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= STRIP OF A GRAPHENE SHEET ROLLED INTD A TUBE

Carbon Nanotube

CNT is a tubular form of carbon with diameter as small as 1 nm.
Length: few nm to microns.

CNT is configurationally equivalent to a two dimensional graphene
sheet rolled into a tube.
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CNT exhibits extraordinary mechanical
properties: Young's modulus over

1 TeraPascal, as stiff as diamond, and tensile
strength ~ 200 GPa.

{m,m}! ARM CHAIR

CNT can be metallic or semiconducting,
depending on chirality.
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CNT Properties

The strongest and most flexible molecular
material because of C-C covalent bonding
and seamless hexagonal network architecture

Young's modulus of over 1 TPa vs 70 GPa for
Aluminum, 700 GPA for C-fiber
- strength to weight ratio 500 time > for Al;
similar improvements over steel and
titanium; one order of magnitude
improvement over graphite/epoxy

Maximum strain ~10% much higher than any
material

Thermal conduetivity ~ 3000 W/mK in the axial
direction with small values in the radial direction
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CNT Properties (cont.)

Electrical conductivity six orders of magnitude higher than copper

Can be metallic or semiconducting depending on chirality
- ‘tunable’ bandgap
- electronic properties can be tailored through application of
external magnetic field, application of mechanical
deformation...

Very high current carrying capacity
Excellent field emitter; high aspect ratio

and small tip radius of curvature are
ideal for field emission

Can be functionalized
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Background

O Extended deep space exploration voyages
» Human beings and electronics need protection

d Radiation environment

» Electrons, ions, and secondary neutrons due to
particle interactions

O Hydrogen rich materials

» Better flux shielding characteristics than Al,
alloys
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Background (cont’d)

O Addition of carbon to shield materials
» Improved neutron reflective capabilities
O Hydrocarbon-based polymers

» Polyethylene (PE) - low neutrons flux
transmission

O Extrusion freeform fabrication (EFF)
» Multiple layers, complex shapes and parts
» Alignment of fibers - improved properties

213



Extrusion Freeform Fabrication (EFF)

The Stratasys 3-D Modeler with retrefitted high-pressure
extrusion head

214



Extrusion Freeform Fabrication (EFF

Modulus, GPa

Freeformed Carbon Fiber Comp osites
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Effect of fiber orientation: theory
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Extrusion Freeform Fabrication (EFF)
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Extrusion Freeform Fabrication (EFF)

i F2177 S.@ kv x2.00k '{S.0sm
Schematic of fibrillation SEM of PEOx/polystyrene
through an orifice copolymer after EFF/Heat treatment
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Extrusion Freeform Fabrication (EFF)

O Extrusion effect
» Fracture surface

» Vapor-grown carbon
fiber reinforced
composite

» Shows alignment of the
fibers
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Scope of Research

Q Addition of carbon nanotubes to PE
»Functionalization (SVWWNTs, f-SWNTs)
»Dispersion and alignment in the polymer

= methodology and optimization
» Innovative EFF concept
» As reinforcing agents

= improved strength

= enhanced reflective capability to certain wavelengths
of neutron radiation

= Multifunctionality
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Materials and Experiments

0 Single wall nanotubes (SWNTs) from CNI
» Purified (p-SWNTSs)
» Functionalized via fluorination (f-SWNTs)
a PE (medium M)
a Dispersion of SWNTs
» Incipient wetting
» High shear mixing
a Composite processing
» EFF, multiple extrusion for alighment improvement
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PE/SWNT Nanocomposites
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TGA Analysis

aTGA
» Comparison between
f”led and Unfl||ed PE 100% - 2wk P-SARN TP alyethidens
» Thermal stability L 80%
increases with addition 2 ¢ | | aearayeiyens”
of SWNTs (reduced = o
o 2wt % -SVWNTP olyethdene
weight loss) o0 |
» Increased oxidation g8, N
resistance 0 100 200 300 400 500 600

Temperature (°C)
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Raman Spectroscopy

Q Defines alignment of
SWNTs in EFF
processed
nanocomposites

¥ Parallel and
perpendicular to the
extrusion direction Single izl anctubes

» Typical Raman Wk

spectra (figure) o m  wm  w» ww 2o

Rarran Shift (o1

Intensity [Arbitrary Units
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Raman Spectroscopy (cont'd)

O Improvement in alignment for the f-SWNTs/PE compared
to p-SWNTs/PE nanocomposites
» Possibly due to better dispersion

Ratios ranged from 3.8 (shown) to1 .0
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Raman intensity ratios for g
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Pemendicular to extrusion dredion
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Radiation Exposure

0 Radiation testing

» Texas A&M University
Cyclotron Institute

» Irradiated at 40 MeV,

= Total fluence of 3x10'C
protonsfcm?

= Flux of 1.5x107
protonsfcm?/sec
» Sample sets in the
beamline end station
prior to irradiation
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Mechanical Properties

d Mechanical Testing
» Tensile tests ASTM D638
» Non-irradiated and post-irradiated control
samples
» 1.5 wt% for f-SWNTs/PE nanocomposites
» O wt% only for p-SWNTs/PE nanocomposites

» Fluorination

= Improved dispersion, improved alignment -
improved mechanical properties
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Mechanical Properties

Tendle grength (MP=)
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Mechanical Properties (cont'd)
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Summary

0 SWNT addition
» Improved thermal stability and atomic oxygen
resistance for PE
0 Preliminary results
» Alignment of nanotubes improved due to EFF
» Require improved alignment for better mechanical
properties
Q Fluorination

» Improved dispersion, improved alignment - improved
mechanical properties
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Summary & Future Work

0O Radiation exposure
» Did not affect mechanical properties of the
PE/SWNTs nanocomposites

O Future work focus:
» Improve the mechanical testing parameters for
statistical studies of the properties
» Comparative study of the properties of PE filled
with f-SWNTs and p-SWNTs using the same
concentrations
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