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Abstract 
In the study reported in this paper, we have developed and applied an Artificial Immune 

System (AIS) algorithm for aircraft fa& detection, as an extension to a previons work on 
intelligent flight control 0. Though the prior studies had established the benefits of IFC, 
one area of weakness that needed to be strengthened was the control dead band i n d d  by 
corrmuadllzg - a failed surface. Since the IFC approach uses fault accommodation with no 
detection, the dead band, although it reduces over time due to learning, is present and causes 
degradation in handling qualities. If the failure can be identified, this dead band can be 
further A ed to ensure rapid fault accommodation and better handiing quaiities. The 
paper describes the application of an immunity-based approach that can detect a broad 
s p e c t m m  of known and unforeseen failures. The approach incorporates the knowledge of 
the normal operational behavior of the aircraft from sensory data, and probabilistidly 
generates a set of pattern detectors that caii detwt any abnormalities (including faults) in the 
behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD 
(Multi-level Immune Learning Detection) based on a real-valued negative selection 
algorithm that can generate a small number of specialized detectors (as signatures of known 
failure conditions) and a larger set of generalized detectors for unknown (or possible) fault 
conditions. Once the fault is detected and identified, an adaptive control system would use 
this detection information to stabilize the aircraft by utilizing available resources (control 
surfaces). W e  experimented with data sets collected under normal and various simulated 
failure conditions asing a piloted motion-base simulation facility. The reported resalts are 
from a collection of test cases that reflect the performance of the proposed immunity-based 
fault detection algorithm. 
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1. Introduction 

n the last 30 years, at least 10 aircraft have experienced major flight control system failures claiming more than I 1100 lives. Early detection of a fault or damage of aircraft subsystems is very crucial for its control and maneuver 
during the flight. These events include sudden loss of control surfaces, engine failure, and other components that 
may result in abnormal flight operating conditions. Monitoring and detection of such events is necessary in order to 
achieve acceptable flight performance and higher flight survivability under abnormal conditions. The Intelligent 

sources of control power to accommodate in-flight control system failures. These events can include sudden loss of 
control surfaces, engine thrust, and other causes that may result in the departure of the aircraft from safe flight 
conditions. The major feature of IFC technology is its ability to adapt to unforeseen events through the use of an 
adaptive neural flight control architecture. 

Flight Control (IFC) research program at NASA Ames began in 1992 to address the need to examine alternate _. 

In this study, an extension to prior work is considered, which involves an innovation for fault detection: an 
Artificial Immune System (AIS) algorithm. The goal is to apply the immunity-based fault detection algorithm to 
improve the fault tolerance capabilities of the Intelligent Flight Controller (IFC) architecture. Prior studies had 
established the benefits of intelligent flight control (IFC)'2-'4. One area of weakness that needed to be strengthened 
was the control dead band induced by'commanding a failed surface. Since the IFC approach uses fault 
accommodation with no detection, the dead band, although reducing over time due to learning, is present and causes 
degradation in handling qualities3. '. This also makes outer loop control design challenging . The dead band problem 
could be eliminated with reliable fault identification. 

This paper describes an immunity-based approach that can detect a broad spectrum of known and unforeseen 
faults. Once the fault is detected and identified, a direct adaptive control system would use this detection information 
to stabilize the aircraft by utilizing available resources (control surfaces). This fault detection algorithm is a 
probabilistic approach (motivated by the negative selection mechanism of the immune system) in order to detect 
deviations in aircraft flight behavior patterns. In particular, the detection system learns the knowledge of the normal 
flight patterns from sensory data, to generate probabilistically a set of (novel) pattern detectors that can detect any 
abnormalities (including faults) in the behavior pattern of the aircraft flight. 

2. Real-valued Negative Selection (RNS) Algorithm 
The negative selection algorithm is based on the principles of self-non-self discrimination in the immune system. 

The negative-selection algorithm can be summarized as  follow^'^^^^: 

. Define self as a collection S of strings of length I over a finite alphabet, a collection that some way models the 
normal operation (or system behavior). For example, S may represent the normal operating conditions of an 
aircraft. 
Generate a set R of detectors, each of which fails to match any string in S. Instead of exact or perfect matching, 
the method uses an approximate matching rule, in which two strings match if and only if they are within a 
certain distance r,  where r is a suitably chosen parameter. 
Monitor S for changes by continually matching the detectors in R against new observations of S. If any detector 
ever matches, then an abnormality is known to have occurred, because the detectors are designed not to match 
any similar sample strings in S. 

= 

In this study, we applied a real-valued Negative Selection Algorithm (NSA) to prior work on intelligent 
flight control for fault detection and isolation. The RNS algorithm uses the selfhon-self space that corresponds to a 
subset of R", specifically [0, 11". A detector is defined by an n-dimensional vector that indicates the center with 
varying radius; therefore, a detector can be seen as a hypersphere in R". Accordingly, the RNS algorithm tries to 
evolve a set of variable-size detectors that cover the non-self space. This is accomplished by an iterative process that 
updates the position of the detector driven by two goals: 

Move the detector away fiom self points. 
Keep the detectors separated in order to maximize the covering of non-self space. 
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The RNS detector generation starts with a population of initial (random) detectors, which are then matured 
through an iterative process. The centers of these detectors are chosen at random. The radius of a particular detector 
is defined in terms of Euclidian distance to its nearest neighbor in the training dataset (self sample). The logical 
sreps of &e aigor i th are shown in Figure 2, which are described in more d e t d  eisewhere. 

In each of the iterations, first, the center of each detector is successively adjusted by moving it away from 
training data, and away from other detectors (in order to reduce the amount of overlap among detectors). This 
process is continued until the amount of coverage and overlapping stabilizes. The set of detectors are ranked 
according to the size of their radii. Then a greedy algorithm is used to select a new population of detectors, i.e., 
detectors with large radii are selected to go to the next generation, but they will only go to the next generation if 
their overlappmg rate with other detectors is small. Detectors with very small radii are discarded and replaced by 
clones of better-fit detectors. The clones of a detector are moved at a fixed distance to produce new detectors i~ its 
close proximity. Moreover, new areas of the non-self space are explored by introducing some random detectors. 

Figure 1: Flow diagram shows the steps of the RWS algorithm. 

3. Failure Detection in the IFC Architecture 
To piwide a r e d 4 h e  system capab!e of compensatifig for a S r ~ a d  spectruln: of faihes, researchers d NASA 

Ames have investigated a neural flight control architecture shown in Figure 2 for both flight and propulsion 
~ o n t r o l ~ * - ~ ~ .  The concept was to develop a system capable of utilizing all remaining sources of control power after 
damage OT failures. The Intelligent Flight Control (IFC) system uses an optimal allocation technique to ensure that 
conventional flight control surfaces will be utilized under normal operating conditions. A linear programming theory 
was used in conjunction mith a cost function approach to provide generalized control reallocation over an arbitrary 
number of aircraft surfaces for the real-time control allocatlon problem. Under damage or failure conditions, the 
system may allocate flight control surfaces, and incorporate propulsion control, when additional control power is 
necessary for achieving desired flight control performance. 

Another innovation in the work cited is the use of adaptive critics for reference model adaptation. In the case of 
extreme damage to the plane, the original reference model may over-drive the remaining control surfaces and cause 
instability in the plane. Adaptive critic technology was utilized to modify the reference model in these cases. 
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The IFC architecture was evaluated utilizing a hll-motion simulator available in the Crew Vehicle Systems 
Research Facility (CVSRF) at NASA-Ames Research Center. The Advanced Concepts Flight Simulator (ACFS) 
was modified to accommodare a model of a Boeing C-17 aircraft'', ll. The simulator is equipped with a six degree- 
of-freedom motion system, programmable flight displays, digital sound and aural cueing system, and a 180-degree 
field of view visual system. The Boeing C- 17 is a fly-by-wire transport aircraft with a stabilizer, four elevators, two 
ailerons, eight spoiler panels and two rudders, for a total of 17 surfaces used for active control. Slats, flaps and - -  
engines were not used by the IFC for control of the aircraft c~nfiguration'~~'~ 

Figure 2: Intelligent flight control architecture 

In the study reported here, an extension to prior work is considered. This involves using the AIS algorithm for fault 
detection. As stated earlier, one area of weakness that needed to be strengthened is the control "dead band" induced 
by commanding a failed surface. If the failure can be identified, the dead band could be minimized to ensure rapid 
fault accommodation and better handling qualities. The modification to the existing IFC architecture is shown in 
Figure 3, where an immunity-based fault detection system is included. The purpose is to use RNS to detect control 
surface area loss caused by damage (or failure) and other causes that may result in the departure of the aircraft from 
safe flight conditions. Once the failure is detected and identified, the Intelligent Flight Controller (IFC) then utilizes 
all remaining source of control power necessary to achieve the desired flight performance. 
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Figure 3: IFC architecture with AIS fault detection modules. The concept of self and non-self space and the 
generation of detectors in non-self space are illustrated. Here F1, F2, etc, represent different failure 

conditions. 

4. MILD: Implementation Details 
We developed the MILD (Multi-level Immune Learning Detection) sofisvare based on the real-valued negative 
selection algorithm described in section 2. The following flow diagam (Fi-me 4) illustrates the MATLAB 
implementation of different functional components. 
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Figure 4: Matlab implementation details and illustrating the sequence of function calls. 

4.1 The main functions of the MLLD tool 
There is a main GUI  om which the user can select either the detector generation GUI or the fault detection GUI in 
order to go to the corresponding phase. 

detector generation CUI implements the detector generation scheme based on the real-valued negative selection 
algorithm, this function triggers 3 sub-functions: 

0 

detector generation inputs: includes the training file name, window size, overlapping value, percentage 
increase, number of initial detectors, stopping criterion (maximum number of iterations) 
preprocessing: the training data is preprocessed based on the value of the input parameters and 3 routines 
are called in order to accomplish the preprocessing task: 

1. 

2. 
3. 

data shift: shifts the training data based on the window sue and overlapping value specified by 
the user 
normalization: normalizes the training (and test) data between 0 and 1 
clustering: clusters the training data 

evaluate detectors: evaluates the detectors based on the Minkowski distance measure. This function has 3 
sub-functions that handle the evaluated detectors accordingly: 

mature detectors: collects mature detectors 
clone detectors: clones the good detectors based on each good detector’s radius 
move detectors: moves the infeasible detectors in order to cover the non-self space 

1. 
2. 
3. 

fault detection GUL detects the anomaly of the testing data by using the mature detectors that were generated by the 
detector generation function. The detection function uses 3 sub-functions: 

fault detection inputs: includes the testing file name, mature detectors, buffering, detection score 
preprocessing: shifts and normalizes the testing data 
detection process: detects anomalies by the mature detectors, shows the detection result in another hct ion.  
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0 detection result: displays the alert signal when a fault happens and also indicates whether the fault is 
detected by the regular detectors andor the edge detectors 

Utility routines 
distance measure: measures the Minkowski distance of multi-dimension data points 
nearest point: fmds the nearest data point for one local data point to all other data points 

We first examined the detector coverage using some simple 2-D data, Figure 5 exhibits the coverqe of the non-self 
space with bigger and smaller detectors. This snapshot is taken after 20 iterations, and there are 7 bigger size 
detectors generated which appear to cover most of the non-self space, while smaller size detectors generated slowly 
as the run progresses. A big portion of larger detectors fall outside the unit hypercube, but they are necessary in 
covering &e edges- 

Figure 5: Coverage of the detectors in 2D space 

5. Experiments and Results 
The fault detection system takes a real-valued data set as input; and extracts the important semantic information by 
applying a data fusion and normalization techniques. The reduced information is then represented as a collection of 
strings, which forms the self set (normal patterns) that can be used to generate a diverse set of detectors. The set of 
detectors are subsequently used for detection of different types of faults (known and unknown faults). The aim is to 
find a small number of specialized detectors (as signatures of known failure conditions) and a bigger set of 
generalized detectors for unknown (or possible) fault conditions. 

5.1 Aircraft Simulated Data 
The goal of this work was to evaluate the fault detection capabilities of the RNS algorithm outlined earlier. Five C- 
17 pilots from the Air Force, and from NASA were used to test the IFC architecture shown in Fi-me 2. Detailed 
flight data was collected for post-flight analysis. These same data sets were also utilized for studying the efficacy of 
the fault detection algorithm. The data from the simulator is collected at the rate of 30 Hz (frames per second). 
Since the data is from a man-in-theloop simulation, there is an extra control (the human pilot) that simply cannot be 
removed from the data- 

The failure scenarios for the C-17 test are outlined in Table l .  The scenarios were designed to test performance of 
the controllers relative to primary failures in all 3 axes as well as a failure sequence which would couple over all the 
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axes. The full tail failure and wing failure scenarios were utilized during normal landing operations, and the engine 
failure on a takeoff sequence. 

C 1 7 Scenario Scenario Characteristics: 

Full Tail Failure 

Wing Failure 

Engine Failure 

Before starting the sequence, the aircraft has been flying in level flight with the autopilot, proceeding at 250 kts 
on heading 330 magnetic at 8000 feet MSL altitude. The IFC is active. At approximately 160 seconds into the data 
run, all ailerons and spoilers are failed at their idle position for the wing failure case and both rudders and all 
elevators and stabilizer are failed at their idle position for the tail failure case. The flight control software must 
achieve its roll and pitch control, for the respective failures, using nontraditional deployment of the remaining 
surfaces 14. 

Winds 190 @ 10, light turbulence 

Full tail failure. Stabilizer failed at trim. 2 
rudders, 4 elevators failed at 0 deg. 

2 ailerons and 8 spoiler panels failed at 0 
deg. 

Two engines out on one side on takeoff, 

The parameters considered for the fault detection study included body-axes commanded rates, actual aircraft 
body-axes rates, and corresponding neural network outputs. The training data were collected by combining data 
from non-failed axes using several single axis failure cases. For the single axis failure cases, the failures happened 
2-3 seconds after the beginning of data collection. No experimental data were collected for cases without a failure. 
The test data were generated by windowing the data 1.5 seconds before and 1.5 seconds after the failure. As a result, 
the "normal" part of the test data looks similar to the training data for each case. It is to be noted that some of the 
entries are zero at the beginning of the data set, because the pilot has likely not entered a command to move by then, 
and the aircraft would still be flying straight and level. 

5.2 Experiments 
The sensor parameters considered for these experiments included body-axes roll rate, pitch rate and yaw rate, 

where both expected and observed values are monitored and error rate ( e )  is calculated. If these error rates are 
abnormal, the NS fault detection algorithm should detect them indicating possible failures. 

For all experiments, the number of self detectors generated was 103. After generating the detectors, we 
examined the effectiveness of the detectors in identifying various faults. Figure 6 shows the error rates (e)  for the 
body-axes rates that are considered as the normal data (self), and used to generate the detector set. 

8 
American Institute of Aeronautics and Astronautics 



-. 

12 

1 

Figure 6. Shows the normal data pattern for three sensory data (roll, pitch and yaw) observed at NN output 

Figure 7 illustrates the performance of the detection system when tested nith ‘full tail failure’’ data, where this type 
of fault is manifested in pitch error rate (starting at the 1200* time step). The graph also shows the number of 
detectors activated (lower bar chart) as significant deviations in data patterns appear. The bar chart shows the 
arrangement of the detectors with increased radius. 

Figures 8-10 @lay results for other failures. There are two types of results reported for different fault detection 
scenarios. One is the & d o n  result (horizontal bar on the top), which displays raw detection result for each data 
point, and the othex one is isolation result (horiumtal bar at the bottom), which displays detection signal based on 
the buf5ering and sensitivity parameters defined by the user. All types of f d t s  occur right after the lOOO* time 
stamp, but based on the buffking and sensitivity, the anomaly alarm is triggered at various times as reflected in each 
of the detection result figures. For example, for the tail failure detection result, the actual fault occurs at the lOOO* 
time stamp, the detection occurs at the lOOO* stamp, the isolation result gives warning at the lOOO* time stamp as 
well. However, the actual fault alarm given by the isolation result is at the 1200* time stamp. 

The most obvious fault and the easiest to detect is the left engine fault, because the fault involves all three axes (roll, 
pitch and yaw). A relatively challenging fault type is the fidl tail failure marked “tail-3 fault,” because it is very 
similar to the pattern of the n o d  data However, our system is capable of detecting all kinds of possible faults, 
regardless of the change of the pattern, the instability of the amplitude or the frequency of the oscillation. 
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Figure 7: Shows the detection of Tail-3 failure with number of activated detectors 

Figure 8: Left Engine failure case 
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Figure 9: A tail failure case 

Figure 10: A wing failure case 

Figure 11: Activated detectors for different types of faults 
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Figure 11 shows the number of detectors activated for two different faults-engine and tail faults. We observed that 
a number of detectors get activated in each case. There appears to be three possible reasons: some overlap was 
allowed among detectors; faulty data may be clustered at several locations in the non-self space, and the same 
detectors may be activated for more than one fault case. Tabit: 2 gives statistical results of seveid tcs: i-~iis of MILD 
with different faulty datasets demonstrating that the false alarm rates are very small in all test cases. 

False 
Alarm 
(mean) 

0.15 % 

0.76% 

1.04% 

0.43% 

Table 2: Statistical results of 10 runs 

False 
Alarm 
(std) 

0.33% 

0.26% 

0.47% 

0.36% 

Rate (std: 

Left 
Engine 10 97.8 % 1.24 

IWing31 3 I 95.6% I 1.29 

Conclusions 
We investigated an immunity-based approach that can detect a broad spectrum of  own and unforeseen 

failures. Once the fault is detected and identified, a direct adaptive control system would use this detection 
information to stabilize the aircraft by utilizing available resources (control surfaces). The proposed intelligent fault 
detection algorithm is inspired by the principles of the biological immune system. This fault detection algorithm is a 
probabilistic approach motivated by the negative selection mechanism of the immune system. The detection system 
learns the knowledge of the normal flight patterns fi-om sensory data, and generates probabilistically a set of (novel) 
pattern detectors that can detect any abnormalities (including faults) in the behavior pattern of the aircraft flight. The 
long-term goal is to use RNS to detect control surface area loss caused by damage (or failure) and other causes that 
may result in the departure of the aircraft fi-om safe flight conditions. Once the failure is detected and identified, the 
Intelligent Flight Controller (IFC) then utilizes all remaining source of control power necessary to achieve the 
desired flight performance. 

There are many techniques for aircraft failure detection'. One of the drawbacks of existing fault detection and 
isolation (FDI) based approaches is that they cannot detect unexpected and unknown fault types. The proposed 
immuno-inspired fault detection algorithm can detect a broad spectrum of known and unforeseen failures. 

In summary, the proposed method works as follows: 

Based on the dataset (given) of normal operating conditions, generate a set of fault detectors; the goal is, however, to 
evolve 'good' detectors that cover the non-self space. 

A 'good' detector: 
o 
o 

Must not cover self space. 
Has to be as general as possible: the larger the volume, the better. 

One detector may not be enough; instead, a set of detectors is required that can collectively cover the non- 
self space with minimum overlap. 

During the testing phase, we used the data collected during different fault conditions. 
Detectors that get activated (match) for each fault are labeled as specific fault detectors. These constitute a 
set of specialized detectors for identifying different class of faults. 
It may be necessary to go through the detector optimization process: filter out some overlapping detectors, 
merge some and generate new ones for better coverage. 
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Some faulty conditions can be simulated (by changing the crucial monitored parameters) in order to check which 
generalized detectors get activated. These detectors can also provide the knowledge of possible (unknown) faults. 
The goal is to achieve a certain level of damage control under any known fault or unknown abnormalities. 

The long-term goal is to use RNS to detect control surface area loss caused by damage (or failure) and other 
causes that may result in the departure of the aircraft from safe flight conditions. Once the failure is detected and 
identified, the Intelligent Flight Controller (IFC) then ufilizes all remaining source of control power necessary to 
achieve the desired flight perf’onnance. 
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