$$

$$< \frac{\epsilon}{b-a} \cdot (b-a) = \epsilon$$

\[\square\]

B.2 Formal Proof Sketch of This Theorem

The Informal proof is 16 lines in Rosenlicht. The Formal PVS proof is over 1200 lines long (not counting the auxiliary lemmas and TCCs). The PVS proof script (i.e. M-x edit-proof) is 417 command lines and the proof trace is over 8000 lines long. Here are some highlights of this formal proof. The formal proof begins with

{-1} a!1 < b!1
{-2} FORALL (x: closed_interval(a!1, b!1)): continuous(f!1, x)

|-----
{1} integrable?(a!1, b!1, f!1)

We use a lemma that establishes that f!1 is uniformly continuous and obtain

[-1] uniformly_continuous?(LAMBDA (s: closed_interval[T](a!1, b!1)):
 f!1(s),
 LAMBDA (t: real):
 IF T_pred(t) AND a!1 <= t AND t <= b!1
THEN TRUE
ELSE FALSE
ENDIF)

[-2] a!1 < b!1
[-3] FORALL (x: closed_interval(a!1, b!1)): continuous(f!1, x)

[1] integrable?(a!1, b!1, f!1)

We rewrite with the lemma step_to_integrable and the goal becomes:

[1] EXISTS (f1, f2: [T -> real]):
step_function?(a!1, b!1, f1) AND step_function?(a!1, b!1, f2)
AND FORALL (xx: closed_interval[T](a!1, b!1)):
f1(xx) <= f!1(xx) AND f!1(xx) <= f2(xx)
AND integrable?(a!1, b!1, f2 - f1)
AND integral(a!1, b!1, f2 - f1) < eps!1

We instantiate f1 and f2 with f_min and f_max defined as follows

min_x(a:T,b:{x:T|a<x}, f: fun_cont_on(a,b)):
{mx: T | a <= mx AND mx <= b AND
(FORALL (x: T): a <= x AND x <= b IMPLIES
f(mx) <= f(x))}

max_x(a:T,b:{x:T|a<x}, f: fun_cont_on(a,b)):
{mx: T | a <= mx AND mx <= b AND
(FORALL (x: T): a <= x AND x <= b IMPLIES
f(mx) >= f(x))}

f_min(a:T,b:{x:T|a<x},P: partition(a,b), f: fun_cont_on(a,b)):
{ff: [T -> real] | LET xx = seq(P) IN
FORALL (ii : below(length(P)-1)):
FORALL (x: T): (xx(ii) < x AND x < xx(ii+1) IMPLIES
ff(x) = f(min_x(xx(ii),xx(ii+1),f))) AND
((xx(ii) = x OR x = xx(ii+1)) IMPLIES
ff(x) = f(x))}

f_max(a:T,b:{x:T|a<x},P: partition(a,b), f: fun_cont_on(a,b)):
{ff: [T -> real] | LET xx = seq(P) IN
FORALL (ii : below(length(P)-1)):
FORALL (x: T): (xx(ii) < x AND x < xx(ii+1) IMPLIES
ff(x) = f(max_x(xx(ii),xx(ii+1),f))) AND
((xx(ii) = x OR x = xx(ii+1)) IMPLIES
ff(x) = f(x))}

These leaves us with the following goal:
{1} step_function?(a!1, b!1, fmin(a!1, b!1, PP, f!1))
AND step_function?(a!1, b!1, fmax(a!1, b!1, PP, f!1))
AND FORALL (xx: closed_interval[T](a!1, b!1)):
 fmin(a!1, b!1, PP, f!1)(xx) <= f!1(xx) AND
 f!1(xx) <= fmax(a!1, b!1, PP, f!1)(xx)
AND integrable?(a!1, b!1,
 fmax(a!1, b!1, PP, f!1) - fmin(a!1, b!1, PP, f!1))
AND integral(a!1, b!1,
 fmax(a!1, b!1, PP, f!1) - fmin(a!1, b!1, PP, f!1))
 < eps!1

Next, we demonstrate that fmin and fmax are indeed step functions. And then seek to
establish each of the remaining conjuncts. Lets look at just one of the obligations:

 fmin(a!1, b!1, PP, f!1)(xx!1) <= f!1(xx!1)

To prove this we get the definition of fmin and bring in part_induction:

{-1} FORALL (Prop: [T -> bool], a, b: T, P: partition[T](a, b), x: closed_interval[T](a, b)):
 LET xx: [below[P'length] -> closed_interval[T](a, b)] = seq(P),
 N = length(P)
 IN
 (FORALL (ii: below(N - 1)):
 xx(ii) <= x AND x <= xx(ii + 1) IMPLIES Prop(x))
 IMPLIES Prop(x)
[-2] FORALL (ii: below(length(PP) - 1)):
 FORALL (x: T):
 (seq(PP)(ii) < x AND x < seq(PP)(1 + ii) IMPLIES
 fmin(a!1, b!1, PP, f!1)(x) =
 f!1(min_x[T](seq(PP)(ii), seq(PP)(1 + ii), f!1)))
 AND
 ((seq(PP)(ii) = x OR x = seq(PP)(1 + ii)) IMPLIES
 fmin(a!1, b!1, PP, f!1)(x) = f!1(x))
[-3] a!1 < b!1
|-------
[1] fmin(a!1, b!1, PP, f!1)(xx!1) <= f!1(xx!1)

Provide the property for the induction

 (inst -1 "(LAMBDA x: fmin(a!1, b!1, PP, f!1)(x) <= f!1(x))"
 "a!1" "b!1" "PP" "xx!1")

obtaining

[-1] seq(PP)(ii!1) <= xx!1
[-2] xx!1 <= seq(PP)(1 + ii!1)
{-3} (\text{seq}(\text{PP})(ii!1) < xx!1 \text{ AND } xx!1 < \text{seq}(\text{PP})(1 + ii!1)) \text{ IMPLIES}
\text{fmin}(a!1, b!1, \text{PP}, f!1)(xx!1) =
f!1(\text{min}_x[T](\text{seq}(\text{PP})(ii!1), \text{seq}(\text{PP})(1 + ii!1), f!1))
\text{AND}
((\text{seq}(\text{PP})(ii!1) = xx!1 \text{ OR } xx!1 = \text{seq}(\text{PP})(1 + ii!1)) \text{ IMPLIES}
\text{fmin}(a!1, b!1, \text{PP}, f!1)(xx!1) = f!1(xx!1))

\[{-4}\] a!1 < b!1

\|--|--|
\[1\] \text{fmin}(a!1, b!1, \text{PP}, f!1)(xx!1) \leq f!1(xx!1)

If \text{seq}(\text{PP})(ii!1) < xx!1 then the result follows quickly from the definition of \text{min}_x. But we have to also deal with the cases where \text{seq}(\text{PP})(ii!1) = xx!1 or \text{seq}(\text{PP})(1+ii!1) = xx!1 which I will pass over here.

Once we have established the integrability of
\text{fmax}(a!1, b!1, \text{PP}, f!1) - \text{fmin}(a!1, b!1, \text{PP}, f!1)
we need to establish:
\text{integral}(a!1, b!1, \text{fmax}(a!1,b!1,\text{PP},f!1)- \text{fmin}(a!1,b!1,\text{PP},f!1)) < \epsilon!1.

In the prover, we have:

\[{-1}\] integrable?(a!1, b!1,
\text{fmax}(a!1, b!1, \text{PP}, f!1) - \text{fmin}(a!1, b!1, \text{PP}, f!1))

\[{-2}\] step_function?(a!1, b!1, \text{fmax}(a!1, b!1, \text{PP}, f!1))

\[{-3}\] step_function?(a!1, b!1, \text{fmin}(a!1, b!1, \text{PP}, f!1))

\[{-4}\] eq_partition(a!1, b!1, 2 + \text{floor}((b!1 - a!1) / \text{delta!1})) = \text{PP}

\[{-5}\] \text{FORALL} (x,
\text{y}:
\text{(LAMBDA} (t: \text{real}):
\text{IF} \text{T_pred}(t) \text{ AND } a!1 \leq t \text{ AND } t <= b!1 \text{ THEN TRUE}
\text{ELSE FALSE}
\text{ENDIF)}):
\text{abs}(x - y) < \text{delta!1} \text{ IMPLIES}
\text{abs}(f!1(x) - f!1(y)) < (\epsilon!1 / 2) / (b!1 - a!1)

\[{-6}\] a!1 < b!1

\[{-7}\] \text{FORALL} (x: \text{closed_interval}(a!1, b!1)): \text{continuous}(f!1, x)

\|--|--|
\[{1}\] \text{integral}(a!1, b!1, \text{fmax}(a!1, b!1, \text{PP}, f!1) - \text{fmin}(a!1, b!1, \text{PP}, f!1)) < \epsilon!1

Using the a lemma about partitions with equal sub-intervals, we have

\[{-1}\] \text{width}(a!1, b!1,
\text{eq_partition}(a!1, b!1, 2 + \text{floor}((b!1 - a!1) / \text{delta!1})))
= (b!1 - a!1) / (1 + \text{floor}((b!1 - a!1) / \text{delta!1}))

with some algebraic manipulations we obtain:

\[{-2}\] \text{width}(a!1, b!1, \text{PP}) < \text{delta!1}
Using lemma integral_bound_abs we get

\{-1\} (a!1 < b!1 AND

\begin{align*}
\text{integrable?}(a!1, b!1, \\
\fmax(a!1, b!1, PP, f!1) - \fmin(a!1, b!1, PP, f!1))
\end{align*}

AND

\begin{align*}
(\text{FORALL } (x: \text{closed_interval}[T](a!1, b!1)):
\abs((\fmax(a!1, b!1, PP, f!1) - \fmin(a!1, b!1, PP, f!1))(x)) \leq \\
\eps!1 / (2 * (b!1 - a!1)))
\end{align*}

\text{IMPLIES}

\begin{align*}
\abs(\text{integral}(a!1, b!1, \\
\fmax(a!1, b!1, PP, f!1) - \fmin(a!1, b!1, PP, f!1)))
\leq \eps!1 / (2 * (b!1 - a!1)) * (b!1 - a!1)
\end{align*}

\{-2\} \text{width}(a!1, b!1, PP) < \text{delta}!1

\{-3\} \text{integrable?}(a!1, b!1, \\
\fmax(a!1, b!1, PP, f!1) - \fmin(a!1, b!1, PP, f!1))

\{-4\} \text{step_function?}(a!1, b!1, \fmax(a!1, b!1, PP, f!1))

\{-5\} \text{step_function?}(a!1, b!1, \fmin(a!1, b!1, PP, f!1))

\{-6\} \text{FORALL } (x, \\
y: \\
LAMBDA (t: \text{real}):
\begin{align*}
\text{IF } \text{T_pred}(t) \text{ AND } a!1 \leq t \text{ AND } t \leq b!1 \text{ THEN TRUE} \\
\text{ELSE FALSE} \\
\text{ENDIF})
\end{align*}

\begin{align*}
\abs(x - y) < \text{delta}!1 \text{ IMPLIES}
\abs(f!1(x) - f!1(y)) < (\eps!1 / 2) / (b!1 - a!1)
\end{align*}

\{-7\} a!1 < b!1

\{-8\} \text{FORALL } (x: \text{closed_interval}(a!1, b!1)): \\
\text{continuous}(f!1, x)

\------

\[1\] \text{integral}(a!1, b!1, \fmax(a!1, b!1, PP, f!1) - \fmin(a!1, b!1, PP, f!1))
\leq \eps!1 \\

\[2\] \text{integrable?}(a!1, b!1, f!1)

The uniform continuity result \{-6\} is used to establish

\begin{align*}
\abs(\text{MAX}_x - \text{MIN}_x) < \text{delta}!1 \text{ IMPLIES}
\abs(f!1(\text{MAX}_x) - f!1(\text{MIN}_x)) < (\eps!1 / 2) / \text{BMA}
\end{align*}

(Note: this occurs as the following subcase:

\begin{align*}
\text{continuous_integrable.1.1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1}
\end{align*}
)

Further manipulation enables us to simply \{-1\} to:

\{-1\} \abs(\text{integral}(a!1, b!1, \\
\fmax(a!1, b!1, PP, f!1) - \fmin(a!1, b!1, PP, f!1)))
\leq \eps!1 / (2 * \text{BMA} * \text{BMA}

where \text{BMA} = \"b!1-a!1, from which the subgoal follows from properties about abs. The complete proof trace is 8000 lines long.
C Example of Proof Deficiency in Rosenlicht

The proofs in Rosenlicht are remarkably complete and well documented. Nevertheless, it is not unusual to encounter special cases that are not covered in the book. Here is an example of such a deficiency taken from page 114 and 115.

Theorem. Let \(\alpha, \beta \in [a, b] \) with \(\alpha < \beta \). Let \(f : [a, b] \to \mathbb{R} \) be defined by

\[
f(x) = \begin{cases}
1 & \text{if } x \in (\alpha, \beta) \\
0 & \text{if } x \in [a, b], x \notin (\alpha, \beta)
\end{cases}
\]

Then

\[
\int_{a}^{b} f(x) \, dx = \beta - \alpha
\]

Proof. Let \(x_0, x_1, ..., x_N \) be a partition of \([a, b]\) of width less than \(\delta \) and consider a Riemann sum for \(f \) corresponding to this partition, say

\[
S = \sum_{i=1}^{N} f(x'_i)(x_i - x_{i-1})
\]

where \(x_{i-1} \leq x'_i \leq x_i \) for each \(i = 1, 2, ..., N \). Since \(f(x'_i) \) is 1 or 0 according as the point \(x'_i \) is in the open interval \((\alpha, \beta)\) or not, we have

\[
S = \sum^* (x_i - x_{i-1})
\]

the asterisk indicating that we include in the sum only those \(i \) for which \(x'_i \in (\alpha, \beta) \). Now choose \(p, q \) from among the \(i = 1, 2, ..., N \) such that

\[
x_{p-1} \leq \alpha < x_p, \quad x_{q-1} < \beta \leq x_q
\]

But this step overlooks the possibility that all of the \(x_i \) may fall outside of \((\alpha, \beta)\). The proof is repairable, but this case must be dealt with explicitly. The PVS theorem prover required that all of the details of this case be supplied. However, these details were not included in the Rosenlicht text. Admittedly this would clutter up the text book, but a complete formal proof must cover it. Another special case is when \(N \) is 3 or less for which the above construction again fails. Later in the proof the following fact is used \(p + 1 \leq q - 1 \). But this is not possible if \(N \) is very small.

D User Guide

It is expected that most users of this formalization of the integral, will only need the theorems in two PVS theories: integral and fundamental_theorem. Here is a quick reference guide to these theorems:
The theory was first developed for integrals where $a < b$. These results are distributed over a number of PVS theories:

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Lemma Name</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int_a^b f(x) , dx = 0$</td>
<td>Integral_a_to_a</td>
<td></td>
</tr>
<tr>
<td>$\int_a^b c , dx = c \cdot (b - a)$</td>
<td>Integral_const_fun</td>
<td>integral_prep</td>
</tr>
<tr>
<td>$\int_a^b f(x) , dx = - \int_a^b f(x) , dx$</td>
<td>Integral_rev</td>
<td></td>
</tr>
<tr>
<td>$\int_a^b c f(x) , dx = c \int_a^b f(x) , dx$</td>
<td>Integral_scal</td>
<td>integral_prep</td>
</tr>
<tr>
<td>$\int_a^b f(x) + g(x) , dx = \int_a^b f(x) , dx + \int_a^b g(x) , dx$</td>
<td>Integral_sum</td>
<td>integral_prep</td>
</tr>
<tr>
<td>$\int_a^b f(x) - g(x) , dx = \int_a^b f(x) , dx - \int_a^b g(x) , dx$</td>
<td>Integral_diff</td>
<td>integral_prep</td>
</tr>
<tr>
<td>$\int_a^b f \mid (y) := yv , dx = \int_a^b f , dx$</td>
<td>Integral_chg_one_pt</td>
<td>integral_prep</td>
</tr>
<tr>
<td>$f(x) \geq 0 \supset \int_a^b f , dx \geq 0$</td>
<td>Integral_ge_0</td>
<td>integral_prep</td>
</tr>
<tr>
<td>$</td>
<td>f(x)</td>
<td>< M \supset</td>
</tr>
<tr>
<td>f integrable $\supset</td>
<td>f(x)</td>
<td>< B$</td>
</tr>
<tr>
<td>f continuous $\supset f$ integrable</td>
<td>continuous_Integrable?</td>
<td>integral_prep</td>
</tr>
<tr>
<td>$\int_a^b f(x) dx + \int_a^c f(x) dx \int_a^c f(x) dx$</td>
<td>Integral_split</td>
<td>integral_prep</td>
</tr>
<tr>
<td>For step function $f : \int_a^b f(x) , dx = \sum_{i=1}^n c_i (x_i - x_{i-1})$</td>
<td>step_function_on_integral</td>
<td></td>
</tr>
<tr>
<td>$F = \int_a^x f(t) , dt \supset F'(t) = f$</td>
<td>fundamental1</td>
<td></td>
</tr>
<tr>
<td>$\int_a^b f(t) , dt = F(b) - F(a)$</td>
<td>fundamental3</td>
<td></td>
</tr>
</tbody>
</table>

All of the theories and proofs are available at

References

The PVS Theorem prover is a widely used formal verification tool used for the analysis of safety-critical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed. The theory and proofs were based on Rosenlicht's classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

SUBJECT TERMS
Formal methods; Formal verification; Calculus; Integral; Riemann

AIRCRAFT CONCEPT NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

ABSTRACT
The PVS Theorem prover is a widely used formal verification tool used for the analysis of safety-critical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed. The theory and proofs were based on Rosenlicht's classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

SUBJECT TERMS
Formal methods; Formal verification; Calculus; Integral; Riemann