
14 APPL THE NASA ACADEMY OF PROGRAM AND PROJECT LEADERSHIP

I HAD BEEN WORKING FOR TWO YEARS AS THE TECHNICAL

PRODUCT MANAGER FOR A LARGE SOFTWARE COMPANY,

WHEN THEIR PARTNER COMPANY GAVE ME CALL. THEY NEEDED

GOOD SORWARE ENGINEERS TO CUSTOMIZE A NEW VERSION

OF SOFWARE, AND THEY THOUGHT I WAS THEIR GUY.

TXEY TOLD ME R.H.AT THE)- U..ASTED TO DC, TO TIHE

softaare, and they even showed me some prototypes.
Their idea was to take the basic software tool that the
large company n-as producing and make it more acces-
sible to the customer. They a-ould do this by building
in flexibility based on user skill level and organizational
maturity. I thought that was a fascinating apprcach. and
I bought into it in a big way. I decided to leave my job
and join LIP with the smaller company as their director
of software engineering.

YOU’D BETTER KNOW THE SHOT
M y former employer was a massive organization with
tons of money. They can afford to try, try. and try
again-but even they hate to do that. At a startup. you
typically have one shot. Screw up, and you’re dead.

ASK 20 FOR PRACTITIONERS BY PRACTITIONERS 15

We were taking a product designed for everyone and
trying to make it work for a smaller set of users. Here
is something I learned quickly: When you’re modifying
a commercial-off-the-shelf (COTS) product, it makes a
huge difference if you have inside information. Why?
Because there are undocumented features, a.k.a. bugs,
which only people with an intimate knowledge of the
product will know how to work around. It’s something
to think about when you’re going to tailor a COTS
product: How extensible is it from the get-go?

We were okay because the person I had
recommended to the company, a hotshot at my former
company, had gone to work with them. He knew
things about the old software that the current team
didn’t even know. But even with him on our side, we
were bootstrapped with limited resources. We needed
money, so we had to find a client.

WHAT THE IDEA LOOKS LIKE
At that point we had our working prototype. (I’m
a firm believer that prototypes are the best way to
communicate a vision.) We showed it to people and
heard things like, “Oh yes, this is interesting.” We had
a few customers in mind, and we visited all of them.
It helps to get feedback from your customers as early
as possible (again, the prototype was invaluable). Plus,
there’s the other side of the equation, which is making
certain that your customer has a sense (not a lot of
detail necessarily, but a good sense) of the engineering
constraints of your development effort.

We found a few small clients willing to pay for
some of the research and development we needed to
keep going. After a while, we got enough traction to
go after the real capital-we needed VC money. That
was a scary proposition. We couldn’t just go in and
say, “Give me some money because I have a great idea.“
These people were very technical and very sharp. But
we apparently said the right things, because in the end
we got the money we needed. That took some of the
pressure off. We now had enough money to survive on,
but a very short period of time (about a year and a half)
to develop a product.

CLOSING IN ON THE DEADLINE
This was early 1999. At that point, I was trying to hire
the development team that would take our product
to the next level. Because we had to get things done
quickly, we couldn’t afford to sit around thinking
about the design for eight months before we wrote any
code. We decided to take a milestone approach, where
you basically pick a number of features or a quality
bar-something-put a date on it, and run towards
that date.

We chose a rapid development programming
language as the first technology to implement this
software. We did this because the software was more
readily modified as customer feedback came in. When
we would show the software to the customers, they
would say, “I think you should have this,” or “Based on
my experience it should do this ...” Then we could turn
around, go to engineering for a couple of weeks and
send a version of the software back to the customer that
did what they were describing.

NO TIME TO PLAY
That was helpful early on because we could get the
customer’s viewpoint almost immediately. It’s also a
wonderful way to force your developers to buddy up
with the Quality Assurance guys and get things done.
That’s important because the natural instinct for
software developers is to treat the project like a box of
Legos. They want to take it home to see what they can
create. You have to ask, “Okay now, is the customer
really going to have a better experience if you put one
more layer of lacquer on that sucker?”

Their answer is usually, ”What’s a customer?“
As a project manager, you have to be able to take

these people who think they are just playing with
Legos and get them to do things on schedule and on
budget. You have to make certain they understand the
business purpose for what they’re developing. The role
of the project manager has to be to articulate business
requirements to the developers in a way that gets
them jazzed-like reminding them that they‘re doing
something good for the company, or whoever the target

16 APPL THE NASA ACADEMY OF PROGRAM AND PROJECT LEADERSHIP

EOPLE THAN IT DOES

customer is in the end. LVhen it comes to managing
softlvare, I've found that it has a lot more to do ivith the
people than it does \vith the processes.

GElTlNG TOO CLOSE
Our ultimate constraint \\-as a \vindow of opportunity.
\\-iiicii \vas rapidiy closing. Our one competitor \vas
getting ready to release. \?'e had some money, but n-e
still had to do lvhat's referred to in the industry as a
"death inarch" tov-ards our deadline.

I nas the development manager. orn-hat is effectively
the project manager-and I made the absolute nwrst
mistakc a manager can make. As development manager.
yourjob is to delegate. but I couldn't keep my hands out
of the coding.

Originally. I d idn t think that UT had the
manpmver to separate the functions of management
and development. 111 hindsight. \ve should have. I \vas
working on a number of lo\v-level subsystems. and
other developers couldn't get started on their work
until mine \vas flushed out. I \\.as supposed to bc
managing these people. and here I had put myself on
the critical path.

I r \\'as just 2 crazy time. I lost 20 pmnds. l f y team
kept asking. "\l.'hat happened to our dcvelopment
manager?'. I ivould go into m y office before it was light.
and I would leave after it n-as dark. Instead of meeting
with them to talk, I was "instant messaging" my leads
to get status reports, because I was busy cranking out
all of this code.

A HIGH PRICE FOR SUCCESS
We launched in October 2001, and it was a big success.
But I had to take a hard took at myself and ask, "At what
personal cost? "

I had previously thought of the developers as
the guys who got wrapped up in creating rather than
efficiently tailoring a product to the needs of the
customer. Now I was faced with the truth: I had become
one of the Lego people, obliviously adding layer after
layer of blocks. Don't get me nrong--n.c software
people do it because we love it, we ha\e a passion for
it. Rut I had let m!self become overtaken by just one
aspect of the project rather than the a hole. I \vas losing

WITH PROCESSES. /a
\I eight. never seeing daylight. having virtually no
person-to-person contact n ith my team ...

It was a great experience. but I lvouldn't do it again.
I had to figure out the hard way that software itself is
not the answer: project management is the ansxver. It's
all the p e ~ y l e . processes. and technologies norhing
wgether Rather than being one of the Lego people, I
kncn I needed to figure out exactly lion to moti\ate
them so that together MY could create products that
make good business seiisc 0

L,. .s

When tailoring a COTS sofmare product, you should
recruit developers \vho have an in-depth understanding
of the intricacies of thc product.

Establishing open communication \vith your customer
is not only intended to understand customer requirements
but also to coni-e>- challenges you face on the project.

1:s. L>?<5

' I wrote my first piece of software w h e n I
was 11.' says COLBY AFRICA. "When
I was 15. I wrote my first production
software. which w a s promptly rewritten
by a 13-year-old. who went on to work
at the media lab at MIT. T h e lesson

there is that someone is always smarter and younger
than you are."
In spite of h i s prodigious gifts. Africa never intended to
become a software developer A t Microsoft from 1994
through 1999, he rose through the r a n k s to become a
product manager-making time to write a little software
on the side Today. h e works for Robbins-Giola. a project
management consulting firm in Washington. D C , and is
too busy assisting project teams around t h e country to
write any software code even if he wanted to

- 1 have a bunch of developers who work for me now," h e
says. "Whenever 1 want to get my f ix of software. I have
them show m e something cool they're working on."

ASK 20 FOR PRACTITIONERS BY PRACTITIONERS 17

