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DETERMINATION OF THE MASS MOMENTS AND RADII OF INERTIA
OF TﬁE SECTIONS OF A TAPERED WING AND
THE CENTER-OF~GRAVITY LINE ALONG THE WING SPAN™

By V. V. Savelyev
INTRODUCTION

For computing the critical flutter velocity of a wing
among the data required are the position of the line of
centers of gravity of the wing sections along the span and
the mass moments and radii of inertia of any section of
the wing about the axis passing through the center of grav-
ity of the section. A sufficiently detailed computation
of these magnitudes, even if the weights of all the wing
elements are known, reguires a great deal of time expend-
iture. Thus a rapid competent worker would reaquire from
70 to 100 hours for the preceding computations for one
wing only, while hundreds of hours would be reauired if
all the weights were included.

With the aid of the formulas derived in the present
praper, the preceding work can be performed with a degree
of accuracy sufficient for practical purposes in from one
to two hours, the only reguired datz being the geometric
dimensions of the outer wing (tapered part), the position
of its longerons, the total weight of the outer wing, and
the approximate weight of the longerons,

The entire material presented in this paper is appli-
cable mainly to wings of longeron construction of the CAHI
type and investigations are therefore being conducted by
CAHI for the derivation of formulas for the determlnatlon
of the preceding data for wings of other types.

*Report No. 452, of the Central Aero Hydrodynamical Insti-
tute, Moscow, 1939,
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. DETERMINATION.OF THE CENTER-OF—GRAVITY LINE
OF THE SECTIONS OF THE WING ALONG THE SPAN

Outer-Wing Structure (Tapered Part)

Determination of the centers of gravity of the sec-
tions of the wing along the chord.- To obtain the center
of gravity of - the sections of the tapered part of the wing
along the chord* a large number of 2- a2nd 3-longeron wings
of the CAHI type were taken and each of them was divided
into a2 number of segments of width Al, (fig., 1). By

means o0f a sufficiently detailed computation there was
determined for each segment the position of the center of
gravity along the chord, By Jjoining all the centers of
gravity a somewhat broken line was obtained which may be
replaced by a straight line passing through the center of
gravity of the entire outer wing.

The chordwise position of the center of gravity may
be determined either by computation or statistically. It
is generally assumed that the over—all centér of gravity
of the tapered part of a wing of longéron construction
lies at 40 .percent of the chord of the section passing .
through the center of gravity. The computations for a
large number of wings did not confirm this., It was found
that the most forward position of the center of gravity
was at 41.8 percent of the chord and the rearmost position
at 43.5 percent,  The mean position of the center of grav-
ity o6f all the wings considered was at 43.0 percent of

the chord. ' ’

The percentage given the chordwise position of the
center of gravity does not remain constant for each seg-~
ment of the wing but varies, the minimum value always
being obtained at the sections toward the fuselage and

the maximum value near the tip of the wing. The follow~
ing values for the chordwise position of the center of
gravity were obtained: At the fuselage end the minimum

was 41,5 percent of the chord, the maximum was 42.5
percent of the chord, and the mean value was 42.0 per-
cent of the chord. At the tip of the wing (at the sec—
tion 0.971!_ ) the minimum was 44,5 percent of the chord,
the maximum was 50,9 vercent of the chord, and the mean
value wag 47,7 percent of the chord, :

*In the parts of the wing considered. whatever does not
contribute to the weight of the structure is excluded.
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In connection with wing vibration computations the
position of the center of gravity along the chord at the
wing tip 1s of most interest. From the preceding data it
is observed that the range of fluctuations of the position
of the center of gravity at the tip of the wing is very
large, amounting to 6.4 percent, and for this reason 1t
is not advisable to take the average. On the other hand,
the work of determining the position of the centers of
gravity along the chord of the tapered wing requires a
worked-out wing construction and consumes very much time.
On the basis of available data it was found possidble to
give an approximate method for the rapid determination
of the chordwise positions of the centers of gravity of
the wing sections.

Approximate method of rapid determination of the
chordwise positions of the centers of gravity of the sec~-
tions of an outer wing.- The method consists of the follow-
ing: Knowing the geometric dimensions of the wing, the

section of the plane in which lies the center of gravity
of the entire wing is determined by the formula

. l. ny + 2
le, g, 0 = -+ -2 (1)
3 n_ + 1
®
where
1, = 1 - Aly reduced length of the outer wing (fig. 1)
All length of the rejected tip of the wing when
the area of the wing is reduced to an
equivalent trapezoid
3 length of the outer wing
n@ is determined from figure 2 as a function of
c.h
Ng = 1l 1
Cohg
where
¢, and h; ° chord and thickness at the wide end
cy, and hg corresponding values at the tip at distance

ty
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By laying off a length of 43 percent of the chord along
the chord from the leading edge, tle center of gravity of
the entire outer wing (mean .statistical position) is.
obtained, The line of the centers of gravity of the sec-
tions should be drawn with 2 cerbtain inclination through
the center of gravity Jjust obtained. To draw this line
the position of the center of gravity at the large end of
the outer wing is determined. The latter position is
given by

Ac - '
£%1 100 = 43.0 - 0.25 1, , (2)
C1

where 1, 2. o determined by formula (1), is expressed

in meters.

Assuming that 1, g, o = 3.0 meters, the center of

gravity of the wing at the large end will lie at 42.25
percent of the chord and the second point is obtained.
Joining this point with the center of gravity of the entire
outer wing and prolonging it to the end of the wing, the
line on which the centers of gravity of all the sections
should lie is obtained. It should be noted that this de-
termination of the center of gravity is correct only for
the case where the axis or each longeron is located at
the same percent of the chord along the entire length of
the taper, the fitst longeron lylng at 14 to 17 percent
from the lesding edge and the second at 45 to 50 percent,

For a more accurate determination of the position
of the center-of-gravity line of the sections along the
span, it is necessary %o know the position of the center-
of-gravity line of the wing without the longerons, the
weight of the longerons, and their location.

Position of the line of centers of gravity of the
sectionsg of the wing without longercons.~ In determining
the center~of-gravity line of the wing without the lon-
gerons, a number of points are obtained through which a
straight line may be drawn, the scatter of the points
being small, To draw this line for any wing it is
necessary to know the position of the center of gravity
at the fuselage end and at the tip. It is not necessary
to make any computations but to make use of statistical
data according to'which the center of gravity at the
fuselage end lies approximately at 46.5 percent of the
chord and the position of the ecenter of gravity of the
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tip (at the distance 1 , fig. 1) is determined from the

curve shown in.figure 3, Plotting these two points on
the wing at the corresponding secﬁions and Joining by a
stralght line, the center of gravity line for the wing
without longerons is obtained.

The greatest deviation of the true positlon of the
centers of gravity from the previously mentlioned straight
line will occur at the sections near the fuselage end
where the centers of gravity generally lie nearer the
leading edge; but since the rest of the line passes more
nearly through the remaining centers of gravity than any
other straight line, a detailed computation of the centers
of gravity of the sections 1s not reauired.

More accurate determinnation of the chordwise position
of the centers of gravity of the wing sections.- Since the
curve of the spanwise weight distribution of the wing, the
weight of the longerons, the position of the centers-of-
gravity line without the longerons, and the position of
the longerons is known, the position of the center of
gravity of any section of the wing may be determined.

Another manner, however, also may be used. Having
detcrmined according to the previously described method
the line of centers of gravity of the outer wing without
lengerons and knowing the location of the longeroans and
their weight, the center of gravity of the entire suter
wing wlthout longerons is determined; assuming that the
center of gravity of the outer wing and longerons lies

at the distance Zc z. o from the fuselage end of the

wing (eauation(l)) and then making use of equation (2),

the center of gravity at the fuselage end 1s determined.
Then Jjoining thesec two points by a straight line and
prolonging to the tip of the wing, the chordwise position
of the center of gravity of the wing sections 1s obtained.
From statistical data on tapered wings of longeron and
metal skin construction it is found that if the total
weight of the wing without the weights of the Jjoints to

the center wing 1s taken as 100 percent, the first longeron
will constitute about 16 percent, the sccond longeron about
15 percent, and the remainder about 69 percent.

Center-Wing Structure

The center wing, in addition to the air lead, must
support the attached loads (engines) and various loads




6 NACA Technical Mcmorandum No 1062

disposed within it (fuel tanks, etc.). The mounting

of these loads makes local re-cnforcing of the center
wing necessary and therefore the line Jjoining the centers
of gravity of the sections of the center-wing structure
is not always straight but is usually 'a broken line so
that a sufficiently accurate method for determining this
line ecsn not be given. Approximately the line may De
determined by the formula

+
c. &. ¢ 3 n, +

where

l, length of the part of the center wing projecting
’ from the fuselage

where

c, and h2 chord and thickne=s st the intersection of
the center wing with the fuselage

c. and h corresponding values at the Juncture with
the outer wing

The mean chordwise position of the center of gravity
for a large number of planes was 32 vercent of the chord.
Laying off this value at distance Lc c from the

root of the wing, the center of graviﬁy of the rart of
the center wing projecting from the fuselage is obtained.

It was found for all of the center-wing sections
investigated that the center of gravity of the center-
wing section adjacent to the outer wing agreed almost
exactly with the position of the center of gravity of
the section of the outer wing adjacent to the center
wing. Eence by Joining with a straight line the center
of gravity at the juncture end of the outer wing with
the center of gravity of the part of the center wing
projecting from the fuselage and prolonging the line to
the root of the center wing, aporoximately the center-
of-gravity line of the center-wing structure is obtained.
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DERIVATION OF FORMULAS JFOR THE DEThRMINATION
m”“.«Nmnqﬂ-ﬁr"iQFuThEJMASSHNOMENTSM;ND R@D%LwQPwINERTIA

0F THE OUTSR-WING SECTIQNS LBOUT THEIR CENTERS OF GRAVITY

1

Tne usual method of determining the moments qf inertia
of the wing sectione is that of. considering in succession
all the elements entering the given segment, determining

“ the momént : of” inertia .of each .element, and .adding the mo~
ments, This mqthod requires a knowledge of the wing
structure so that the weight of .all the elements entering
the given segment and ‘their distances from their centers
of gravity to the chosen axis could be determined. Such
method of determining the mass moments of inertia of the
wing sections requires much time expenditure and can not
be applied when the rough design of the airplane is known
with only the over—all dimensions of the wings and the
statistical weight of the center-wing and outer-wing
structures. Since a knowledge of the moments of inertia
along the wing is cssential for determining the critical
flutter velocity, various simplifying methods are used.
The investig:tion of this problem has shown that a knowl-
edge of the weight of the wing (of the center and outer
parts separotely) and its geometric dimensions and the
nosition of the longerons is sufficient for determining
with a satisfactory degree of accuracy the moments and the
radii of inertia of the wing sections.

Derivation efhEdrmulas for The Determination of The Moments
of Inertia about Their Centers of Gravity of The Sections
" of The Outer Wing

Since the total weight of the structure of the outer
wing and its geometric dimensiong is known, a curve of the
welght distribution along the span* ¢an be drawn (fig. 1).
From this curve the weight of a segment of the wing of
width ly &at any point can be determined.

It should be wremembered *that the curve-of -spanwise
weight distribution of the outer wing assumes not a

*¥*See author's paper "Span Disﬁribution of The Weight of
The Wing Structure," Technika Vozdushnogo Flota No. 1,
1938, ‘or CAHI Report ¥o. 381, under the same title.
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concentrated weizht of the ribs but a uniform distribution
along the span sc that the weight of each rib is uniformly
distributed to the right and left over a width equal to

half the distance between ribs. If the weight of the outer-
wing structure was uniformly distributed along the chord,

no difficulty would be encountered in determining the mo-
ment of inertia of any segment of the outer wing. Actuazallyr,
however, there is no elément in the outer wing the weight

of whiech is unlformly distributed along the entire chord

for even a dural skin may have various thicknesses over the
profile. The thickness of the stringers nay, in genernl,
vary along the wing and the rib gtructure is such that its
weight 1s nonuniformly dist:ibuted‘along its length. The
loangerons, for the purpose of determining the moments of
inertia-of the wing sections along the y~axis, are con-
sidercd as concentrated loads.

From an examination of a large numdber of outer-wing
structures 1t was found thst the first longeron as a rule
lay along the entire span at a distance from the line of
centers of gravity approximately equal to the magnitude
of the radius of inertia (fig. 4) and therefore in com=~
puting the moments of inertia of the various segmoents of
the outer wing, its weight may be taken as distributed
vroportionally to tlhe remaining weights. The second
longeron was found to lie at a distance not exceeding 12
pecrcent of the ehord from the line of centers of gravity
(fig. 4) and thercfore was of slight effect on the magni-
tude of the moment of inertia.

Taking account of what was s=id previously, the follow-
ing formula for the determinsation of the moment of inertia

at any section of the outer wing,(fig. 5) may be written.
-

Ag, ¢
k —A c? I n
Ig, , = & [ka (ay qIn)_.bn + (o -Aqg )(Ancr)z + ___E___]
& g 12 . ’ 12
. S - . (4)
. 4 2z . .
Aln
where
ky coefficient that takes into account the nonuniform
chordwise distribution of the weight of ‘such
.elements ds the stringers, ribs, various Jjoints,

nonuniform thickness of the skin over the pro-
¢ - file contour, and so forth, and also the effect
of the moment 'of ‘inertia of the second longeron
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acceleration of gravity, equal to 9.81

coefficient that takes into account the change in
the magnitude of the moment of inertia of the
uving without longerons owing to the displacement
of the centers of gravity of the sections at
both sides from the center of the profile

weight of a given segment without the second
longeron

‘

welght of the first longeron at a given segment

outer wing chord of the segment considered

distance between the line of centers of gravity of
the segments of the wing with longerons and with-
sut them at the given section in percent of the

chord Ch

momsnt of inertia of a given segment taking into
account its height.

FProm the volynomial in the brackets (formula (4)) the common

factor

whence

2
Eﬁf_ﬂ is taken out :nd the coefficients defined
12

2
(ap~Bgp Je®y 2
n

12

ky = —— —= (5)
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whence ' )
k,‘=l2'A’,,k,. ’ B (6)
’ .
Aq,.c " .4 ct
12 5712 ¢
whence
Ag
 S—
q,
or
ky=1—4k,. {(7)

The obtained coefficients are substituted in equation (4)

2 WCle | Tmz?
lpc.g. =k, [(ky 1242, —1) &y 1] q1-2—-g— 4+ Y
n

There 1s set

ky[(Ry-H12A%, — Dk 1] =4. ®)
Emer q.C%,

Substituting the new notation in the preceding equation,
there is obtained

- 9C’n
For the outer wings considered
(1-Ak) k=1, an
whence _ i
—9n%s"
lpc.g—' 19¢ (12)

Determination of
is obtained

Gp-~ Virectly from figure 5 there

9:=¢o+9—Aq,_, (13)
where

L,
7=qr— ¢¢— (91 — 90) T -
1
or

l
Ag,, = Agy — (3¢, —Aq, ) T'; . (14)

The values q and Aqy; are substituted in equation (13)
n

I !
9= q0+q1 — 4y — (ql _qo)—lT'"' Aqn, +(Aqu, - Aquo ) T:" ’
vhence p
9n=9q — Aqu, — (91— 90) “—(Aqul - Aquo )} 7’:' . (15)
The magnitudes Qs Gy AqIII. and AqIIo entering

equation (15) are expressed in terms of ng and g
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q
e =g,
whence .
g1 =144
7.+ 4o ny, +1
q” = 2 = 2 qm
AU
— 16
2n, q
—_ein an
=, F
There 1g set
Agy, =y, In> (18)
Aq"" = Ay Gy - (19)

Phe expressions (16), (17), (18), :nd (19) are substituted
in (15?

2n q {( 2n, q 2¢q ) ] l
™ o Tm m_\__ . n
I n, n, + 1 Gy, Im — + 1 n, + 1 (au, dm “u,,qu) 7,
[2’1 — 4y, (n¢—]—l)]——[2n —~2— a,. au)(n¢+1)]T
ne
Determination of 3111 and aII
A A /4 a a a
b“= { ( T, +2 q“o) 1 dm ll} 100 = (all _2+_q lll)xqm. 100 = i, -42_:_"\; 100,
whence
2b,,
@y, =00 % (21)

where bII 1s the weight of the second longeron without

the Joints to the center wing in percent of weight of the
outer wing.

24q, ay, Im 2a,,
Cy = °__ 100 = ————L————100==————4——10Q
" Agy +Aqy, (ay,+ay) 9y a;, +ay,
1 b, 1\ 1
100 4, =“2_(an. et ay, n)= J00 ‘n T 3 %, +'§ ay, i
b, c
ay, = 130(;]‘ s (22)

where Crq is the unit weight of the second longeron at

the tip of the outer wing in percent of the mean unit
weight of the iongeron.
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The value of g, according to average statistical

data.— From statistlcal data the weight of the second

longeron without the joints constitutes about 15 percent
of the weight of the entire outer wing, It may be assumed
that the weight of the second loungeron along the span is
distrivbuted according to the triangle law whence there is
obtained

a = 0 (33)
II,
- 2% 156 _
a = B.p—22 = 0,30 24
I, 100 (24)
By substituting these values in formula (20), there is
obtained 1
[1,7?n,~0,3] - [1,7n.—2,38]-8
a, = 9 (25)
n@ + 1

Determination of The Coefficients

Determination of the coefficients Ak,— 3y formula
(9) there is obtained

rmz q.¢C
Ak = 5 ¢ kR n (26)
A a 13¢g
where
Smz® moment of inertia of a segment of width Al
taking accouunt of its height
q,c ?
k-B B area moment at the given section of the wing
12¢g along the chord

The computation of the moments of inertia wilh respect to
the height of the wing section for a large number of wings
showed that for any seguent the moment of inertias can
with sufficient accuracy be determined by the formula

2
Tpz? = En%nﬁ (27)

where
Py weizht of the sgsegment

x

h, maximumm height of profile in the plane of the center
of gravity of the segment
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2
If at gach section of the wing E%%B— is taken as
unity, the moment of inertia with respectgto the height
of the profile at each section may be expressed as a frac—
tion of unity and will correspond to the coefficlient Ak,
Figure 6 shows the variation in the coefficient Ak along
the span of two outer wings — the lower curve for an air-
plane of about five tons weight, the upper curve for an
airplane of about twelve tons weight, and between them
the curve of the mean value of Ak whilch should be used
in the computation, The value of Ak does not dspend on
the weight of the alrplane but only on the value of h,

expressed as a fractlon of the length of the chord c,,.

2 2 2
Ak = (ay + Bagry M8y . Fantn _ 4 1+ ﬁglln\<32>
g 12¢g 3k an 7 Mcq

The mean value of the coefficient Ak for the entire outer
wing may be taken equal to

0%, = 0,020 (28)

Detérmigation of the cogfficient k,—~ From formula
(11) there is obtained

Substituting for Ak its mean value there is obtained

k, = 0,970 (30)

Determination of the coefficient ki'— The variation

in the value of the coefficient k, along the outer wing

is shown 1iIn figure 7 where four curves are glven, From
statistical data the center of gravity of the section of
the outer wing without longerons at the large end lies at
46,5 percent of the chord and the center of gravity of

the wing without longerons at the section lying at distance
1, from the large end lies at 50 to 54 percent of the

chord, Hence all the four curves shown on figure 7 start
from one point and diverge somewhat at the tip of the wing,
Tho numbers on figure 7 1lndicate the percent corresponding
to sach curve, The mean value of this coefficient for the
entire outer wing may bc taken equal to

kK, = 0.994 (31)
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Determination of the coefficient ky.- According to
formula (57, 1t may be written ’

i Aq
ky=1-—-i (32)
In analogy with formulas (14), (18), and (19) there is
obtained
— lll .
Agy, =49, — (A0, — 207
Ag,=ay,q,,
Aqlo = aloqm ’
whence there 1s obtalned
. l
Aql" = [a," —(4,—a, )”[’i'] D+ (33)
In analogy with formulas (21) and (22) it is written
bc,
%= 16600 (34)
2b,
a, 100 a, (35)

where

b; weight of first longeron without the Joints to
center wing

¢y unit weight of first longeron at the tip in percent
of mean unit welght of the longeron
The welght of first longeron without the Joints,
according to the wings observed, constituted abdbout 16
percent of the welght of the entire outer wing. By
assuming that the distribution of its welght along the
wing follows the triangle law, there is obtained

a, =0; c. . (39)
a, =0,32, e
whence ‘
Ag, =[,o,32—0,32xi—"] 0, (38)
n 1

By making use of equation (25), there is obtained

[0,32 0,322 ] (7 +1]
k3=1 — [ J—
[1,70 2, —0,30] —[1,707, —2,30] -

=1 (39)
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TABLE 1
,’:.‘:...‘._., - ’ . (n(I) = 4)
C
2

In B a-Bln 0.32_8 c L pln Ky
11 Ll 11 11 T:
0 0 6.50 0 1.600 0.246 0.754

2 .90 5.60 .064 1.280 .228 772
n.4 1.80 4.70 .128 .960 .204 .796

.6 2,70 3,80 192 .640 .169 ,831

.8 3.60 2,90 ,256 .320 .114 .886
1.0 4,50 2.00 .320 o] o} 1.000

Prom table I there is obtained the mean value

k, = 0.840.

TABLE 11I
(n® = 10)
: { ¢
A A 1 1
_n l =2 A_B2 0.30-2 ¢ En k
l 1 l l A-B— 3
1 1 1 1 1.
0 0 16.70 0 3.520| 0.211 | 0.789
2 2.94 13,67 .064 2.820 .205 .795
.4 5.88 10.82 .128 2.110 .195 .805
.6 8.82 7.88 192 1. 1.410 .179 .821
.8 11,786 4,94 .2b6 . 705 ©,143 .867
1,0 14.70 2.00 <320 0 0 1.000
From table II there 1s obtained the mean value
k. = 0.844,

3

The mean value of n for all the wings considered
is about seven, and therefore for the mean value of the
coefficient k3 there is obtained the wvalue

b
kyg = 0.842 (40)

The variation in the mean value of the coefficient -ks
along the span of the outer wing is shown in figure 8.
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Determination of A,-~ The distance between the

center-of-gravity lines of the wing with and without
longerons, expressed in fractions of the chord, is not
constant along the span but fluctuates between 0.03 and
0.07, and therefore for the entire outer wing may be
taken as

A, = 0.050 (41)

whence there is obtained

124,° = 0.030 (42)

Determination of the coefficient k;.- From formula
(8) there is obtained

k, = .. ' (43)
(ks + 120p° - 1)k, + 1

By substituting in this formula the corréspondlhg
mean values of the coefficients determined previously,
equations (30), (31), (40), and (42), there is obtained

. €.970 '
im [o 994 + 0.030 - 1] 0.842 + 1

whence
Ky, = 0.950 (44)
The variation in the mean value of k; along the
span 1s shown in figure 9.
Derivation of Formulas for The Determination

of The Rsdius of Inertia of any Outer-Wing Section

about Its Center of Gravity

/ W ;
i (1 + B0 152 _ /(1 + p)E _ 93%
c.g.
‘\/ a, ¥ AqII 12 ap *+ Adgp
n

g
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whence

4

D a
1. . = 0.288¢c (1 + Ak)k—r 2D . (45)
c.8. - n / a, + AqIIn

For the wings cdnsidered
(1 + Ak)k =1

hence
1 - 0.2880 v// In (46)
c.g. = VY- n ry
4, AqIIn
for
ng = 7.0 (mean statistical value)
byy = 15.0 percent
err = 0
there is obtained . .
[1.7n® ~ 0.3] -~ [l.7n® - 2.3]-2 11.6 - 9.6-2
- by _ 1.
in = ng * 1 o = 8.0 in
A [O 3 0 SLn]
q = 0.3 - 0.3-8 @
IIn 1, |'m
TABLE III
1 1 A +A
o | 9.2 G | gaim | 2%, | fT0%rn, 4 i .
1y ' 1y Om Ty 9m Gm Cn
0 0 1.450 0 0.300 1.750 0,262
o2 1.92 1.210 .060 .240 1,450 .263
A 3.84 .970 .120 .180 1.150 .265
.6 5.76 .730 .180 .120 : .850 .267
.8 7.68 .490 .240 .060 . 550 273
.9 8.64 .370 .270 .030 .400 .278
1.0 9.60 .250 .300 0 .250 .288
i
The values of ~%TE+ obtained in this table are plotted
n

in figure 15.




is . ' NACA Technieal Memora ndum No. 1052

COMPARISON OF RESULTS _OBTAINED BY DETAILED COMPUTATION
WITH THOSE OBTAINED BY THE DERIVED "FORMULAS
Mass Moment of Inertisa of The Outer-Wing Structure

about The Center-of-Gravity Line

By using the detailed method of computation of the
mass moments of inertia of the various segments of the
outer wing, the broken line shown in figure 10 is obtained.
For each wing the broken line was replaced by a smooth
curve obtained from the condition that the area bounded
by this curve and two ordinates should be equal to the sum
of the areas of the columns under the broken line.

For 211l wings for which the mass moments of inertia
were computed in detzil from the geometric dimensionsg
and total weight of each outer wing, there were determined
the values =n,, ng, and qu = P/1, where P did not

include the weight of the Jjoints. Eleven sections were
taken for each outer wing and in each of the ssctions, by
making use of formula (12), 'the moment of inertia was
determined and the curves shown in figures 11, 12, I3, and
14 were obtained.

From these curves it is seen (figs. 12 and 13) that
for the fuselage end of the outer wing there is consid-
erable disagreement between the curves of true moments of
inertia and the curve computed by the formula. Remembering,
however, that the dlsagreement in the moments of inertia
at the sections near the fuselage is of no special signif-
jcence for the vibration computstion, it must be concluded
that the derived formula for determining the moment of
inertia at- any section of the outer wing gives. good agree~
ment with accurate computation, a fact. of great importance
since the moment of inertia of any section of the outer
wing can be determinecd from a knowledge of only its geo-
metric dimensions, total weight, and the weight of the
seccond longoron. . .

Radius of Inertia

The wavy curves of figure 15 are those 6f the radii
of inertia of the four outer wings considered, the curves
having been obtained by a detailed computation. Wotwith-

|
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standing the fact that the wings considered differed
sharply among each other both as regards thelr absolute

dimensions as well as their taper ratio n, with a

somewhat different chordwise position of the longerons
{(the center of gravity of the longerons lay at from
32 to 36 percent of the chord), the scatter of the
points of these curves is not large and they can all
be replaced by the smooth curve shown in the figure,
the curve being drawn from the data of table III,

ILLUSTRATIVE EBXAMPLE

The formulas derived previously are valid only for
two and three longeron wings of the CAEI type, the posi-
tion of the longerons and the lines of center of gravity
not differing greatly from the position of the longerons
shown in figure 4 (the third longeron shown in the figure
constitutes only 2 percent of the weight of the outer
wing and is not a stiffening member).

The formulas for determining the mass moments and
radii of inertia were derived for a cantilever wing
the thickness of which at the fuselage end was about
15 to 16 percent of the chord and at the tip about 5
to 7 percent.

By assuming the two-longeron wing shown in figure
16, the data for it being the following:

co = 4.43 meters1 chord and thickness of center wing
at fuselage intersection

hy = 0.656 meterj

i, = 2,35 meters length of center wing projecting
from fuselage

¢, = 4,10 meters1 chord and thickness at Juncture of

outer wing with center wing
h, = 0.656 meterj

Cy T 1.40 metersl effective chord and thickness at tip
f of outer wing at distance 1, from
hy, = 0.112 meter .large end (fig. 16)

l; = 1 - Al, = 8,85 meters effective length of outer wing
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i

A length of outer wing from large end to tip

Al rejected length of tip of wing in reducing area of
outer wing to an eguivalent trapezoid

G = 363 kilograms weight of outer wing structure including
. """ ailerons, bolts, and fillets

Determination-of The Genteé—oﬁ-Gravity Line
along The Span

Outer=wing struchure.- For determihing the center-of-
gravity line 6f the outer wing in the preliminary design
stage when the weight of the longerons i's not known, the
approximate method previously given 1s used

¢;h, _ 4.10 X 0.656

= = 17.1
°  eghy  1.40 x C.1l1l2

From the curve of figure 2 it is found that ng = 8;

hence the distance to the center of gravity of the entire
outer wing (equation (1)) is.

Zl g + 2 8.85 10
1 = —= — = - — = 3,28 meter
©.8.0 B n. + 1 3 9 ®
o
From- statistical data the centesr of gravity of the outer
wing lies at 43,0 percent of the chord at distance 1, g ¢-

The center of gravity at the Jjuncture with the center wing
ig 43.0 - 0,25 X 3.28 = 42,2 percent. By Joining the
preceding two points by a straight line and prolkonging it
to the tip of the wing, the linc.of centers of gravity of
the outer wing along the span is obtained. If the weights
of the .longerons are known, the center-of-gravity line can
be more accurately &etermlned by the method preV1ously
given.

Center wing.- From statistical data the center of
gravity of the part of the center wing projecting from
the fuselage lies at 39 percent of the chord, the distance

of which from the root of the center wing is Zc z.c To

determine Lc.guc by formula (3) it is necessary first

to determine
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c_h 4.43 x 0.656 .
n, = =22 = = 1.08

e w8 eyh,. .4.10 x 0.6586
and then ‘
l_n 2 '2.35 3.08
b L == =L = X = 1.16 meters
c.gt.c. 3 nc 4 l 5 2.08

By Jjoining the center of gravity of the outer wing at the
fuselage end with the general center of gravity of the part
of the certer wing projecting from the fuselage by a straight
line and prolonging it to the fuselage, the line of centers
of gravity of the sections of the c¢enter wing along the span
is obbained. This line does not take into account the

welght of the Joints at the intersection of the outer wing
with the center wing.

Determination of The Mass Moment of Inertia
of Outer~Wing Sections about Their Centers of Gravity

At the preliminary design stasge when the weight of
the second lcngeron is not known, the mass moment of iner-
tia of any section of the outer wing may be determined by
the formula

2
* q c 2
I = L1 kg c 12
o . 116 g. se (12)

where

a, weight of a given segment without the second longeron

¢p length of chord of segment in meters

For the two-longeron wing considered in the example,
a, may be determined by the formula

1
- - . - ey
[1.7n® 0.3] [1.7n® 2.3]Z

1

4y =

Dy
n g + 1
This value was obtained on the assumption that the welght

of the second longeron without the Jjoints to the center
wineg on the basis of statistical dsta on two-longeron
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wings constitﬁtés on the average 15 percent of the weight
of the outeér wing and that its weight was distributed along
the span according to the triangle law. -

In the case where the welght of the second longeron
differs consideradbly from 15 percent and the spanwise
weight distribution can not be assumed to follow the tri-
angle law, the value of gq, is determined by formula (20)

or gZraphically.
In distance from juncture end of outer wing to the
section considered

- G - P,
Qg - 1y

p; welght of attachments of outecr wihg to center wing

The value of qp may be determined by the formula

The factor 0.95 takes into account the concentrated

weight of the attachments at the flanges of the longerons
plus the weight of the bolts and fillets and was obtained
from statistical 'data on outer wings of longcron construc—
tion with a stressed skin. The main attachment of the
outer wing with the center wing is along the contour of
the s%Zin in which casc the skin is generally strengthened
at the Junction and the distribution of the weight of the
outer wing structure along the span is of the type shown
in figure 17 where the hatched part represents the weight
of the additional strengthening structurcs at the juncture
with the center wing. In this case the attachment of the
outer wing with the center wing takes place along the
flangcs of the longerons, therefore

a = G.95 x 363.0 = 59.0,

' 8.85 np = 8

whenco

1 1
q. = |13.3 - 11.3 -2 | 4.33 = 4,33 |A-B-I
n z'1 1’1
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The computation of Ip is conveniently conducted
c.

by.ﬁaking‘ﬁse of the following table:

‘n n 'n| tn

1, Bll 9n | ©n Ipc_g_ 1y le 9n | ©n Ipc.g. ‘
0 0 57.6014.,10| 8.20 (0.,6] £.78128.,20(|2.48 | 1.48

.1 11.13(52.60{3.81 | 6.48 L7 7.91(23.30(2.20 .96

.2 12.,26(47.,.8013.56] 5.12 .81 9.04118.40;1.94 .59

31 3,89142.90{3.30| 3.96 .9110.17113.601{1.66 .32

.4 14.52|37.9013.02} 2.94 [|1.0{11.30| 8.66(1.40 .14

.5 | 5.65133.10j2.75] 2.05 '

The results are plotted and a curve of the mass moments
of inertia along the span is obtained.

Determination of The Radii of Inertia of The Outer Wing

If the value of np is ncar seven and the weight of

the second longeron is near 15 pcrcent of the weight of
the outer wing and its weight distribution may be assumed
to follow the triangle law, the radius of inertia of the
cross sections of the outer wing structure 1s determined
from figure 18. In this example all the preceding con-
ditions are satisfied and thercfore the curve of the radii
of inertia for the outer wing corresponds to the curve

shown on figure 18. If this is not the case, thc radii
of inertia would have to be determined by the formula
i = 0.288¢ | In (46)
¢-&- SR/ ey + o bagg
n
where

AqII weight of second longeron at section considered
n

. 1
Ag = (a - (a - a,; ) ~£.l (47)
1T, - 1%t 11, 11,7 T, fm

The values of the remaining magnitudes are given by
formulas (20), (21), ana (22).

Translation by S. Reiss,
National Advisory Committece
for Acsronautics.
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