High-Fidelity Full System Simulations

John K. Lytle
Glenn Research Center, Cleveland, Ohio
The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

• **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

• **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

• **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

• **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

• **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

• **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

• Access the NASA STI Program Home Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to help@sti.nasa.gov

• Fax your question to the NASA Access Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at 301–621–0390

• Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076
High-Fidelity Full System Simulations

John K. Lytle
Glenn Research Center, Cleveland, Ohio

Prepared for the
40th Joint Propulsion Conference and Exhibit
cosponsored by the AIAA, ASME, SAE, and ASEE
Fort Lauderdale, Florida, July 11–14, 2004

National Aeronautics and
Space Administration

Glenn Research Center

October 2004
This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov
High-fidelity full system simulations have the potential for revolutionizing the way complex systems, such as propulsion systems for aerospace vehicles, are designed, developed, manufactured, and operated. Significant time and cost savings will result from simulations that will resolve deleterious component interactions early in the design process. In addition, innovative new system configurations will result from the use of new tools that enable designers to challenge traditional rules and practices. The major challenges to developing and implementing high-fidelity systems simulations are in reducing the time and effort required to build, execute, and analyze data for the high complex simulations. In addition, large scale testing with unique instrumentation is required to validate the simulations. The solution to these problems reside in the application of advanced information technologies to assist the user to effectively manage, process, and synthesize the vast amount of data. The following presentation describes in more detail the benefits of high-fidelity full system simulations, the challenges to developing and implementing large scale simulations, and one approach that is being followed by the NASA Glenn Research Center to overcome these challenges. In addition, topics for discussion by the panel and audience are suggested.
High-fidelity Full System Simulation
The Virtual Engine Test Cell

Dr. John K. Lytle
40th Joint Propulsion Conference
July 13, 2004

Glenn Research Center at Lewis Field

Major Issue in Meeting the National Needs

- The nation’s ability to develop advanced propulsion systems for aviation and space exploration is at high risk due to increasing complexity and cost.
 - The complexity of modern and future aerospace systems is pushing the limits of our engineering abilities. Across the DoD, FAA, NASA and industry there is a disturbing rate of cost overruns, schedule slips and aerospace systems that don’t achieve planned capability” ….NASA Associate Administrator, Tech Day on the Hill, 2001
 - “…Without significant reductions in cost, the nation cannot afford a new military aircraft engine…” DDRE, IHPTET Steering Committee Meeting, 1996

- New and innovative technologies are needed that enable
 - High-Confidence
 - Performance
 - Operability
 - Life
 - Rapid and Cost-Effective System Design and Development

Glenn Research Center at Lewis Field
Virtual Testing Projected to Save $100s M in Development Costs!!

- A NASA/Industry Team Estimates a 30% to 40% Reduction in Commercial Engine Development Time and Cost using Virtual Testing.

- DOD Study* of Military Engine Development Estimates a 50% Reduction in Development Time and Cost with Design through Virtual Testing.
 - "THE SUCCESSFUL DEVELOPMENT OF THIS DESIGN SYSTEM REQUIRES THE ESTABLISHMENT OF A FORMAL RELATIONSHIP AMONG NASA’s NPSS PROGRAM AND DOD’s IHPTET PROGRAM & HCF INITIATIVE, AND THE SUPPORT OF INDUSTRY"
 - TIMETABLE: 2003 - DESIGN SYSTEM DEVELOPED & IN PLACE
 2003-2009 - DESIGN SYSTEM VALIDATION
 2009 - FULLY QUALIFIED SYSTEM, READY FOR USE

HCF – High Cycle Fatigue

Glenn Research Center at Lewis Field

Summary of IHPTET Cost Reduction Panel Study

IHPTET Study of Military Engine Development Estimates a 50% Reduction in Development Cost with Design through Virtual Engine Testing*

- the predictive accuracy of advanced simulation and design tools will have to improve significantly...

- ...future automated design software should focus on the development of highly accurate, three dimensional, multi-disciplinary (aerodynamic, thermodynamic, structural, and secondary flow) engine design systems….a virtual engine test cell

- Projected benefits of a virtual engine test cell to a notional development program (F100, F404, F414, F119) of ten years, $1.5B effort, 14 test engines, 9 flight test engines and over 11,000 hours of engine tests.
 - 50% reduction in tooling cost
 - 33% reduction in the average development engine cost
 - 30% reduction in the cost of fabricating, assembling and testing rig hardware
 - 36% reduction in the number of development engines
 - 60% reduction in total hardware cost

*Skira, Charles, A., “Will There Ever Be a Another New Military Aircraft Engine Development Program?”, AIAA 99-2660

Glenn Research Center at Lewis Field
The Vision

An advanced engineering analysis environment that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process.

...a virtual test cell that augments physical testing through the integration of physics-based modeling and information technologies...

Major Elements

- Simulation Environment
 - Code Parallelization
 - 3-D Subsystems/System

- Engineering Applications
 - Coupled aero-thermal-structural analysis
 - Hierarchical methods

- Component Integration
 - 0-D engine/1-D compressor
 - 0-D core/3-D LP subsystem

- Computing Testbeds
 - High-speed networks
 - PC cluster
 - Distributed computing

Seamless integration of people, data, analysis tools, and computing resources

High-fidelity, large-scale simulations
The Numerical Propulsion System Simulation
One Approach to High-fidelity Simulation

The Simulation Environment
A modern modular, extensible software architecture
• Object-oriented
• Multi-fidelity
• Multi-disciplinary
• Distributed

Engineering Applications

Glenn Research Center at Lewis Field

NASA/TM—2004-213309 5
The Numerical Propulsion System Simulation
One Approach to High-fidelity Simulation

Low-cost, High-performance Computing

AEROSHARK Cluster 128 Processors

Glenn Research Center

at Lewis Field

Topic for Discussion

• Do high-fidelity integrated, full system simulations have the potential to revolutionize propulsion system design and development?
• What are the major challenges in developing and implementing Virtual Engine Testing?
• Are technologies available today to begin the implementation?
• What technologies are needed to fully develop the capability?
Unclassified Unclassified

High-Fidelity Full System Simulations

John K. Lytle

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

National Aeronautics and Space Administration
Washington, DC 20546–0001

High-fidelity full system simulations have the potential for revolutionizing the way complex systems, such as propulsion systems for aerospace vehicles, are designed, developed, manufactured, and operated. Significant time and cost savings will result from simulations that will resolve deleterious component interactions early in the design process. In addition, innovative new system configurations will result from the use of new tools that enable designers to challenge traditional rules and practices. The major challenges to developing and implementing high-fidelity systems simulations are in reducing the time and effort required to build, execute, and analyze data for the high complex simulations. In addition, large scale testing with unique instrumentation is required to validate the simulations. The solution to these problems reside in the application of advanced information technologies to assist the user to effectively manage, process, and synthesize the vast amount of data. The following presentation describes in more detail the benefits of high-fidelity full system simulations, the challenges to developing and implementing large scale simulations, and one approach that is being followed by the NASA Glenn Research Center to overcome these challenges. In addition, topics for discussion by the panel and audience are suggested.