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ABSTRACT  
 
The benchmark solution for the cascade-gust interaction problem is computed using a linearized Euler code 

called LINFLUX. The inherently three-dimensional code is run in the thin-annulus limit to compute the two-
dimensional cascade response. The calculations are carried out in the frequency-domain and the unsteady response at 
each of the gust’s three frequency component is computed. The results are presented on modal basis for pressure 
perturbations (i.e., acoustic modes) as well as velocity perturbations (i.e., convected gust modes) at each frequency. 

INTRODUCTION 
 

The periodic impingement of the wakes of a rotor on a downstream stator is one of the principal sources of 
turbomachinery noise and a significant contributor to the overall noise produced by modern aircraft engines. As such, 
this source has been the focus of many analytical modeling efforts over the years, but with the recent emergence of 
computational aeroacoustics (CAA) as a viable alternative, the emphasis has now shifted away from analytical 
approaches to purely numerical ones. Naturally, as in the other aeroacoustic problems of engineering interest, the 
success of CAA is predicated on the availability of efficient computational algorithms and robust boundary 
conditions. In theory, a candidate algorithm must be able to handle the generation and propagation of sound waves in 
the presence of complex geometries, and through non-uniform media, with no dispersion or dissipation; the boundary 
conditions must be able to handle the passage of the unsteady disturbances through the boundaries of the 
computational domain with no reflection; and both of these requirements must be satisfied at frequencies of 
engineering interest. The usefulness of CAA is, therefore, greatly dependent on the extent to which all of these 
conditions are met, and its practicality is dependent on the resource requirements (hardware and CPU time) that must 
be expended to achieve reasonably accurate solutions for design and analysis purposes. The proposed two-
dimensional benchmark problem was designed to address principally the question of usefulness. The issue of 
practicality is best addressed using a three-dimensional benchmark problem, which is postponed until the next 
workshop. 

BENCHMARK SOLUTION 
 
The solution for the benchmark problem was obtained using a code called LINFLUX which is based on a 

linearized frequency-domain method for solving the three-dimensional inviscid unsteady flow equations. The method 
has been extensively documented and validated using two- and three-dimensional test cases (see refs.1 through 4) 
and so will not be covered here. LINFLUX is actually part of a collection of codes which also includes a grid 
generation package called TIGER, a steady nonlinear inviscid flow solver called TURBO, and a set of processing 
routines for generating the harmonic content of the incident disturbance (i.e., acoustic, vortical and entropic). The 
information obtained from all three codes is used to run LINFLUX, which calculates the acoustic response produced 
by the incident disturbances on the blade row at specified harmonics of the rotor-stator blade passing frequency. 

Computational grid 
 

Since LINFLUX cannot be easily modified to run in two-dimensional mode, the cascade geometry was 
“wrapped” around an annulus with a mean radius of 5.7R c≈ and a hub-to-tip radius ratio of 0.996 (see Figure 1a). 
The result is a blade row that is, strictly speaking, three-dimensional, but owing to its extremely small spanwise 
extent (only ~2.3% of the vane chord) would result in solutions that are effectively two-dimensional in nature 
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depending only on the axial and tangential coordinates (see Figure 1b). Since the solution is computed in the 
frequency-domain, only one passage of the blade row is needed when appropriate periodicity conditions are enforced 
(see Figure 1c). To ensure sufficient resolution of the mean flow details and the response to the highest frequency 
gust (i.e., reduced frequency of 9 / 4π ), a grid with 301×81×7 points in the axial, tangential and radial directions was 
created. The grid is packed near the airfoil boundaries and also in the vicinity of the leading edge (see Figure 1d).  

 
 

 

 
 

Figure 1. Three-dimensional thin annulus representation of the two-dimensional geometry of the benchmark 
problem (a). Hub-to-tip radius ratio is 0.996 (b) resulting in a solution that is effectively independent 
of the radial coordinate. The passage grid, which has 301×81×7 points in the axial, tangential and 
radial directions, is shown for the radial grid index = 4 (c). The grid is packed near the airfoil 
surfaces and in the vicinity of the leading edge (d).  

Steady flow solution 
 

The steady flow needed as input to LINFLUX was computed using the nonlinear Euler code called TURBO (see 
ref. 5) on the grid discussed in the previous section. The computation was run to convergence as indicated on the left 
side of Figure 2. The graph shows the convergence history of the error (residual) as a function of the iteration count. 
The residual was reduced by five orders of magnitude after 25,000 iterations, but the iteration process was continued 
a further 10,000 steps to ensure convergence of all relevant flow parameters. On the right, the resulting Mach number 
distribution after 35,000 iterations is shown. 

For the purposes of the presentation, the x θ−  plane corresponding to the radial grid index = 4 is unrolled and 
both the geometry and solution are duplicated. In this two-dimensional representation, x denotes the horizontal 
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coordinate, and y rθ=  denotes the vertical coordinate. Clearly the steady flow is uniform along the y-direction at 
the inflow and outflow planes ( 1.5x c= ∓ ) except for the presence of a thin wake downstream of the vane trailing 
edge produced as a result of numerical dissipation. The flow over the vane itself behaves as expected with steady 
loading evident in the form of low Mach number values (corresponding to high pressure values) on the pressure side 
and high Mach number values (corresponding to low pressure values) on the suction side of the vane. 

Representative averaged flow quantities at the inflow and outflow planes obtained using TURBO are shown in 
Table 1. It should be noted that the inflow plane flow angle is an input in TURBO. Using the isentropic flow 
relations, the stagnation pressure and temperature at the inflow and outflow planes can be readily computed and 
found to be equal to 1.00000 satisfying the other requirements specified in the benchmark problem. 

 
 

 
 

Figure 2. Steady flow obtained using the TURBO code. Convergence history over 35,000 iterations is 
shown on the left and the resulting Mach number distribution is shown on the right. There is 
evidence of slight numerical dissipation in the form of a thin wake downstream of the vane 
trailing edge. 

 
 
 

 Mach No. Static Pressure Static Temperature Flow Angle (deg.) 

Inflow Plane 0.44958 0.87049 0.96115 36.00* 
Outflow Plane 0.34704 0.92000 0.97648 1.71 
 

Table 1. Steady flow quantities at the inflow and outflow planes of the computational domain after 35,000 
iterations. The flow variables are normalized by the standard conditions; pressure = 2116.2 lbf/ft2, 
temperature = 519 oR, and the speed of sound = 1116.8 ft/s. 

Unsteady flow solution 
 

Using the steady background flow described in the previous section and the gust harmonic content given in 
benchmark problem, LINFLUX was executed to calculate the harmonics of the unsteady response produced as a 
result of the impingement of the gust on the cascade. For each harmonic component of the gust (i.e., n = 1 to 3), the 
code was run until the residual level had reached the round-off error region. This required almost 20,000 iterations 
for the first harmonic, little over 33,000 iterations for the second harmonic, and nearly 12,000 iterations for the third 
harmonic. In every case, the size of the residual was reduced by at least six orders of magnitude. 

Samples from the unsteady response are shown in Figure 3, 4 and 5. As before, the x θ−  plane corresponding to 
the radial grid index = 4 is unrolled and duplicated. This time, however, the harmonic solution (for each n) is shifted 
by exp ( )ijnσ  for the jth passage, where 2 /B Vσ π= is the so-called inter-blade phase angle and i is the square root 
of -1. The quantity B/V denotes the relationship between the gust and cascade periods in the y-direction which, using 
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the information supplied in the benchmark problem can be readily shown to equal 22/54 over a 2π  period. It is 
convenient to interpret B and V as the blade and vane counts for the annulus problem. Then, in view of the Tyler-
Sofrin rule, m = nB – kV (where k is an integer), the modal structure of the response can be interpreted. The 
computed unsteady field includes both acoustic and convective modes. The acoustic modes, which correspond to k = 
0, k = 1 or both, propagate at the speed of sound relative to the medium in both directions. The convective modes 
always correspond to k = 0 and travel at the speed of the background flow (i.e., are convected by it). The pressure 
field is comprised of acoustic modes only, while the velocity field includes both acoustic and convective modes, but 
tends to be dominated by the latter. The dominant acoustic modes produced in response to each gust frequency are 
listed in Table 2. The computed response is evanescent (i.e., cut-off) at the primary frequency, a deliberate design 
feature of the benchmark problem. The conversion from the 3D mode orders to the 2D wavenumbers is through the 
relation ( ) /a

yk m R=  where the superscript (a) denotes the acoustic wavenumber. 
 
 

Frequency Annulus Mode Order (3D) Mode Wavenumber (2D) Mode Type 

22m = +  ( )ˆ 3.84a
yk = +  Evanescent 

32m = −  ( )ˆ 5.59a
yk = −  Evanescent ω  

22m = +  ( )ˆ 3.84c
yk = +  Convected 

10m = −  ( )ˆ 1.75a
yk = −  Propagating 

2ω  
44m = +  ( )ˆ 7.68c

yk = +  Convected 

12m = +  ( )ˆ 2.09a
yk = +  Propagating 

42m = −  ( )ˆ 7.33a
yk = −  Propagating 3ω  

66m = +  ( )ˆ 11.52c
yk = +  Convected 

 
Table 2. The dominant unsteady response modes in the annulus and their two-dimensional transverse 

wavenumber equivalents. The 2D wavenumbers are normalized by the vane chord. The acoustic 
response at the primary frequency is cut-off. The convected mode wavenumbers (denoted by the 
superscript (c)) are multiples of the input gust wavenumber 11π/9. 

 
In Figure 3 the response to the incident gust corresponding to the primary frequency 3 / 4ω π= is shown. The 

real part of pressure perturbation is shown on the left, and the real part of the axial component of velocity 
perturbation is shown on the right. The pressure and velocity perturbations are normalized by the inflow plane static 
pressure and steady velocity which can be obtained from Table 1. The pressure response, which is cut-off at this 
frequency, is dominated by two evanescent acoustic modes m = +22 and m = -32. The perturbation velocity field is 
dominated by the convected gust and thus is mainly comprised of m = +22 convected mode. The incident gust is 
distorted as it passes through the cascade. Note that the axial velocity perturbations are essentially out of phase 
downstream of the vane leading edge, and there is a jump in axial velocity across the wake sheet downstream of the 
trailing edge. It should be noted that the jump is not an artifact of the numerical dissipation discussed earlier, but a 
feature of the physical problem. 
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Figure 3. The computed response due to the gust at the primary frequency (i.e., ω = 3π/4). Real part of the 
pressure perturbation is shown on the left and real part of the axial velocity perturbation is shown on 
the right. The pressure response is cut-off at this frequency and includes two evanescent acoustic 
modes m = +22 and m = -32. The perturbation axial velocity field is dominated by the convected gust 
and is mainly comprised of m = +22 convective mode.  

 
 

Figure 4 shows the corresponding plots for the calculated response at twice the primary frequency. The pressure 
field at this frequency is due to a single propagating acoustic mode m = -10 with the wave fronts clearly evident away 
from the cascade especially at the exit plane. The axial velocity field is dominated by the convective mode m = +44 
exhibiting twice as many wave fronts as that in Figure 1. Note the change in scale for both the pressure and velocity 
plots. 

Finally, Figure 5 shows the calculated response at three times the primary frequency. The pressure field at this 
frequency is comprised of two propagating acoustic modes m = +12 and m = -42. The axial velocity field at this 
frequency is due to the convective mode m = +66 exhibiting three times as many wave fronts as that in Figure 1. 
Note the change in scale for both the pressure and velocity plots. The pressure wave fronts are not as clearly 
discernable as in Figure 4 due to interference between two contributing acoustic modes. 

 
 

 
 

Figure 4. The computed response due to the gust at the twice the primary frequency. The pressure field is 
entirely comprised of the propagating (i.e., cut-on) acoustic mode m = -10. The axial velocity 
perturbation is due to the m = +44 convective mode. 
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Figure 5. The computed response due to the gust at three times the primary frequency. The pressure response is 
comprised of two propagating acoustic modes m = +12 and m = -42. The axial velocity perturbation 
field is due to the m = +66 convective mode. 

 
 

Computed spectra and mode information 
 

In Tables 3 through 5 pressure levels for select locations in the domain are listed per requirements of the 
benchmark problem. All levels are expressed in dB using the standard definition of sound pressure level (SPL) given 
by 20 log10(prms / pref) where pref = 20 µPa. The complete solution package, including both steady and unsteady parts 
of the flow, is supplied on the workshop proceedings CD.  

 
 

Suction Side SPL (dB) Pressure Side SPL (dB) Frequency x/c = –0.25 x/c = 0.00 x/c = +0.25 x/c = –0.25 x/c = 0.00 x/c = +0.25 
ω  140.7 140.6 141.2 138.0 141.5 140.5 
2ω  128.3 118.4 121.0 128.6 121.4 119.5 
3ω  104.1 107.5 92.8 104.5 103.0 97.6 

 
Table 3. Acoustic pressure spectrum on the vane. 

 
 
 
 

Inflow Plane SPL (dB) Outflow Plane SPL (dB) Frequency y/c = –0.30 y/c = 0.00 y/c = +0.30 y/c = –0.30 y/c = 0.00 y/c = +0.30 
ω  111.9 106.6 110.9 109.5 107.8 107.2 
2ω  113.2 119.3 116.2 119.6 119.4 119.3 
3ω  105.6 105.4 103.7 99.7 98.4 101.5 

 
Table 4. Acoustic pressure spectrum at the inflow and outflow planes. 
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Frequency Dominant Acoustic 
Pressure Modes Inflow Plane SPL (dB) Outflow Plane SPL (dB) 

22m = +  101.3 108.4 ω  
32m = −  113.0 83.8 

2ω  10m = −  116.8 119.2 
12m = +  97.6 95.6 3ω  42m = −  88.1 98.0 

 
Table 5. Acoustic pressure modal amplitudes at the inflow and outflow planes. 
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