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Introduction

This project, which started on January 1, 2000, was funded by NASA Glenn Research
Center for duration of one year. The deliverables of the project included the following
tasks:

» Study of QoS mapping between the edge and core networks envisioned in the Next
Generation networks will provide us with the QoS guarantees that can be obtained
from next generation networks.

» Buffer management techniques to provide strict guarantees to real-time end-to-end
applications through preferential treatment to packets belonging to real-time
applications. In particular, use of ECN to help reduce the loss on high bandwidth-
delay product satellite networks needs to be studied.

» Effect of Prioritized Packet Discard to increase goodput of the network and reduce
the buffering requirements in the ATM switches.

» Provision of new IP circuit emulation services over Satellite IP backbones using
MPLS will be studied.

« Determine the architecture and requirements for internetworking ATN and the Next
Generation Internet for real-time applications.

Progress

The work of this project has been reported in the following six papers/reports, as listed
below. Copies of all the papers are attached to this final report.

1. H. Su and M. Atiguzzaman, "End-to-end QoS for Differentiated Services and ATM
Internetworking", 9th International Conference on Computer Communication and
Network, October 16~18, 2000, Las Vegas, Nevada.

2. H. Bai, M. Atiquzzaman and W. lvancic, “Achieving End-to-end QoS in the Next
Generation Internet: Integrated Services over Differentiated Service Networks”,
submitted to 2001 IEEE Workshop on High Performance Switching and Routing, May
29-31, 2001, Dallas, Texas USA.

3. H. Bai, M. Atiquzzaman and W. lvancic, “Achieving QoS for Aeronautical
Telecommunication Networks over Differentiated Services”, submitted for publication as
Technical Report, NASA Glenn Research Center.

4. A. Durresi, S. Kota, M. Goyal, R. Jain, V. Bharani, “Achieving QoS for TCP traffic in

Satellite Networks with Differentiated Services”, Accepted in Journal of Space
Communications.
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5. C. Liu and R. Jain, “Improving Explicit Congestion Notification with the Mark-Front
Strategy”, Computer Networks, vol 35, no 2-3, pp 285-201, January 2001

6. C. Liu and R. Jain, “Delivering Faster Congestion Feedback with the Mark-Front
Strategy”, International Conference on Communication Technologies (ICCT 2000),
Beijing, China, August 21-25, 2000.

Presentations

The investigators have presented their progress at two presentations at NASA Glenn
Research Center. Copies of the slides from the presentation are attached to this final
report.

Conclusion

The project has completed on time. All the objectives and deliverables of the project

have been completed. Research results obtained from this project have been published
in a number of papers in journals, conferences and technical reports.
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End-to-end QoS for Differentiated Services and ATM Internetworking'

Hongjun Su

Mohammed Atiquzzaman

Dept. of Electrical Computer Engineering
University of Dayton, Dayton, OH 45469-0226

Email: suhongju@flyernet.udayton.edu

Abstract— The Internet was initially design for non real-time data
communications and hence does not provide any Quality of Service
(QoS). The next generation Internet will be characterized by high speed
and QoS guarantee. The aim of this paper is to develop a prioritized
early packet discard (PEPD) scheme for ATM switches to provide ser-
vice differentiation and QoS guarantee to end applications running
over next generation Internet. The proposed PEPD scheme differs from
previous schemes by taking into account the priority of packets gener-
ated from different application. We develop a Markov chain model for
the proposed scheme and verify the model with simulation. Numerical
results show that the results from the model and computer simulation
are in close agreement. Our PEPD scheme provides service differenti-
ation to the end-to-end applications.

Keywords— Differentiated Services, TCP/IP-ATM Internetworking,
End-to-end QoS, Queue analysis, analytical model, performance evalu-
ation, Markov chains.

I. INTRODUCTION

With quick emergence of new Internet applications, ef-
forts are underway to provide Quality of Service (QoS) to
the Internet. Differentiated Services (DS) is one of the ap-
proaches being actively pursued by the Internet Engineering
Task Force (IETF) [1], [2], [3], [4], [5]. It is based on ser-
vice differentiation, and provides aggregate services to the
various application classes. DS has defined three service
classes. When running DS over ATM (which is implemented
by many Internet service providers as their backbones), we
need proper services mapping between them. Premium Ser-
vice requires delay and loss guarantees, and hence it can be
mapped to the ATM Constant Bit Rate (CBR) service. As-
sured Service only requires loss guarantees and hence can be
mapped to ATM Unspecified Bit Rate (UBR) service with
Cell Loss Priority (CLP) bit set to zero. The Best Effort ser-
vice does not require any loss or delay guarantee and can be
mapped to the ATM UBR service with CLP bit set to one.

It has been shown that Internet may loss packets during
high load periods, even worse is that it may suffer conges-
tion collapse [6], [7]. Packets loss means all of the resources
they have consumed in transit are wasted. When running DS
over ATM, packets loss may lead to more serious results.
Because messages will be break into small fix size packet
(call cells), one packet loss will lead to the whole message
be transmitted again [8]. This makes the congestion scenario
even worse. Transmitting useless incomplete packets in a
congested network wastes a lot of resource and may result in
a very low goodput (good throughput) and poor bandwidth

LThis work was supported by NASA grant no. NAG3-2318 and Ohio
Board of Regents Research Challenge grant
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utilization of the network. A number of message based dis-
card strategies have been proposed to solve this problem [8],
[9], [10], [11]. These strategies attempt to ensure that the
available network capacity is effectively utilized by preserv-
ing the integrity of transport level packets during congestion
periods. Early Packet Discard (EPD) strategy [8] drops en-
tire messages that are unlikely to be successfully transmitted
prior to buffer overflow. It prevents the congested link from
transmitting useless packets and reduces the total number of
incomplete messages. EPD achieves this by using a thresh-
old in the buffer. Once the queue occupancy in the buffer
exceeds this threshold, the network element will only ac-
cept packets that belong to a message that has at least one
packet in the queue or has already been transmitted. Also
per-VC based EPD schemes [12], [13] are proposed to solve
the fairness problem that a pure EPD may suffer when virtual
circuits compete for the resource. Although EPD can im-
prove the goodput at a network switch, it does not distinguish
among priorities of different applications. Previous studies
on EPD have assumed a single priority of all ATM psckets,
and thus fail to account for the fact that ATM packets could
have priority and need to be treated differently. Without a
differentiation between the packets, end-to-end QoS guar-
antee and service differentiation promised by DS networks
cannot be ensured when packets traverse through an ATM
network. The objective of this study is to developed message
based discarding scheme which will account for priority of
packets and will be able to provide service differentiation to
end applications.

In this paper,we propose a prioritized EPD (PEPD)
scheme which can provide the necessary service differen-
tiation needed by the future QoS network. In the PEPD
scheme, two thresholds are used to provide service differen-
tiation. We have developed Markov chain models to study
the performance of our proposed scheme. The effective-
ness of PEPD in providing service differentiation to the two
classes of ATM packets coming from a DS network is esti-
mated by the model and then validated by results obtained
from our simulation. We measure the goodput, packet loss
probability and throughput of the two service classes as a
function of the load. Given a QoS requirement for the
two service classes, our model can predict the size of the
buffer required at the ATM switches and the value of the two
thresholds to be used to achieve the target QoS. This model
can provide a general framework for analysis of networks
carrying messages from applications which require differen-



tial treatment in terms of Quality of Service (QoS).

The rest of this paper is organized as follows. Section II
lists the assumptions used in the model. Section III con-
structs a Markov chain model to analyze our proposed PEPD
scheme. The model is used to study the performance of the
PEPD policy using goodput as the performance criteria. Nu-
merical results from both modeling and computer simulation
are presented in Section IV. Concluding remarks are given
in Section V.

II. MODELING ASSUMPTIONS

In the dispersed message model [11], [14], a higher layer
protocol data unit (message) consists of a block of consec-
utive packets that arrive at a network element at different
time instants. TCP/IP based systems are examples of such a
model. In TCP/IP, the application message is segmented into
packets, which are then transmitted over the network. At the
receiving end, they are reassembled back into a message by
the transport protocol before being delivered to higher lay-
ers.

« We assume variable length packets, the length of the pack-
ets being geometrically distributed with parameter ¢ (inde-
pendent between subsequent packets). Clearly, the average
packet length is 1 /g packets. This kind of assumption is typ-
ical for data application such as document file and e-mail.

« We also assume that the packets arrive at a network el-
ement according to a Poisson process with rate A, and the
transmission time of a packet is exponentially distributed
with rate p. Although we assume that packets are of vari-
able length, Lapid’s work [11] shows that this kind of model
fits well for fixed-length packet (which is typical to ATM
network) scenarios.

o The network element we used in this paper is a simple
finite input queue that can contain at most N packets. When
the packets arrive at the network element, it enters the input
queue only when there is space to hold it; otherwise it is
discarded.

o Packets leave the queue according to a first-in-first-out
(FIFO) order. When a server is available, the packet at the
head of the queue can be served. A packet is transmitted
by the server of the network element during its service time.
Hence, the network element can be viewed as a M/M/1/N
model, with arrival rate A and service rate p.

o The input load to the network element is defined as p =

A .

III. PERFORMANCE EVALUATION OF PEPD SCHEME

In this section, we describe the PEPD scheme, followed
by model setup and performance analysis.

A. PEPD scheme

NASA/TM—2001-210904
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Fig. 1. Network element using PEPD policy.

In the PEPD scheme, we use two thresholds: a low thresh-
old (LT) and a high threshold (HT), with 0 < LT <
N,LT < HT < N. As shown in Fig. 1, let Q)L indicate
the current queue length. The following strategy is used to
accept packets in the buffer.

o If QL < LT, all packets are accepted in the buffer.

e If LT < QL < HT, new low priority messages will
be discarded; only packets belonging to new messages with
high priority or packets belonging to messages which have
already entered the buffer are accepted.

o« If HI' < QL < N, all new messages of both priorities
are discarded.

o For QL > N, packets belonging to all messages are lost
because of buffer overflow.

B. Proposed PEPD model

To model the PEPD scheme, we must distinguish between
two modes: the normal mode in which packets are accepted
and the discarding mode in which arriving packets are dis-
carded. The state transition diagram for this policy is shown
in Fig. 2. In the diagram, state (7, j) indicates that the buffer
has 7 packets and is in 7 mode, where 0 < i < N, 5 =0
or 1. 3 = 0 corresponds to the normal mode, while j = 1
represents the discarding mode. We assume that a head-of-
message packet arrives with probability g. The probability
that an arriving packet is part of the same message as the
previous packets is p = 1 — ¢, and hence is discarded with
that probability in the case that that message is being dis-
carded.

According to PEPD, if a message starts to arrive when
the buffer contains more than LT packets, the complete new
message is discarded if it is of low priority, while if a new
message starts to arrive when the buffer contains more than
HT packets, the complete message is discarded regardless
of its priority. Once a packet is discarded, the buffer enters
the discarding mode, and discards all packets belonging to
this discarded message. The system will remain in discard-
ing mode until another head-of-message packet arrives. If
this head-of-message packet arrives when QL < LT, it is
accepted, and the system enters the normal mode. If this
packet arrives when LT < QL < HT, then the system en-
ters the normal mode only if this packet has high priority.
Otherwise, it stays in the discarding mode. Of course, when
QL > HT, the buffer stays in the discarding mode. Let’s
assume that h and [ = 1 — h be the probabilities of a mes-
sage being of high and low priority respectively. Also let
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Fig. 2. Steady-state transition diagram the buffers using PEPD

P; ;(0 <i < N,j=0,1) be the steady-state probability of
the buffer being in state (i, 7). From Fig. 2, we can get the
following equations. The solutions of these equations will
generate the steady-state probabilities of the buffer states.

AP0 1P o
gAPo1 = pPig
A+ u)Po = APi—i1p+pPip10+ qhAPi_q1
1<i<LT
A+wPo = (Ap+qhN)Pi10+pPiiio
+qh\P,_1, LT <i<HT
A+pwPo = pA\Piipg+pPiyio HI <i< N
A+ w)Pno = pAPn_1p
uPn1 = APnp (1)
wPii = qAPio+ pPiy1n HT <i<N
(ghA+ ) Pii = q\1—=h)Pio+ pPit1a
LT <i<HT
N
Z(Pi,o +Py) =1
i=0

C. Performance analysis of PEPD

In this section, we derive the expression of goodput G for
high and low priority messages. The goodput G is the ratio
between total good packets exiting the buffer and the total
arriving packets at its input. Good packets are those pack-
ets that belong to a complete message leaving the buffer. In
this paper, we define the goodput for high (or low) priority
as the ratio between total number of good packets with high
(or low) priority exiting the system and the total number of
arriving high (or low) priority packets at the buffer. How-
ever, we normalize the goodput to the maximum possible
goodput.

Let W be the random variable that represents the length
(number of packets) of an arriving message, and V' be the
random variable that represents the success of a message.
V' =1 for a good message, and V' = 0 for an incomplete
message. Let U be the random variable that represents the
priority of a packet, U = 1 for high priority packets and
U = 0 for low priority packets. The goodput for the high
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priority packets (G},) is
Yoo, nP(W=n,V=1U=1)
Yoo nP(W=n,U=1)

where the numerator represents the total good packets exit-
ing the buffer and the denominator is the total arriving pack-
ets at a network input. Note that W and V' are independent
random variables, and the length of an arriving message is
geometrically distributed with parameter ¢, which means the
average length of the messages is 1/¢. Then the denominator
of Eq. (2) can be expressed as

Gy =

©))

inP(W:n,V:l):P(U:l)iP(W:n):

n=1
(

CEES

Substituting Eq. (3) in Eq. (2),
o0
_4g _ _ _
Gh—EnEﬂnP(W—n,V—l,U—l) @)

The probability of an incoming high priority message of
length n to be transmitted successfully can be expressed as
follows:

PW =nV=1U=1)

PV =1W=n,U=1)
P(W=n,U=1)
= PV=1W=nU=1)
PW =n)P(U =1) (5)
= q1-9)"'h
PV =1W=n,U=1)
Let () be the random variable representing the queue oc-
cupancy at the arrival of a head-of-message packet. Then

N

PV=1W=nU=1) = > PV=1W=nU=1,
i=0
Q=0P@Q=1) (6)

where P(Q) = i) = P;o + P, is the probability of the
queue occupancy. P; ; is obtained from from the solution of
Eq. (2). By combining Eqgs. (4), (5), and (6), we get the
goodput of the high priority messages as:
[e's} N
Gn = ¢ ngl—g" V> PV =1W=nU=1,
n=1 i=0
Q=0P@Q=1) )
Similarly, we can get the goodput for the low priority mes-
sages and the total goodput as follows:

G = qinq(l —q)» Y ip(v =1|W =n,U =0,
Q-ip@=i @

G = qinq(l — )"V iP(V =1W =n,
Q-ip@=i ©



In order to find the values of GG, GG; and G, we need to
define and evaluate the following conditional probabilities:

Sp.i PV =1W =n,Q =) (10)
Sini = PV=1W=nU=0,Q=1i) (11)
Shmi = PV =1W=nU=1,Q=14) (12)

These conditional probabilities can be computed recur-
sively. Let’s take Sp, ,; as an example. Consider first a
system that employs the PPD policy. Usually, the success
of a packet depends on the evolution of the system after the
arrival of the head-of-message. However, there is a boundary
condition for this. Let us first consider a message of length
1 < n < N. Assume that the head-of-message packet be-
longing to a message of length n < IV arrives at buffer when
@ = i. Then, if i < N — n, there is enough space to hold
this message, and this message is guaranteed to be good, i.e

Sni=1

, 0<i<N-n, 1<n<N (13)

note that if ) = N (i.e. the buffer is full), the head-of-
message packet is discarded, and the message is guaranteed
to be bad. Hence,

N

Sp,n=0 1<n<N (14)

Egs. (13) & (14) give the boundary conditions for this sys-
tem. For other states of the buffer, we have:

Sn,i = (]- - T')Snfl,i+l + T‘Sn,ifl

N-n+1<i<N-1,1<n<N (15

where r = p/(u + h) is the probability that a departure
occurs before an arrival. In this case, we only consider the
conditional probability for high priority packets, so the ar-
rival rate is hA rather than A. Eq. (15) can be explained as
follows. If the next event following the arrival of a head-
of-message packet is the arrival of another packet (which
has the probability 1 — r), this new packet can be viewed
as a new head-of-message packet belonging to a message of
length n — 1. Therefore, the probability that this new mes-
sage will succeed is gn_l’i+1. If the event following the ar-
rival of the head-of-message packet is a departure of a packet
(which happens with probability r), the probability that the
message is successful is S, ;_1, since it is equivalent to a
head-of-message packet that arrived at the system with @
=t — 1 packets. So, combining the above two conditions, we
can get:

N

Sn,i =
1 N-n+1<z1
i< N-1
(1- T)Sn—LH—l + rS'n,i—1 N —n+1<416)
i<N-1
0 1i=N

For a large message, n > N, there is no guarantee that
this message will succeed, it’s success depended heavily on

NASA/TM—2001-210904

the evolution of the system after the arrival of the head-of-
message packet even for the case of ¢ = 0. So, forn > N
we get the following equations:

(1- T)S’nfl,z#l + Tgnfl,i 1=0

(]- - T)Snfl,ile + Tsn,ifl N-n+1 S 7/(17)
i<N-1
0 i=N

These recursions are computed in ascending order of both
n and ¢. For a system that employs the PEPD policy, for
high priority messages, the above recursions remain correct
only when the head-of-message packet arrives at the buffer
while the number of packets is below the high threshold, i.e.
Q =i < HT. For Q =i > HT, these new messages will
be discarded, so

_ [ 8,; i<HT
&m”_{ 0 HT<i<N 1%
with r = p/(u + hA). Similarly, we can get
[ 8. i<LT
with r = p/(u + (1 — h)A), while the average is
Sni = (1= h)Syni + hSin,i (20)

The above model is used to analyze the performance of
PEPD in the next section.

IV. NUMERICAL RESULTS

In this section, we present results from our analytical
model and simulation to illustrate the performance of PEPD.
We also validate the accuracy of our analytical model by
comparison with simulation results. In our experiment, we
set N = 120 packets, ¢ = 1/6 which corresponds to the
case where the queue size is 20 times the mean message
length. The incoming traffic load (p) at the input to the
buffer is set in the range of 0.8 — 2.2, where p < 1 rep-
resents moderate load, and p > 1 corresponds to higher load
which results in congestion buildup at the buffer. Goodput
of the combined low and high priority packets is defined as
G =h*GH + (1 — h) * GL as used in Eq. (20).

In order to validate our model, we compare it with re-
sults from computer simulation. The simulation setup is
simply two nodes compete for a single link with a queue
size 120 packets. The two nodes generate messages with a
mean length of 6 (measured in packets). Because the queue
occupancy is a critical parameter used for calculating the
goodput, we compare the queue occupancy obtained from
the model and computer simulation in Fig. 3. For ¢ = 1/6,
it is clear that analytical and simulation results are in close
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Fig. 3. Comparison of queue occupancy probability from model and sim-
ulation with different load. N = 120,L17" = 60,H1" = 80,h =
0.5, =1/6.
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Fig. 4. Goodput versus load for h = 0.5, N = 120, L1 = 60, HT =
80,9 = 1/6. G, GH and GL represents average goodput of all, high
priority, and low priority packets respectively.

agreement. Our proposed scheme results in the buffer occu-
pancy varying between L1" and HT" for even high loads. The
exact value depends on the average message length, queue
thresholds, etc.

Fig. 4 shows the goodput of the buffer using PEPD for
g = 1/6 (i.e. mean message length of 6) as a function of the
offered load. In this figure, the probability that a message is
of high priority is 0.5. From Fig. 4, it is clear that the re-
sults from our model and computer simulation fit well. So
we conclude that our model can be used to carry out an accu-
rate analysis the PEPD policy. Therefore, in the rest of this
section, we will use results from only the model to analyze
the performance of PEPD policy.

Fig. 5 shows the goodput for ¢ = 1/6 as a function of
the offered load and for different mix (h) of high & low pri-
ority packets. For a particular load, increasing the fraction
of High Priority (HP) packets (h) results in a decrease of
throughput of both high and Low Priority (LP) packets. The
LP throughput decreases because the increase in h results
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Fig. 5. Goodput versus load for h = 0.2,0.5 and 0.8 with N =
120, LT = 60, HT = 80,9 = 1/6. G, GH and GL represents aver-
age goodput of all, high priority, and low priority packets respectively.

in fewer LP packets at the input to the buffer in addition to
LP packets competing with more HP packets in the buffer
space (0 to LT). On the other hand, increase in A results in
more HP packets. Since the amount of buffer space (HT-LT)
which is reserved for HP packets is the same, the through-
put of HP packets decrease. Note that the decrease in the
throughput of LP is much faster than the decrease in HP re-
sulting in the overall goodput (as defined by Eq. (20) being
constant. Our proposed technique allows higher goodput for
high priority packets which may required in scenarios where
an application may need a preferential treatment over other
applications.

In Fig. 6, we fix LT while varying HT to observe the be-
havior of the buffer. It is obvious that for a traffic containing
fewer high priority packets, increasing the H7' will increase
the performance of the buffer for high priority packets. This
is because increasing H7T' will let the high priority packets
get more benefits from discarding low priority packets, es-
pecially for lower values of HT'. Increasing HT' will result
in an initial increase in the goodput for high priority packets
followed by a decrease. This is obvious, because for a very
high value of HT', the behavior of PEPD will approach that
of PPD for high priority packets.

Fig. 7 shows the goodput for high priority message versus
the fraction of high priority messages. It is also clear that for
a particular load, increasing the high priority traffic will de-
crease the performance for high priority packets as has been
observed in Fig 5.

Finally, in Fig. 8, we keep HT constant while changing
LT. For aload of 1.6 and a particular mix of high & low pri-
ority packets, we observe that the performance of high prior-
ity packets is not very sensitive to a change in L7T'. However,
when LT is set close to HT', the goodput for high prior-
ity packets will decrease quickly. This is because when the
two thresholds are set too close, the high priority packets do
not get enough benefits from discarding low priority pack-
ets. We suggest avoiding this mode of operation because the
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buffer is not fully utilized.

V. CONCLUSIONS

In this paper, we have proposed and developed a perfor-
mance model for the Priority based Early Packet Discard
(PEPD) to allow end to end QoS differentiation for appli-
cations over Next Generation Internet. To verify the valid-
ity of our proposed analytical model, we compared it with
results from computer simulation. Numerical results show
that the results from the model and computer simulation are
in close agreement. The numerical results also show that
our proposed PEPD policy can provide differential QoS to
low and high priority packets. Such service differentiation
is essential to provide QoS to applications running Differ-
entiated service over ATM. Our result show that the per-
formance of PEPD depends on the mix of high & low pri-
ority traffic, threshold setting, average message length, etc.
Given a certain QoS, the model can be used to dimension the
size of the buffer and the PEPD thresholds. Our model can
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serve as a framework to implement packet based discard-
ing schemes using priority. Results show that this scheme
solves some critical problems for running Differentiated Ser-
vice (DS) over ATM network by ensuring the QoS promised
by the Differentiated Service.
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Abstract

Currently there are two approaches to provide Quality of Service (QoS) in the next generation
Internet: An early one is the Integrated Services (IntServ) with the goal of allowing end-to-end
QoS to be provided to applications; the other one is the Differentiated Services (DiffServ)
architecture providing QoS in the backbone. In this context, a DiffServ network may be viewed
as a network element in the total end-to-end path. The objective of this paper is to investigate
the possibility of providing end-to-end QoS when IntServ runs over DiffServ backbone in the
next generation Internet. Our results show that the QoS requirements of IntServ applications
can be successfully achieved when IntServ traffic is mapped to the DiffServ domain in next

generation Internet.
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1 Introduction

Quality of Service (QoS) has become the objective of the next generation Internet. QoS is generally
implemented by different classes of service contracts for different users. A service class may provide
low-delay and low-jitter services for customers who are willing to pay a premium price to run high-
quality applications, such as, real-time multimedia. Another service class may provide predictable
services for customers who are willing to pay for reliability. Finally, the best-effort service provided
by current Internet will remain for those customers who need only connectivity.

The Internet Engineering Task Force (IETF) has proposed a few models to meet the demand
for QoS. Notable among them are the Integrated Services (IntServ) model [1] and Differentiated
Services (DiffServ) [2] model. The IntServ model is characterized by resource reservation. Before
data is transmitted, applications must set up paths and reserve resources along the path. The
basic target of the evolution of IntServ is to support various applications with different levels of
QoS within the TCP/IP (Transport Control Protocol/Internet Protocol) architecture. But IntServ
implementation requires RSVP (Resources Reservation Protocol) signaling and resource allocations
at every network element along the path. This imposes a bound on its incorporation for the entire
Internet backbone.

The DiffServ model is currently being standardized to overcome the above scalability issue, and
to accommodate the various service guarantees required for time critical applications. The DiffServ
model utilizes six bits in the TOS (Type of Service) field of the IP header to mark a packet for
being eligible for a particular forwarding behavior. The model does not require significant changes
to the existing infrastructure, and does not need many additional protocols. Therefore, with the
implementation of IntServ for small WAN networks and DiffServ for the Internet backbone, the
present TCP/IP traffic can meet the present day demands of real time and other quality required

traffic. Combining IntServ and DiffServ has been proposed by IETF in [3] [4] as one of the possible
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solutions to overcome the scalability problem.

To combine the advantages of DiffServ (good scalability in the backbone) and IntServ (per
flow QoS guarantee), a mapping from IntServ traffic flows to DiffServ classes has to be performed.
Some preliminary work has been carried out in this area. Authors in [5] present a concept for the
integration of both IntServ and DiffServ, and describe a prototype implementation using commercial
routers. However, they don’t present any numerical results. Authors in [6] present results to
determine performance differences between IntServ and DiffServ, as well as some characteristics
about their combined use.

The objective of this paper is to investigate the end to end QoS that can be achieved when
IntServ runs over the DiffServ network in the next generation Internet. Our approach is to add
a mapping function to the edge DiffServ router so that the traffic flows coming from IntServ
domain can be appropriately mapped into the corresponding Behavior Aggregates of DiffServ, and
then marked with the appropriate DSCP (Differentiated Service Code Point) for routing in the
DiffServ domain. We show that, without making any significant changes to the IntServ or DiffServ
infrastructure and without any additional protocols or signaling, it is possible to provide QoS to
IntServ applications when IntServ runs over a DiffServ network.

The significance of this work is that end-to-end QoS over heterogeneous networks could be
possible if the DiffServ backbone is used to connect IntServ subnetworks in the next generation

Internet. The main contributions of this paper can be summarized as follows:

e Propose a mapping function to run IntServ over the DiffServ backbone.

e Show that QoS can be achieved by end IntServ applications when running over DiffServ

backbone in the next generation Internet.

The rest of this paper is organized as follows. In Sections 2 and 3, we briefly present the
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main features of IntServ and DiffServ, respectively. In Section 4, we describe our approach for the
mapping from IntServ to DiffServ and the simulation configuration to test the effectiveness of our
approach. In Section 5, we analyze our simulation results to show that QoS can be provided to end

applications in the IntServ domain. Concluding remarks are finally given in Section 6.

2 Integrated Services

The Integrated Services (IntServ) model [1] characterized by resource reservation defines a set
of extensions to the traditional best effort model with the goal of providing end-to-end QoS to
applications. This architecture needs some explicit signaling mechanism to convey information to
routers so that they can provide requested services to flows that require them. RSVP is one of the
most widely known example of such a signaling mechanism. We will describe this mechanism in
details in Section 2.2. In addition to the best effort service, the integrated services model provides

two service levels as follows.

e Guaranteed service [7] for applications requiring firm bounds on end-to-end datagram queue-

ing delays.

e Controlled-load service [8] for applications requiring services closely equivalent to that pro-

vided to uncontrolled best effort traffic under unloaded (lightly loaded) network conditions.

We will discuss them in Sections 2.3 and 2.4, respectively.

2.1 Components of Integrated Services

The basic framework of integrated services [4] is implemented by four components: the signaling
protocol (e.g., RSVP), the admission control routine, the classifier and the packet scheduler. In this

model, applications must set up paths and reserve resources before transmitting their data. Network
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Figure 1: RSVP signaling for resource reservation.

elements will apply admission control to those requests. In addition, traffic control mechanisms on
the network element are configured to ensure that each admitted flow receives the service requested
in strict isolation from other traffic. When a router receives a packet, the classifier will perform
a MF (multifield) classification and put the packet in a specific queue. The packet scheduler will

then schedule the packet according to its QoS requirements.

2.2 RSVP Signaling

RSVP is a signaling protocol to reserve network resources for applications. Figure 1 illustrates
the setup and teardown procedures of PSVP protocol. The sender sends a PATH message to
the receiver specifying the characteristic of the required traffic. Every intermediate router along
the path forwards the PATH message to the next hop determined by the routing protocol. If
the receiver agrees the advertised flow, it sends a RESV message, which is forwarded hop by hop
via RSVP capable routers towards the sender of the PATH message. Every intermediate router
along the path may reject or accept the request. If the request is accepted, resources are allocated,
and RESV message is forwarded. If the request is rejected, the router will send an RESV-ERR
message back to the sender of the RESV message.

If the sender gets the RESV message, it means resources are reserved and data can be transmit-

ted. To terminate a reservation, a RESV-TEAR message is transmitted to remove the resource
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allocation and a PATH-TEAR message is sent to delete the path states in every router along the

path.

2.3 Guaranteed Service

Guaranteed service guarantees that datagrams will arrive within the guaranteed delivery time and
will not be discarded due to queue overflows, provided the flow’s traffic stays within its specified
traffic parameters [7]. The service provides assured level of bandwidth or link capacity for the data
flow. It imposes a strict upper bound on the end-to-end queueing delay as data flows through the
network. The packets encounter no queueing delay as long as they conform to the flow specifications.
It means packets cannot be dropped due to buffer overflow and they are always guaranteed the
required buffer space. The delay bound is usually large enough even to accommodate cases of long

queueing delays.

2.4 Controlled-load Service

The controlled-load service does not accept or make use of specific target values for control param-
eters such as delay or loss. Instead, acceptance of a request for controlled-load service is defined to
imply a commitment by the network elements to provide the requester with a service closely equiv-
alent to that provided to uncontrolled (best effort) traffic under lightly loaded conditions [8]. The
service aims at providing the same QoS under heavy loads as under unloaded conditions. Though
there is no specified strict bound on delay, it ensures that very high percentage of packets do not
experience delays highly greater than the minimum transit delay due to propagation and router

processing.
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3 Differentiated Services

The IntServ/RSVP architecture described in Section 2 can be used to provide QoS to applications.
All the routers are required to be capable of RSVP, admission control, MF classification and packet
scheduling, which needs to maintain all the information for each flow at each router. The above
issues raise scalability concerns in large networks [4]. Because of the difficulty in implementing and
deploying integrated services and RSVP, differentiated services is currently being developed by the
IETF [2].

Differentiated services (DiffServ) is intended to enable the deployment of scalable service dis-
crimination in the Internet without the need for per-flow state and signaling at every hop. The
premise of DiffServ networks is that routers in the core network handle packets from different traffic
streams by forwarding them using different per-hop behaviors (PHBs). The PHB to be applied
is indicated by a DiffServ Codepoint (DSCP) in the IP header of the packet [9]. The advantage
of such a mechanism is that several different traffic streams can be aggregated to one of a small
number of behavior aggregates (BA) which are each forwarded using the same PHB at the router,
thereby simplifying the processing and associated storage [10]. There is no signaling or processing
since QoS (Quality of Service) is invoked on a packet-by-packet basis [10].

The DiffServ architecture is composed of a number of functional elements, including a small set
of per-hop forwarding behaviors, packet classification functions, and traffic conditioning functions
which includes metering, marking, shaping and policing. The functional block diagram of a typical
DiffServ router is shown in Figure 2 [10]. This architecture provides Expedited Forwarding (EF)
service and Assured Forwarding (AF) service in addition to best-effort (BE) service as described

below.
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Figure 2: Major functional block diagram of a router.
3.1 Expedited Forwarding (EF)

This service is also been described as Premium Service. The EF service provides a low loss, low
latency, low jitter, assured bandwidth, end-to-end service for customers [11]. Loss, latency and jitter
are due to the queuing experienced by traffic while transiting the network. Therefore, providing
low loss, latency and jitter for some traffic aggregate means there are no queues (or very small
queues) for the traffic aggregate. At every transit node, the aggregate of the EF traffic’s maximum
arrival rate must be less than its configured minimum departure rate so that there is almost no
queuing delay for these premium packets. Packets exceeding the peak rate are shaped by the traffic

conditioners to bring the traffic into conformance.

3.2 Assured Forwarding

This service provides a reliable services for customers, even in times of network congestion. Classi-
fication and policing are first done at the edge routers of the DiffServ network. The assured service
traffic is considered in-profile if the traffic does not exceed the bit rate allocated for the service; oth-

erwise, the excess packets are considered out-of-profile. The in-profile packets should be forwarded
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Figure 3: AF classes with drop precedence levels.

with high probability. However, the out-of-profile packets are not delivered with as high probability
as the traffic that is within the profile. Since the network does not reorder packets that belong to
the same microflow, all packets, irrespective of whether they are in-profile or out-of-profile, are put
into an assured queue to avoid out-of-order delivery.

Assured Forwarding provides the delivery of packets in four independently forwarded AF classes.
Fach class is allocated with a configurable minimum amount of buffer space and bandwidth. Each
class is in turn divided into different levels of drop precedence. In the case of network congestion,
the drop precedence determines the relative importance of the packets within the AF class. Figure

3 [12] shows four different AF classes with three levels of drop precedence.

3.3 Best Effort

This is the default service available in DiffServ, and is also deployed by the current Internet. It
does not guarantee any bandwidth to the customers, but can only get the bandwidth available.

Packets are queued when buffers are available and dropped when resources are over committed.
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4 Integrated Services over Differentiated Services Networks

In this section, we describe in details the mapping strategy adopted in this paper to connect the
IntServ and DiffServ domains. Simulation configuration that has been used to test the mapping

strategy is described in 4.3 .

4.1 Mapping Considerations for IntServ over DiffServ

In IntServ, resource reservations are made by requesting a service type specified by a set of quan-
titative parameters known as Tspec (Traffic Specification). Each set of parameters determines
an appropriate priority level. When requested services with these priority levels are mapped to

DiffServ domain, some basic requirements should be satisfied.

e PHBs in DiffServ domain must be appropriately selected for each requested service in IntServ

domain.

e The required policing, shaping and marking must be done at the edge router of the DiffServ

domain.

e Taking into account the resource availability in DiffServ domain, admission control must be

implemented for requested traffic in IntServ domain.

4.2 Mapping Function

The mapping function is used to assign an appropriate DSCP to a flow specified by Tspec parameters
in IntServ domain, such that the same QoS could be achieved for IntServ when running over
DiffServ domain. Each packet in the flow from the IntServ domain has a flow ID indicated by the
value of flow-id field in the IP (Internet Protocol) header. The flow ID attributed with the Tspec

parameters is used to determine which flow the packet belongs to. The main constraint is that the
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PHB treatment of packets along the path in the DiffServ domain must approximate the QoS offered
by IntServ itself. In this paper, we satisfy the above requirement by appropriately mapping the
flows coming from IntServ domain into the corresponding Behavior Aggregates, and then marking
the packets with the appropriate DSCP for routing in the DiffServ domain.

To achieve the above goal, we introduce a mapping function at the boundary router in DiffServ
domain as shown in Figure 4. Packets specified by Tspec parameters in IntServ domain are first
mapped to the corresponding PHBs in the DiffServ domain by appropriately assigning a DSCP
according to the mapping function. The packets are then routed in the DiffServ domain where
they receive treatment based on their DSCP code. The packets are grouped to BAs in the DiffServ
domain. Table 1 shows an example mapping function which has been used in our simulation. As an
instance, a flow in IntServ domain specified by r=0.7Mb, b=5000bytes and Flow ID=0 is mapped
to EF PHB (with corresponding DSCP 101110) in DiffServ domain, where r means token bucket

rate and b means token bucket depth.

Table 1: An example mapping function used in our simulation.

y Tspec Flow ID | PHB | DSCP |

r=0.7 Mb, b=5000 bytes 0 EF | 101110
r=0.7 Mb, b=5000 bytes EF | 101110
r=0.5 Mb, b=8000 bytes AF11 | 001010
r=0.5 Mb, b=8000 bytes AF11 | 001010
r=0.5 Mb, b=8000 bytes AF11 | 001010

=W DN =
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Figure 5: Network simulation configuration.

The sender initially specifies its requested service using Tspec. Note that it is possible for
different senders to use the same T'spec. However, they are differentiated by the flow ID. In addition,

it is also possible that different flows can be mapped to the same PHB in DiffServ domain.

4.3 Simulation Configuration

To test the effectiveness of our proposed mapping strategy between IntServ and DiffServ and to
determine the QoS that can be provided to IntServ applications, we carried out simulation using
the ns (Version 2.1b6) simulation tool from Berkeley [13]. The network configuration used in our
simulation is shown in Figure 5.

Ten IntServ sources were used in our simulation, the number of sources generating Guaranteed
services, Controlled-load services and best-effort services were two, three and five respectively. Ten
IntServ sinks served as destinations for the IntServ sources. We set the flow IDs to be the same as

the corresponding source number shown in Figure 5.
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Figure 6: Queues inside the edge DiffServ router.

All the links in Figure 5 are labeled with a (bandwidth, propagation delay) pair. The mapping
function shown in Table 1 has been integrated into the DiffServ edge router (See Figure 4). CBR
(Constant Bit Rate) traffic was used for all IntServ sources in our simulation so that the relationship
between the bandwidth utilization and bandwidth allocation can be more easily evaluated. Note
that ten admission control modules have been applied to each link between sources and DiffServ
edge routers to guarantee the resource availability within DiffServ domain. To save space, they are
not illustrated in Figure 5. Admission control algorithm was implemented by token bucket with
parameters specified in Table 1.

Inside the DiffServ edge router, EF queue was configured as a simple Priority Queue with Tail
Drop; AF queue was configured as RIO queue and BE queue as a RED [14] queue, which are
shown in Figure 6. The queue weights of EF, AF and BE queues were set to 0.4, 0.4 and 0.2
respectively. Since the bandwidth of the bottleneck link between two DiffServ routers is 5 Mb, the
above scheduling weights implies bandwidth allocations of 2 Mb, 2 Mb and 1 Mb for the EF, AF

and BE links respectively during periods of congestion at the edge router.

5 Simulation Results

In this section, results obtained from our simulation experiments are presented. The criteria used to

evaluate our proposed strategy are first described followed by the explanations of our experimental
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and numerical results.

5.1 Performance Criteria

To show the effectiveness of our mapping strategy in providing QoS to end IntServ applications,
we have used goodput, queue size and drop ratio as the performance criteria. In addition, in order
to prove the effectiveness of admission control mechanism, we also measured the non-conformant
ratio (the ratio of non-conformant packets out of in-profile packets). In Section 5.2, we present the

results of measurements of the above quantities from our simulation experiments.

5.2 QoS Obtained by Guaranteed Services

We use the following three simulation cases to determine the QoS obtained by IntServ applications.
As results, Table 2 shows the goodput of each Guaranteed service source for three different cases
described in Section 5.2. Table 3 shows the drop ratio measured at the scheduler for three cases
of the Guaranteed service sources. Table 4 shows the non-conformant ratio for each Guaranteed

service source. Figures 7, 8 and 9 show the queue size for each of the three case, from which the

queuing delay and jitter can be evaluated.

Table 2: Goodput of each Guaranteed service source (Unit: Kb/S)

Tspec Flow ID || Case 1 Case 2 Case 3
r=0.7 Mb, b=5000 bytes 0 699.8250 | 699.8039 | 459.8790
r=0.7 Mb, b=5000 bytes 1 699.8039 | 699.6359 | 1540.1400
Table 3: Drop ratio of Guaranteed service traffic.
Type of traffic Case 1 Case 2 Case 8
Guaranteed service Traffic | 0.000000 | 0.000000 | 0.258934
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Table 4: The non-conformant ratio for each Guaranteed service source

Tspec Flow ID || Case 1 | Case 2 | Case &
r=0.7 Mb, b=5000 bytes 0 0.00026 | 0.00026 | 0.00026
r=0.7 Mb, b=5000 bytes 1 0.00026 | 0.22258 | 0.00040

5.2.1 Case 1: No congestion; no excessive traffic

The traffic generated by Guaranteed service sources (source ( and source 1) were set to 0.7 Mb and
0.7 Mb, respectively. In this case, the traffic rate is equal to the bucket rate (0.7 Mb, shown in
Table 1), which means there should not be any significant excessive IntServ traffic. According to
the network configuration described in Section 4.3, two Guaranteed service sources generate 1.4 Mb
traffic which is less than the corresponding scheduled link bandwidth for Guaranteed service (EF in
DiffServ domain) traffic (2Mb). Under this scenario, there should not be any significant congestion
at the edge DiffServ router.

Case 1is an ideal case. As seen in Table 2, the goodput is almost equal to the corresponding
source rate. From Table 3, since there is no significant congestion, the drop ratio of each type
of sources is zero. Table 4 shows the performance of admission control mechanism. Since there
is no excessive traffic in this case, the non-conformant ratio is almost zero. Figure 7 shows the
queuing performance of each queue. Because this is an ideal case, the size of each queue is very
small. Though the three queues have almost the same average size, we observe that the BE queue
of IntServ (mapping to BE queue in DiffServ domain, according to the mapping function) has the

largest jitter.

5.2.2 Case 2: No congestion; Guaranteed service source I generates excessive traffic

The traffic generated by Guaranteed service sources (source 0 and source 1) were set to 0.7 Mb and

0.9 Mb, respectively. In this case, the traffic rate of source 1 is greater than its corresponding bucket
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Figure 7: Queue size plots for Case 1.

rate (0.7 Mb, shown in Table 1), which means source 1 generates excessive IntServ traffic. According
to the network configuration described in Section 4.3, two Guaranteed service sources generate 1.6
Mb traffic which is less than the corresponding scheduled link bandwidth for Guaranteed service
(EF in DiffServ domain) traffic (2Mb). Under this scenario, there should not be any significant
congestion at the edge DiffServ router.

In case 2, from Table 2, the goodput of source 0 is equal to its source rate. However, the
goodput of source I is equal to the corresponding token rate, 0.7 Mb, rather than its source rate,
0.9 Mb. Table 3 shows that the drop ratio of Guaranteed service is (. The reason is that, in this
case, there is no congestion for Guaranteed service traffic. Table 4 indicates how the admission
control mechanism works. As seen in this table, the non-conformant packets ratio of source 1 is
increased, compared to case 1. It is because source I generates excessive traffic in this case. From

Figure 8, we find that the average queue size of the best effort queue is far greater than the other
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Figure 8: Queue size plots for Case 2.

two types of sources. In addition, the jitter of best effort traffic is also greater than the other
two types of sources. The Guaranteed service traffic has the smallest average queue size and the
smallest jitter. In addition, compared with Figure 7, the upper bound of Guaranteed service queue
is guaranteed, though the source I generates more traffic than what it has reserved. This well

satisfies requirements from [7].

5.2.3 Case 3: Guaranteed service gets into congestion; no excessive traffic

The traffic generated by Guaranteed service sources (source 0 and source 1) were set to 0.7 Mb
and 2 Mb, respectively. To simulate a congested environment, we set the token rate of source
1 to 2 Mb also. In this case, the traffic rate of source 1 is equal to its corresponding bucket
rate (2 Mb), which means there is no significant excessive IntServ traffic. According to the network

configuration described in Section 4.3, two Guaranteed service sources generate 2.7 Mb traffic which
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Figure 9: Queue size plots for Case 3.

is greater than the corresponding scheduled link bandwidth for Guaranteed service (EF in DiffServ
domain) traffic (2Mb). Under this scenario, Guaranteed service traffic gets into congestion at the
edge DiffServ router.

Case 3is used to evaluate our mapping function under congested environments. As expected, we
find the drop ratio (measured at scheduler) of Guaranteed service traffic is increased, and the total
goodput of Guaranteed service is limited by the output link bandwidth assigned by the scheduler
(2Mb), instead of 2.7 Mb. Since there is no excessive traffic, from Table 4, the no-conformant
packets ratio of both of the Guaranteed service sources are closed to 0. From Figure 9, since we
increase the token rate of one of the Guaranteed service source (source 1), the upper bound of
Guaranteed service is increased, which is reasonable. In addition, the Guaranteed service queue still

has the smallest jitter.
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5.3 QoS Obtained by Controlled-load Services

Because of the similarity between the results of Guaranteed service and Controlled-load service, all
our descriptions in Section 5.2 are focused on Guaranteed service. We only give out results for
Controlled-load service without detailed explanations.

We use case 2 described in Section 5.2.2 as an example. As described in Section 4.3, we used
three Controlled-load service sources in our simulation: sources 2, 8 and 4. The token bucket
parameters are shown in Table 1. We set the source rate of sources 2 and 4 to 0.5 Mb, 0.5 Mb,
respectively, and set the rate of source 3 to 0.7 Mb (greater than its token rate, 0.5 Mb). Therefore,
source 3 generates excessive traffic. The total Controlled-load service traffic is 1.7 Mb, which is less
than the scheduled link bandwidth; therefore, there should not be any significant congestion.

Table 5 shows the goodput of each Controlled-load source. Table 6 shows the drop ratio of
Controlled-load service measured at scheduler. Table 7 shows the non-conformant ratio. Figure 10
shows the queue size of this case. Note that though the non-conformant ratio of source 8 is much
higher that the other two (shown in Table 7), the goodput of source? (shown in Table 5) is equal to
its source rate (0.7 Mb). It is because the non-conformant packets are degraded and then forwarded,

which is one of the forwarding schemes for non-conformant packets proposed by [8].

Table 5: Goodput of each Controlled-load service source (Unit: Kb/S)

Tspec Flow ID || Case 2
r=0.5 Mb, b=8000 bytes 2 499.9889
r=0.5 Mb, b=8000 bytes 3 700.0140
r=0.5 Mb, b=8000 bytes 4 499.9889

Table 6: Drop ratio of Controlled-load service traffic.

Type of traffic Case 2
Controlled-load Traffic | 0.000000
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Table 7: The non-conformant ratio for each Controlled-load service source

Tspec Flow ID || Case 2
r=0.5 Mb, b=8000 bytes 2 0.00000
r=0.5 Mb, b=8000 bytes 3 0.28593
r=0.5 Mb, b=8000 bytes 4 0.00000
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Figure 10: Queue size plots.

5.4 Observations

From the above results, we can arrive at the following observations:

e The upper bound of queueing delay of Guaranteed service is guaranteed. In addition, Guaran-
teed service always has the smallest jitter without being affected by other traffic flows, though

[7] says it does not attempt to minimize the jitter. This well satisfies requirements from [7].

e The Controlled-load service has the smaller jitter and queue size than the best effort traffic.

Furthermore, non-conformant packets are degraded and then forwarded, which is proved by
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our simulation. This well satisfies requirements from [8].

We therefore, conclude that the QoS requirements of IntServ can be successfully achieved when

IntServ traffic is mapped to the DiffServ domain in next generation Internet.

6 Conclusion

In this paper, we have proposed DiffServ as the backbone network to interconnect IntServ sub-
networks. We have designed a mapping function to map traffic flows coming from IntServ with
different priorities to the corresponding PHBs in the DiffServ domain.

The proposed scheme has been studied in detail using simulation. It has been found that the
QoS requirements of IntServ can be achieved when IntServ subnetworks run over DiffServ. We
have illustrated our scheme by mapping IntServ traffic of three different priorities to the three
service classes of DiffServ. The ability of our scheme to provide QoS to end IntServ applications
has been demonstrated by measuring the drop ratio, goodput, non-conformant ratio and queue
size. We found that the upper bound of queueing delay of Guaranteed service is guaranteed. In
addition, Guaranteed service always has the smallest jitter without being affected by other traffic
flows, though [7] says it does not attempt to minimize the jitter. The Controlled-load service has
the smaller jitter and queue size than the best effort traffic. Furthermore, non-conformant packets

are degraded and then forwarded, which is proved by our simulation.
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Abstract

Aeronautical Telecommunication Network (ATN) has been developed by the International
Civil Aviation Organization to integrate Air-Ground and Ground-Ground data communication
for aeronautical applications into a single network serving Air Traffic Control and Aeronautical
Operational Communications [1]. To carry time critical information required for aeronauti-
cal applications, ATN provides different Quality of Services (QoS) to applications. ATN has
therefore, been designed as a standalone network which implies building an expensive separate
network for ATN. However, the cost of operating ATN can be reduced if it can be run over
a public network such as the Internet. Although the current Internet does not provide QoS,
the next generation Internet is expected to provide QoS to applications. The objective of this
paper is to investigate the possibility of providing QoS to ATN applications when it is run over
the next generation Internet. Differentiated Services (DiffServ), one of the protocols proposed
for the next generation Internet, will allow network service providers to offer different QoS to
customers. Out results show that it is possible to provide QoS to ATN applications when they
run over a DiffServ backbone.

1 Introduction

The International Civil Aviation Organization (ICAO) has developed the Aeronautical Telecom-
munication Network (ATN) as a commercial infrastructure to integrate Air-Ground and Ground-
Ground data communication into a single network to serve air traffic control and aeronautical
operational communications [1]. One of the objectives of ATN internetwork is to accommodate dif-
ferent Quality of Service (QoS) required by ATSC (Air Traffic Services Communication) and AINSC
(Aeronautical Industry Service Communication) applications, and the organizational policies for
interconnection and routing specified by each participating organization. In the ATN, priority has
the essential role of ensuring that high priority safety related and time critical data are not delayed
by low priority non-safety data, especially when the network is overloaded with low priority data.

The time critical information carried by ATN and the QoS required by ATN applications has led
to the development of the ATN as an expensive independent network. The largest public network,
the Internet, only offers point-to-point best-effort service to the users and hence is not suitable for
carrying time critical ATN traffic. However, the rapid commercialization of the Internet has given
rise to demands for QoS over the Internet.

QoS is generally implemented by different classes of service contracts for different users. A
service class may provide low-delay and low-jitter services for customers who are willing to pay

!The work reported in this project was supported by NASA grant no. NAG3-2318
2The second author is currently with the School of Computer Science, University of Oklahoma, Norman, OK
73072, Tel: (405) 325 8077, email: atiq@ou.edu
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a premium price to run high-quality applications, such as, real-time multimedia. Another service
class may provide predictable services for customers who are willing to pay for reliability. Finally,
the best-effort service provided by current Internet will remain for those customers who need only
connectivity.

The Internet Engineering Task Force (IETF) has proposed a few models to meet the demand
for QoS. Notable among them are the Integrated Services (IntServ) model [2] and Differentiated
Services (DiffServ) [3] model. The IntServ model is characterized by resource reservation; before
data is transmitted, applications must set up paths and reserve resources along the path. This
gives rise to scalability issues in the core routers of large networks. The DiffServ model is currently
being standardized to overcome the above scalability issue, and to accommodate the various service
guarantees required for time critical applications. The DiffServ model utilizes six bits in the TOS
(Type of Service) field of the IP header to mark a packet for being eligible for a particular forwarding
behavior. It The model does not require significant changes to the existing infrastructure, and does
not need too many additional protocols.

A significant cost saving can be achieved if the ATN protocol could be run over the next gen-
eration Internet protocol as shown in Figure 1. In this paper, we are interested in developing a
framework to run ATN over the next generation Internet. This requires appropriate mapping of
parameters at the edge routers between the two networks. The objective of this paper is to investi-
gate the QoS that can be achieved when ATN runs over the DiffServ network in the next generation
Internet. Based on the similarity between an IP packet and an ATN packet, our approach is to
add a mapping function to the edge DiffServ router so that the traffic flows coming from ATN can
be appropriately mapped into the corresponding Behavior Aggregates of DiffServ, and then marked
with the appropriate DSCP (Differentiated Service Code Point) for routing in DiffServ domain.
We show that, without making any significant changes to the ATN or DiffServ infrastructure and
without any additional protocols or signaling, it is possible to provide QoS to ATN applications
when ATN runs over a DiffServ network.

The significance of this work is that considerable cost savings could be possible if the next
generation Internet backbone can be used to connect ATN subnetworks. The main contributions
of this paper can be summarized as follows:

e Propose a framework to run ATN over the DiffServ network.

e Show that QoS can be achieved by end ATN applications when run over the next generation
Internet.

The rest of this paper is organized as follows. In Sections 2 and 3, we briefly present the
main features of ATN and DiffServ, respectively. In Section 4, we describe our approach for the
interconnection of ATN and DiffServ and the simulation configuration to test the effectiveness of
our approach. In Section 5, we analyze our simulation results to show that QoS can be provided
to end applications in the ATN domain. Concluding remarks are finally given in Section 6.

2 Aeronautical Telecommunication Network (ATN)

In the early 1980s, the International Civil Aviation Organization (ICAQO ) recognized the increasing
limitations of the present air navigation systems and the need for improvements to take civil aviation
into the 21st century. The need for changes in the current global air navigation system is due to
two principal factors:

e The present and growing air traffic demand which the current system will be unable to cope.
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Figure 1: Interconnection between ATN and Differentiated Services.

e The need for global consistency in the provisioning of air traffic services during the progression
towards a seamless air traffic management system.

The above factors gave rise to the concept of the Aeronautical Telecommunication Network (ATN) [4].

ATN is both a ground-based network providing communications between ground-based users,
and an air-ground network providing communications between airborne and ground users. It was
always intended that ATN should be built on existing technologies instead of inventing new ap-
proaches. The Internet approach was seen as the most suitable approach, and was therefore selected
as the basis for the ATN. ATN is made up of End Systems, Intermediate Systems, ground-ground
subnetworks and air-ground subnetworks as shown in Figure 1.

2.1 Priority in ATN

The ATN has been designed to provide a high reliability /availability network by ensuring that
there is no single point of failure, and by permitting the availability of multiple alternative routes
to the same destination with dynamic switching between alternatives. Every ATN user data is
given a relative priority on the network in order to ensure that low priority data does not impede
the flow of high priority data. The purpose of priority is to signal the relative importance and
(or) precedence of data, such that when a decision has to be made as to which data to act first,
or when contention for access to shared resources has to be resolved, the decision or outcome
can be determined unambiguously and in line with user requirements both within and between
applications.

Priority in ATN is signaled separately by the application in the transport layer, network layer,
and in ATN subnetworks, which gives rise to Transport Priority, Network Priority and Subnet
Priority [5]. Network priority is used to manage the access to network resources. During periods of
high network utilization, higher priority NPDUs (Network Protocol Data Units) may therefore be
expected to be more likely to reach their destination (i.e. be less likely to be discarded by a congested
router), and to have a lower transit delay (i.e. be more likely to be selected for transmission from
an outgoing queue) than lower priority packets. In this paper, we focus on network priority which
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Figure 2: Similarity between an IP packet and an ATN packet

determines the sharing of limited network resources.

2.2 ATN packet format

Figure 2 shows the correspondence between the fields of an IP packet header and the network layer
packet header of ATN. It is seen that the fields of IP and ATN packets carry similar information,
and thus can almost be mapped to each other. This provides the possibility for mapping ATN
to DiffServ (which uses the IP packet header except for the Type of Service byte) to achieve the
required QoS when they are interconnected.

The NPDU header of an ATN packet contains an option part including an 8-bit field named
Priority which indicates the relative priority of the NPDU [1]. The values 0000 0001 through
0000 1110 are to be used to indicate the priority in an increasing order. The value 0000 0000
indicates normal priority.

3 Differentiated Services

Differentiated services (Diffserv) is intended to enable the deployment of scalable service discrimi-
nation in the Internet without the need for per-flow state and signaling at every hop. The premise
of Diffserv networks is that routers in the core network handle packets from different traffic streams
by forwarding them using different per-hop behaviors (PHBs). The PHB to be applied is indicated
by a Diffserv Codepoint (DSCP) in the IP header of the packet [6]. The advantage of such a
mechanism is that several different traffic streams can be aggregated to one of a small number of
behavior aggregates (BA) which are each forwarded using the same PHB at the router, thereby
simplifying the processing and associated storage [7]. There is no signaling or processing since QoS
(Quality of Service) is invoked on a packet-by-packet basis [7].
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Figure 3: Major functional block diagram of a router.

The Diffserv architecture is composed of a number of functional elements, including a small set
of per-hop forwarding behaviors, packet classification functions, and traffic conditioning functions
which includes metering, marking, shaping and policing. The functional block diagram of a typical
Diffserv router is shown in Figure 3 [7]. This architecture provides Expedited Forwarding (EF)
service and Assured Forwarding (AF) service in addition to best-effort (BE) service as described
below.

3.1 Expedited Forwarding (EF)

This service is also been described as Premium Service. The EF service provides a low loss, low
latency, low jitter, assured bandwidth, end-to-end service for customers [8]. Loss, latency and jitter
are due to the queuing experienced by traffic while transiting the network. Therefore, providing
low loss, latency and jitter for some traffic aggregate means there are no queues (or very small
queues) for the traffic aggregate. At every transit node, the aggregate of the EF traffic’s maximum
arrival rate must be less than its configured minimum departure rate so that there is almost no
queuing delay for these premium packets. Packets exceeding the peak rate are shaped by the traffic
conditioners to bring the traffic into conformance.

3.2 Assured Forwarding

This service provides a reliable services for customers, even in times of network congestion. Classi-
fication and policing are first done at the edge routers of the DiffServ network. The assured service
traffic is considered in-profile if the traffic does not exceed the bit rate allocated for the service; oth-
erwise, the excess packets are considered out-of-profile. The in-profile packets should be forwarded
with high probability. However, the out-of-profile packets are not delivered with as high probability
as the traffic that is within the profile. Since the network does not reorder packets that belong to
the same microflow, all packets, irrespective of whether they are in-profile or out-of-profile, are put
into an assured queue to avoid out-of-order delivery.

Assured Forwarding provides the delivery of packets in four independently forwarded AF classes.
Fach class is allocated with a configurable minimum amount of buffer space and bandwidth. Each
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Figure 4: AF classes with drop precedence levels

class is in turn divided into different levels of drop precedence. In the case of network congestion,
the drop precedence determines the relative importance of the packets within the AF class. Figure
4 19] shows four different AF classes with three levels of drop precedence.

3.3 Best Effort

This is the default service available in DiffServ, and is also deployed by the current Internet. It
does not guarantee any bandwidth to the customers, but can only get the bandwidth available.
Packets are queued when buffers are available and dropped when resources are over committed.

4 ATN over Differentiated Services

In this section, we describe in detail the mapping strategy adopted in this paper to connect the
ATN and DS domains followed by the simulation configuration we have used to test the mapping.

4.1 Mapping Function

Our goal is to use differentiated services to achieve QoS for ATN to integrate Air/Ground and
Ground/Ground data communications into a global Internet serving Air Traffic Control (ATC) and
Aeronautical Operations Communications (AOC). The main constraint is that the PHB treatment
of packets along the path in the DiffServ domain must approximate the QoS offered in the ATN
network. In this paper, we satisfy the above requirement by appropriately mapping the traffic
coming from ATN into the corresponding Behavior Aggregates, and then marking the packets with
the appropriate DSCP for routing in the DiffServ domain.

To achieve the above goal, we introduce a mapping function at the boundary router between
the ATN and DiffServ domain as shown in Figure 5. Packets with different priorities from the
ATN domain are first mapped to the corresponding PHBs in the DiffServ domain by appropriately
assigning a DSCP according to the mapping function. The packets are then routed in the DiffServ
domain where they receive treatment based on their DSCP code. The packets are grouped to BAs
in the DiffServ domain. Table 1 shows an example mapping function which has been used in our
simulation.
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Table 1: An example mapping function used in our simulation.

’ ATN Priority Code \ Priority \ PHB \ DSCP ‘

0000 0000 Normal | BE 000000
0000 0111 Medium | AF11 | 001010
0000 1110 High EF 101110

4.2 Simulation Configuration

To test the effectiveness of our proposed mapping strategy between ATN and DiffServ and to
determine the QoS that can be provided to ATN applications, we carried out simulation using
the ns (Version 2.1b6) simulation tool from Berkeley [10]. The network configuration used in our
simulation is shown in Figure 6.

Ten ATN sources were used in our simulation, the number of sources generating high, medium
and normal priority packets were two, three and five respectively. Ten ATN sinks served as desti-
nations for the ATN sources.

All the links in Figure 6 are labeled with a (bandwidth, propagation delay) pair. For the purpose
of ATN over Diffserv, the mapping function shown in Table 1 has been integrated into the edge
DiffServ router. CBR (Constant Bit Rate) traffic was used for all ATN sources in our simulation
so that the relationship between the bandwidth utilization and bandwidth allocation can be more
easily evaluated.

Inside the DiffServ router, EF queue was configured as a simple Priority Queue with Tail
Drop. AF queue was configured as RIO queue and BE queue as a RED [11] queue. The queue
weights of EF, AF and BE queues were set to 0.4, 0.4 and 0.2 respectively. Since the bandwidth
of the bottleneck link between two DiffServ routers is 5 Mb, the above scheduling weights implies
bandwidth allocations of 2 Mb, 2 Mb and 1 Mb for the EF, AF and BE links respectively during
periods of congestion at the edge router.

5 Simulation Results

In this section, results obtained from our simulation experiments are presented. The criteria used
to evaluate our proposed strategy are described followed by the description of our experiments and
numerical results.
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Figure 6: Network configuration

5.1 Performance Criteria

To show the effectiveness of our mapping strategy in providing QoS to end ATN applications, we
have used goodput, queue size and drop ratio as the performance criteria. In the next section, we
present the results of measurements of the above quantities from our simulation experiments.

5.2 Simulation Cases

We use the following four simulation cases to determine the QoS obtained by ATN sources.

e Case 1: No congestion: The traffic generated by the each high, medium and normal
priority sources were set to 1 Mb, 0.666 Mb and 0.2 Mb respectively. According to the network
configuration described in Section 4.2, there are two, three and five sources generating high,
medium and normal priority traffic of 2Mb, 2Mb and 1Mb respectively. The amount of
traffic of different priority are equal to the corresponding output link bandwidth assigned by
scheduler described in Section 4.2. Under this scenario, there should not be any significant
congestion at the edge DiffServ router because the sum of the traffic from the sources is equal
to the bandwidth of the bottleneck link.

e Case 2: Normal priority traffic gets into congestion: The traffic generated by the
each high, medium and normal priority sources were set to 1 Mb, 0.666 Mb and 0.6 Mb
respectively. According to the network configuration described in Section 4.2, there are two,
three and five sources generating high, medium and normal priority traffic of 2Mb, 2Mb
and 3Mb respectively. The amount of traffic of high and medium priority are still equal
to the corresponding output link bandwidth assigned by scheduler described in Section 4.2.
However, the amount of traffic of normal priority is greater than its corresponding output
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link bandwidth. Under this scenario, the normal priority traffic gets into congestion at the
edge Diffserv router.

e Case 3: Medium priority traffic gets into congestion: The traffic generated by the
each high, medium and normal priority sources were set to 1Mb, 1.333 Mb and 0.2 Mb
respectively. According to the network configuration described in Section 4.2, there are two,
three and five sources generating high, medium and normal priority traffic of 2Mb, 4Mb
and 1Mb respectively. The amount of traffic of high and normal priority are still equal to
the corresponding output link bandwidth assigned by scheduler described in Section 4.2.
However, the amount of traffic of medium priority is greater than its corresponding output
link bandwidth. Under this scenario, the medium priority traffic gets into congestion at the
edge Diffserv router.

e Case 4: Both medium and normal priority traffics get into congestion: The traffic
generated by the each high, medium and normal priority sources were set to 1Mb, 1.333 Mb
and 0.6 Mb respectively. According to the network configuration described in Section 4.2,
there are two, three and five sources generating high, medium and normal priority traffic
of 2Mb, 4Mb and 3Mb respectively. The amount of traffic of high priority is still equal
to the corresponding output link bandwidth assigned by scheduler described in Section 4.2.
However, the amount of traffic of both medium and normal priority are greater than their
corresponding output link bandwidth. Under this scenario, both medium and normal priority
traffics get into congestion at the edge Diffserv router.

5.3 Numerical Results

Table 2 shows the goodput of each ATN source for four different cases described in Section 5.2.
Table 3 shows the drop ratio measured at the scheduler for four cases of the three different types
of ATN sources. Figures 7, 8, 9 and 10 show the queue size for each of the four case (from Case 1
to Case 4), from which the queuing delay and jitter can be evaluated.

Table 2: Goodput of each ATN source (Unit: Kb/S)

Sources Case 1 Case 2 Case 3 Case 4
High priority Sources Source 0 | 999.9990 | 999.9990 | 999.9990 | 999.9990
Source 1 | 999.9990 | 999.9990 | 999.9990 | 999.9990
Source 2 | 666.6660 | 666.6660 | 668.2409 | 668.4719
Medium priority Sources | Source 3 | 666.6660 | 666.6660 | 667.3379 | 667.5270
Source 4 | 666.6660 | 666.6660 | 664.4189 | 663.9990
Source 5 | 200.0039 | 199.6469 | 200.0039 | 199.4790
Source 6 | 200.0039 | 201.8520 | 200.0039 | 201.9780
Normal priority Sources | Source 7 | 200.0039 | 202.4190 | 200.0039 | 201.6840
Source 8 | 199.9830 | 199.8779 | 199.9830 | 200.4660
Source 9 | 200.0039 | 196.2030 | 200.0039 | 196.3920

Case 1 is an ideal case. Each type of source (high, medium and normal priority sources)
generates traffic at the rate equal to the bandwidth assigned by the scheduler. Therefore, there is
no significant network congestion at the edge Diffserv router. As seen in Table 2, the goodput of
each source is almost the same as its traffic generation rate. From Table 3, the drop ratio of each
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Table 3: Drop ratio of ATN traffic.

Type of traffic Case 1 Case 2 Case 3 Case 4
High priority Traffic 0.000000 | 0.000000 | 0.000000 | 0.000000
Medium priority Traffic | 0.000000 | 0.000000 | 0.499817 | 0.499834
Normal priority Traffic | 0.000000 | 0.665638 | 0.000000 | 0.665616
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Figure 7: Queue size plots for Case 1

type of sources is zero. Figure 7 shows the queuing performance of each queue. Because this is an
ideal case, the size of each queue is very small. Though the three queues have almost the same
average size, we observe that the normal priority queue (mapping to BE queue, according to the
mapping function) has the largest jitter. delay).

In case 2, we increased the traffic generation rate of normal priority sources, keeping the rates
of the other two types of traffic unchanged. The traffic generating rate of each normal priority
source is set to 0.6Mb. In this case, the normal priority traffic gets congested. As shown by Table
3, the drop ratio of normal priority traffic is greatly increased. However, drop ratio for the other
two sources still remain at zero. As seen in Table 2, the goodput of normal priority traffic for each
source is only about 0.2Mb, instead of the traffic generation rate of 0.6Mb. The reason is that the
total available output bandwidth of normal priority traffic has been assigned to 1Mb by scheduler.
From Figure 8, we find that the average queue size of the normal priority queue is far greater than
the other two types of sources. In addition, the jitter of normal priority traffic is also greater than
the other two types of sources. The high priority traffic has the smallest average queue size and
the smallest jitter.

Case 3 is very similar to case 2. The only difference is that the medium priority traffic, rather
than normal priority traffic, gets into congestion. As expected, we find the drop ratio of medium

NASA/TM—2001-210904 42



QueueSizeVS.Time

QueueSize

‘ T OTTIAPg T
200.0000 = — Go00BEG

190.0000 (— i TI0EDHGE
180.0000 —

170.0000 —

160.0000 — =
150.0000 — =
140.0000 — —
130.0000 — =
120.0000 — —
110.0000 — =
100.0000 — =
90.0000 — —
80.0000 — =
70.0000 — —
60.0000 — =
50.0000 — =
40.0000 — —
30.0000 — =
20.0000 — =
10.0000 — —
0.0000 — FPAMMANAACAMAMIANAAAN AR AR andranraNA AR AAR |

| | | | | |
0.0000 20.0000 40.0000 60.0000 80.0000 100.0000

Time
Figure 8: Queue size plots for Case 2.

priority traffic is increased with other two traffic types remaining at zero, and the goodput is also
limited by the output link bandwidth assigned by the scheduler (which is 2Mb). From Figure 9,
we find that both the jitter and the average queue size of medium priority traffic are far greater
than the other two traffic types. The high priority traffic has the smallest average queue size and
the smallest jitter.

In Case 4, we increased the traffic generation rates of both medium and normal priority sources.
Both of them get into network congestion in this case. We find from Table 3 that the drop ratio
of high priority traffic remains at zero, and drop ratios of both medium priority traffic and normal
priority traffic are greatly increased. Furthermore, the drop ratio of normal priority traffic is greater
than that of medium priority traffic. As shown by Table 2, the goodput of both the medium and
normal priority traffic are limited by their link bandwidths allocated by scheduler. From Figure
10, we see that the normal priority traffic has both the biggest jitter and biggest average queue
size. We can also find that the high priority traffic has both the smallest jitter and smallest average
queue size.

From the above results, we can arrive at the following observations:

e The high priority traffic always has the smallest jitter, the smallest average queue size and the
smallest drop ratio without being affected by the performance of other traffic. In other words,

the high priority traffic receives the highest priority, which satisfies the priority requirements
of ATN.

e The medium priority traffic has smaller drop ratio, jitter and queue size than the normal
priority traffic, even in the presence of network congestion. This also satisfies the priority
requirements of ATN.

We therefore, conclude that the priority requirements of ATN can be successfully achieved when
ATN traffic is mapped to the DiffServ domain in next generation Internet.
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6 Conclusion

In this paper, we have proposed DiffServ as the backbone network to interconnect ATN subnetworks.
We have designed a mapping function to map traffic flows coming from ATN with different priorities
(indicated by the priority field in ATN packet header) to the corresponding PHBs in the DiffServ
domain.

The proposed scheme has been studied in detail using simulation. It has been found that the
QoS requirements of ATN can be achieved when ATN runs over DiffServ. We have illustrated our
scheme by mapping ATN traffic of three different priorities to the three service classes of DiffServ.
The ability of our scheme to provide QoS to end ATN applications has been demonstrated by
measuring the drop ratio, goodput and queue size. We found that the high priority ATN traffic has
the smallest jitter, the smallest average queue size and the smallest drop ratio, and is unaffected
by the performance of other traffic. Moreover, the medium priority ATN traffic has a smaller drop
ratio, jitter and queue size than the normal traffic, even in the presence of network congestion.
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ABSTRACT

Satellite networks play an indispensable role in providing global Internet access and electronic
connectivity. To achieve such a global communications, provisioning of quality of service (QoS)
within the advanced satellite systems is the main requirement.  One of the key mechanisms of
implementing the quality of service is traffic management. Traffic management becomes a crucial
factor in the case of satellite network because of the limited availability of their resources.
Currently, Internet Protocol (IP) only has minimal traffic management capabilities and provides
best effort services. In this paper, we presented a broadband satellite network QoS model and
simulated performance results. In particular, we discussed the TCP flow aggregates performance
for their good behavior in the presence of competing UDP flow aggregates in the same assured
forwarding. We identified severa factors that affect the performance in the mixed environments
and quantified their effects using a full factorial design of experiment methodol ogy.
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1. INTRODUCTION

The increasing worldwide demand for more bandwidth and Internet access is creating new
opportunities for the deployment of global next generation satellite networks. Today it is clear that
satellite networks will be a significant player in the digital revolution, and will specially benefit
from on-board digital processing and switching, as well as other such technological advances as
emerging digital compression, narrow spot beams for frequency reuse, digital intersatellite links,
advanced link access methods and multicast technologies. Many new satellite communication
systems have been planned and are under development including at Ka, Q/V-bands [7]. Some of
the key design issues for satellite networks include efficient resource management schemes and

QoS architectures.

However, satellite systems have severa inherent constraints. The resources of the satellite
communication network, especially the satellite and the Earth station, are expensive and typically
have low redundancy; these must be robust and be used efficiently. The large delays in
geostationary Earth orbit (GEO) systems and delay variations in low Earth orbit (LEO) systems
affect both rea-time and non-real-time applications. In an acknowledgement and time-out-based
congestion control mechanism (like TCP), performance is inherently related to the delay-bandwidth
product of the connection. Moreover, TCP round-trip time (RTT) measurements are sensitive to
delay variations that may cause false timeouts and retransmissions. As a result, the congestion
control issues for broadband satellite networks are somewhat different from those of low-latency
terrestrial networks. Both interoperability issues as well as performance issues need to be
addressed before a transport-layer protocol like TCP can satisfactorily work over long-latency

satellite IP ATM networks.
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There has been an increased interest in developing Differentiated Services (DS) architecture for
provisioning IP QoS over satellite networks. DS aims to provide scalable service differentiation in
the Internet that can be used to permit differentiated pricing of Internet service [1]. This
differentiation may either be quantitative or relative. DS is scalable as traffic classification and
conditioning is performed only at network boundary nodes. The service to be received by atraffic
is marked as a code point in the DS field in the IPv4 or IPv6 header. The DS code point in the
header of an IP packet is used to determine the Per-Hop Behavior (PHB), i.e. the forwarding
treatment it will receive a a network node. Currently, formal specification is available for two
PHBSs - Assured Forwarding [4] and Expedited Forwarding [5]. In Expedited Forwarding, a transit
node uses policing and shaping mechanisms to ensure that the maximum arrival rate of a traffic
aggregate is less than its minimum departure rate. At each transit node, the minimum departure
rate of atraffic aggregate should be configurable and independent of other traffic at the node. Such
a per-hop behavior results in minimum delay and jitter and can be used to provide an end-to-end

“Virtual Leased Line' type of service.

In Assured Forwarding (AF), |P packets are classified as belonging to one of four traffic classes. IP
packets assigned to different traffic classes are forwarded independent of each other. Each traffic
class is assigned a minimum configurable amount of resources (link bandwidth and buffer space).
Resources not being currently used by another PHB or an AF traffic class can optionally be used by
remaining classes. Within a traffic class, a packet is assigned one of three levels of drop
precedence (green, yellow, red). In case of congestion, an AF-compliant DS node drops low

precedence (red) packets in preference to higher precedence (green, yellow) packets.
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In this paper, we describe a wide range of simulations, varying several factors to identify the
significant ones influencing fair alocation of excess satellite network resources among congestion
senditive and insensitive flows. The factors that we studied in Section 2 include @) number of drop
precedence required (one, two, or three), b) percentage of reserved (highest drop precedence)
traffic, ¢) buffer management (Tail drop or Random Early Drop with different parameters), and d)
traffic types (TCP aggregates, UDP aggregates). Section 3 describes the simulation configuration
and parameters and experimental design techniques. Section 4 describes Analysis Of Variation
(ANOVA) technique. Simulation results for TCP and UDP, for reserve rate utilization and fairness

are also given. Section 5 summarizes the study’s conclusions.

2. QOS FRAME WORK

The key factors that affect the satellite network performance are those relating to bandwidth
management, buffer management, traffic types and their treatment, and network configuration.
Band width management relates to the algorithms and parameters that affect service (PHB) given to
a particular aggregate. In particular, the number of drop precedence (one, two, or three) and the

level of reserved traffic were identified as the key factorsin this analysis.

Buffer management relates to the method of selecting packets to be dropped when the buffers are
full. Two commonly used methods are tail drop and random early drop (RED). Several variations
of RED are possible in case of multiple drop precedence. These variations are described in Section

3.
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Two traffic types that we considered are TCP and UDP aggregates. TCP and UDP were separated
out because of their different response to packet losses. In particular, we were concerned that if
excess TCP and excess UDP were both given the same treatment, TCP flows will reduce their rates
on packet drops while UDP flows will not change and get the entire excess bandwidth. The
analysis shows that thisisin fact the case and that it isimportant to give a better treatment to excess

TCP than excess UDP.

In this paper, we used a simple network configuration which was chosen in consultation with other
researchers interested in assured forwarding. This is a simple configuration, which we believe,
provides most insight in to the issues and on the other hand will be typical of a GEO satellite
network.
We have addressed the following QoS issues in our smulation study:

Three drop precedence (green, yellow, and red) help clearly distinguish between congestion

sensitive and insensitive flows.

The reserved bandwidth should not be overbooked, that is, the sum should be less than the
bottleneck link capacity. If the network operates close to its capacity, three levels of drop

precedence are redundant as there is not much excess bandwidth to be shared.

The excess congestion sensitive (TCP) packets should be marked as yellow while the excess

congestion insensitive (UDP) packets should be marked as red.

The RED parameters have significant effect on the performance. The optimal setting of RED

parameters is an area for further research.
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2.1 Buffer Management Classifications

Buffer management techniques help identify which packets should be dropped when the queues
exceed a certain threshold. It is possible to place packets in one queue or multiple queues
depending upon their color or flow type. For the threshold, it is possible to keep a single threshold
on packets in al queues or to keep multiple thresholds. Thus, the accounting (queues) could be
single or multiple and the threshold could be single or multiple. These choices lead to four classes

of buffer management techniques:

1. Single Accounting, Single Threshold (SAST)
2. Single Accounting, Multiple Threshold (SAMT)
3. Multiple Accounting, Single Threshold (MAST)

4. Multiple Accounting, Multiple Threshold (MAMT)

Random Early Discard (RED) is a well known and now commonly implemented packet drop
policy. It has been shown that RED performs better and provides better fairness than the tail drop
policy. In RED, the drop probability of a packet depends on the average queue length which is an
exponential average of instantaneous queue length at the time of the packet's arrival [3]. The drop
probability increases linearly from O to max_p as average queue length increases from min_th to
max_th. With packets of multiple colors, one can calculate average queue length in many ways and

have multiple sets of drop thresholds for packets of different colors. In general, with multiple
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colors, RED policy can be implemented as a variant of one of four general categories. SAST,

SAMT, MAST, and MAMT.

Single Average Single Threshold RED has a single average queue length and same min_th and
max_th thresholds for packets of all colors. Such a policy does not distinguish between packets of
different colors and can aso be called color blind RED. In Single Average Multiple Thresholds
RED, average queue length is based on total number of packets in the queue irrespective of their
color. However, packets of different colors have different drop thresholds. For example, if
maximum queue size is 60 packets, the drop thresholds for green, yellow and red packets can be

{40/60, 20/40, 0/10} . In these simulations, we used Single Average Multiple Thresholds RED.

In Multiple Average Single/Multiple Threshold RED, average queue length for packets of different
colors is calculated differently. For example, average queue length for a color can be calculated
using number of packets in the queue with same or better color [2]. In such a scheme, average
gueue length for green, yellow and red packets will be calculated using number of green, yellow +
green, red + yellow + green packets in the queue respectively. Another possible scheme is where
average queue length for a color is calculated using number of packets of that color in the queue
[8]. In such a case, average queue length for green, yellow and red packets will be calculated using
number of green, yellow and red packets in the queue respectively. Multiple Average Single
Threshold RED will have same drop thresholds for packets of all colors whereas Multiple Average

Multiple Threshold RED will have different drop thresholds for packets of different colors.
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3. SIMULATION CONFIGURATION AND PARAMETERS

Figure 1 shows the network configuration for simulations. The configuration consists of customers
1 through 10 sending data over the link between Routers 1, 2 and using the same AF traffic class.
Router 1 islocated in a satellite ground station. Router 2 is located in a GEO satellite and Router 3
is located in destination ground station. Traffic is one-dimensiona with only ACKs coming back
from the other side. Customers 1 through 9 carry an aggregated traffic coming from 5 Reno TCP
sources each. Customer 10 gets its traffic from a single UDP source sending data at a rate of 1.28
Mbps. Common configuration parameters are detailed in Tables 1 and 2. All TCP and UDP
packets are marked green at the source before being recolored' by a traffic conditioner at the
customer site. The traffic conditioner consists of two 'leaky’ buckets (green and yellow) that mark
packets according to their token generation rates (called reserved/green and yellow rate). In two-
color smulations, yellow rate of all customers is set to zero. Thus, in two-color simulations, both
UDP and TCP packets will be colored either green or red. In three-color simulations, customer 10
(the UDP customer) aways has a yellow rate of 0. Thus, in three-color simulations, TCP packets
coming from customers 1 through 9 can be colored green, yellow or red and UDP packets coming
from customer 10 will be colored green or red. All the traffic coming to Router 1 passes through a
Random Early Drop (RED) queue. The RED policy implemented at Router 1 can be classified as

Single Average Multiple Threshold RED as explained in Section 3.

We have used NS simulator version 2.1b4a [9] for these smulations. The code has been modified

to implement the traffic conditioner and multi-color RED (RED_n).
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3.1 Experimental Design

In this study, we performed full factoria simulations involving many factors, which are listen in
Tables 3 and 4 for two-color simulations and in Tables 5, 6 for three-color simulations:

Green Traffic Rates: Green traffic rate is the token generation rate of green bucket in the traffic
conditioner. We have experimented with green rates of 12.8, 25.6, 38.4 and 76.8 kbps per
customer. These rates correspond to a total of 8.5%, 17.1%, 25.6% and 51.2% of network
capacity (1.5 Mbps). In order to understand the effect of green traffic rate, we aso conduct
simulations with green rates of 102.4, 128, 153.6 and 179.2 kbps for two-color cases. These
rates correspond to 68.3%, 85.3%, 102.4% and 119.5% of network capacity respectively. In last
two cases, we have oversubscribed the available network bandwidth. The Green rates used and
the simulations sets are shown in Tables 3 and 5 for two and three-color smulations

respectively.
Green Bucket Size: 1, 2, 4, 8, 16 and 32 packets of 576 bytes each, shown in Tables 4 and 6.

Yellow Traffic Rate (only for three-color simulations, Table 6): Yellow traffic rate is the token
generation rate of yellow bucket in the traffic conditioner. We have experimented with yellow
rates of 12.8 and 128 kbps per customer. These rates correspond to 7.7% and 77% of total
capacity (1.5 Mbps) respectively. We used a high yellow rate of 128 kbps so that al excess
(out of green rate) TCP packets are colored yellow and thus can be distinguished from excess

UDP packets that are colored red.

Yellow Bucket Size (only for three-color simulations, Table 6): 1, 2, 4, 8, 16, 32 packets of 576

bytes each.
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Maximum Drop Probability: Maximum drop probability values used in the smulations are

listed in Tables 4 and 6.

Drop Thresholds for red colored packets. The network resources allocated to red colored
packets and hence the fairness results depend on the drop thresholds for red packets. We
experimented with different values of drop thresholds for red colored packets so as to achieve
close to best fairness possible. Drop thresholds for green packets have been fixed at {40,60}
for both two and three-color simulations. For three-color simulations, yellow packet drop

thresholds are { 20,40} . Drop threshols are listed in Tables 4 and 6.

In these simulations, size of all queues is 60 packets of 576 bytes each. The queue weight used to
calculate RED average queue length is 0.002. For easy reference, we have given an identification
number to each simulation (Tables 3 and 5). The simulation results are analyzed using ANOVA

techniques [6] briefly described in Section 8.

3.2 Performance Metrics

Simulation results have been evaluated based on utilization of reserved rates by the customers and

the fairness achieved in allocation of excess bandwidth among different customers.

Utilization of reserved rate by a customer is measured as the ratio of green throughput of the
customer and the reserved rate. Green throughput of a customer is determined by the number of

green colored packets received at the traffic destination(s). Since in these simulations, the drop

NASA/TM—2001-210904 56



thresholds for green packets are kept very high in the RED queue at Router 1, chances of a green
packet getting dropped are minimal and ideally green throughput of a customer should

equal its reserved rate.

The fairness in alocation of excess bandwidth among n customers sharing a link can be computed

using the following formula [6]:

(é. X )2

noa\x;

Fairness Index =

Where x; is the excess throughput of the ith customer. Excess throughput of a customer is

determined by the number of yellow and red packets received at the traffic destination(s).

4. SIMULATION RESULTS

Simulation results of two and three-color simulations are shown in Figures 2 and 3, where a
smulation is identified by its Simulation ID listed in Tables 3 and 5. Figures 2a and 2b show the
fairness achieved in allocation of excess bandwidth among ten customers for each of the two and
three-color smulations respectively. It is clear from figure 2a that fairness is not good in two-color
simulations. With three colors, there is a wide variation in fairness results with best results being
close to 1. Fairness is zero in some of the two-color simulations. In these simulations, total
reserved traffic uses all the bandwidth and there is no excess bandwidth available to share. Also,
there is a wide variation in reserved rate utilization by customers in two and three-color

simulations.
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Figure 3 shows the reserved rate utilization by TCP and UDP customers. For TCP customers
shown in Figures 3a and 3c, we have plotted the average reserved rate utilization in each
simulation. In some cases, reserved rate utilization is dightly more than one. This is because token
buckets are initialy full which results in all packets getting green color in the beginning. Figures
3b and 3d show that UDP customers have good reserved rate utilization in ailmost al cases. In

contrast, TCP customers show a wide variation in reserved rate utilization.

In order to determine the influence of different simulation factors on the reserved rate utilization
and fairness achieved in excess bandwidth distribution, we analyze simulation results statistically
using Anaysis of Variation (ANOVA) technique. Section 4.1 gives a brief introduction to
ANOVA technique used in the analysis. In later sections, we present the results of statistical

analysis of two and three-color smulations, in Sections 4.2 and 4.3.

4.1 Analysis Of Variation (ANOVA) Technique

The results of a simulation are affected by the values (or levels) of ssimulation factors (e.g. green
rate) and the interactions between levels of different factors (e.g. green rate and green bucket size).
The simulation factors and their levels used in this smulation study are listed in Tables 3, 4, 5 and
6. Anaysis of Variation of simulation results is a statistical technique used to quantify these
effects. In this section, we present a brief account of Analysis of Variation technique. More details

can be found in [6].
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Anaysis of Variation involves calculating the Total Variation in simulation results around the

Overall Mean and doing Allocation of Variation to contributing factors and their interactions.

Following steps describe the calculations:

1.

Calculate the Overall Mean of al the values.

2. Cdculate the individual effect of each level a of factor 4, called the Main Effect of a:

Main Effect; = Mean, - Overall Mean

where, Main Effect; is the main effect of level a of factor 4, Mean, is the mean of all results

with a as the value for factor 4.
The main effects are calculated for each level of each factor.

Calculate the First Order Interaction between levels a and b of two factors 4 and B respectively

for al such pairs:
Interaction,p, = Mean,p - (Overall Mean + Main Effect, + Main Effecty)

where, Interactiony, is the interaction between levels a and b of factors 4 and B respectively,
Mean,, is mean of al results with ¢ and b as values for factors 4 and B, Main Effect, and Main

Effect, are main effects of levels a and b respectively.

4. Cdculate the Total Variation as shown below:

Total Variation = & (result?) - (Num_Sims) ~ (Overall Mearf)

where, & (result?) is the sum of squares of al individual results and Num_Sims is total number

of simulations.
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5. The next step is the Allocation of Variation to individual main effects and first order
interactions. To calculate the variation caused by a factor 4, we take the sum of sguares of the
main effects of all levels of 4 and multiply this sum with the number of experiments conducted
with each level of 4. To calculate the variation caused by first order interaction between two
factors 4 and B, we take the sum of squares of al the first-order interactions between levels of
A and B and multiply this sum with the number of experiments conducted with each
combination of levelsof 4 and B. We calculate the allocation of variation for each factor and

first order interaction between every pair of factors.

4.2 ANOVA Analysis for Reserved Rate Utilization

Table 7 shows the Allocation of Variation to contributing factors for reserved rate utilization. As
shown in Figures 3b and 3d, reserved rate utilization of UDP customers is almost always good for
both two and three-color smulations. However, in spite of very low probability of a green packet
getting dropped in the network, TCP customers are not able to fully utilize their reserved rate in al
cases. The little variation in reserved rate utilization for UDP customers is explained largely by
bucket size. Large bucket size means that more packets will get green color in the beginning of the
simulation when green bucket is full. Green rate and interaction between green rate and bucket size
explain a substantial part of the variation. This is because the definition of rate utilization metric
has reserved rate in denominator. Thus, the part of the utilization coming from initialy full bucket
gets more weight for low reserved rate than for high reserved rates. Also, in two-color simulations
for reserved rates 153.6 kbps and 179.2 kbps, the network is oversubscribed and hence in some

cases UDP customer has a reserved rate utilization lower than one. For TCP customers, green
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bucket size is the main factor in determining reserved rate utilization. TCP traffic, because of its
bursty nature, is not able to fully utilize its reserved rate unless bucket size is sufficiently high. In
our simulations, UDP customer sends data at a uniform rate of 1.28 Mbps and hence is able to fully
utilize its reserved rate even when bucket sizeislow. However, TCP customers can have very poor
utilization of reserved rate if bucket size is not sufficient. The minimum size of the leaky bucket

required to fully utilize the token generation rate depends on the burstiness of the traffic.

4.3 ANOVA Analysis for Fairness

Fairness results shown in Figure 2a indicate that fairness in allocation of excess network bandwidth
is very poor in two-color simulations. With two colors, excess traffic of TCP as well as UDP
customers is marked red and hence is given same treatment in the network. Congestion sensitive
TCP flows reduce their data rate in response to congestion created by UDP flow. However, UDP
flow keeps on sending data at the same rate as before. Thus, UDP flow gets most of the excess
bandwidth and the fairness is poor. In three-color simulations, fairness results vary widely with
fairness being good in many cases. Table 8 shows the important factors influencing fairness in
three-color simulations as determined by ANOVA analysis. Yelow rate is the most important
factor in determining fairness in three-color smulations. With three colors, excess TCP traffic can
be colored yellow and thus distinguished from excess UDP traffic, which is colored red. Network
can protect congestion sensitive TCP traffic from congestion insensitive UDP traffic by giving
better treatment to yellow packets than to red packets. Treatment given to yellow and red packets
in the RED queues depends on RED parameters (drop thresholds and max drop probability values)

for yellow and red packets. Fairness can be achieved by coloring excess TCP packets as yellow
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and setting the RED parameter values for packets of different colors correctly. In these
simulations, we experiment with yellow rates of 12.8 kbps and 128 kbps. With a yellow rate of
12.8 kbps, only a fraction of excess TCP packets can be colored yellow at the traffic conditioner
and thus resulting fairness in excess bandwidth distribution is not good. However with a yellow
rate of 128 kbps, al excess TCP packets are colored yellow and good fairness is achieved with
correct setting of RED parameters. Yellow bucket size also explains a substantial portion of
variation in fairness results for three-color simulations. Thisis because bursty TCP traffic can fully
utilize its yellow rate only if yellow bucket size is sufficiently high. The interaction between
yellow rate and yellow bucket size for three-color fairness results is because of the fact that
minimum size of the yellow bucket required for fully utilizing the yellow rate increases with yellow

rate.

It is evident that three colors are required to enable TCP flows get a fair share of excess network
resources. Excess TCP and UDP packets should be colored differently and network should treat
them in such a manner so as to achieve fairness. Also, size of token buckets should be sufficiently

high so that bursty TCP traffic can fully utilize the token generation rates.

5. CONCLUSIONS

One of the goals of deploying multiple drop precedence levels in an Assured Forwarding traffic
class on a satellite network is to ensure that al customers achieve their reserved rate and a fair
share of excess bandwidth. In this paper, we analyzed the impact of various factors affecting the

performance of assured forwarding. The key conclusions are:
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The key performance parameter is the level of green (reserved) traffic. The combined reserved
rate for all customers should be less than the network capacity. Network should be configured
in such a manner so that in-profile traffic (colored green) does not suffer any packet loss and is

successfully delivered to the destination.

If the reserved traffic is overbooked, so that there is little excess capacity, two drop precedence

give the same performance as three.

The fair alocation of excess network bandwidth can be achieved only by giving different
treatment to out-of-profile traffic of congestion sensitive and insensitive flows. The reason is
that congestion sensitive flows reduce their data rate on detecting congestion however
congestion insensitive flows keep on sending data as before. Thus, in order to prevent
congestion insensitive flows from taking advantage of reduced data rate of congestion sensitive
flows in case of congestion, excess congestion insensitive traffic should get much harsher
treatment from the network than excess congestion sensitive traffic. Hence, it is important that
excess congestion sensitive and insensitive traffic is colored differently so that network can
distinguish between them. Clearly, three colors or levels of drop precedence are required for

this purpose.

Classifiers have to distinguish between TCP and UDP packets in order to meaningfully utilize

the three drop precedence.

RED parameters and implementations have significant impact on the performance. Further

work is required for recommendations on proper setting of RED parameters.
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Table 1: General Configuration Parameters used in Simulation

Simulation Time 100 seconds
TCP Window 64 packets
IP Packet Size 576 bytes
UDP Rate 1.28Mbps
Maximum gueue size (for al queues) 60 packets

Table 2: Link Parameters used in Simulations

Link between UDP/TCPs and Customers:

Link Bandwidth 10 Mbps
One way Delay 1 microsecond
Drop Policy DropTall

Link between Customers (Sinks) and Router 1 (Router 3):
Link Bandwidth 1.5 Mbps
One way Delay 5 microseconds
Drop Policy DropTall

Link between Router 1 and Router 2:

Link Bandwidth 1.5 Mbps
One way Delay 125 milliseconds

Drop Policy From Router 1 to Router 2 RED n

Drop Policy From Router 2 to Router 1 DropTail

Link between Router 2 and Router 3:

Link Bandwidth 1.5 Mbps
One way Delay 125 milliseconds
Drop Policy DropTail

Table 3: Two-color Simulation Sets and their Green Rate

Simulation 1D Green Rate [kbps]
1-144 12.8

201-344 25.6

401-544 38.4

601-744 76.8

801-944 102.4

1001-1144 128

1201-1344 153.6

1401-1544 179.2
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Table 4: Parameters, which combinations are used in each Set of two-color Simulations

Max Drop Drop Probability {0.1, 0.1}, {0.1, 0.5}, {0.1, 1},{0.5, 1}, {05, 1}, {1, 1}

{ Green, Red}

Drop Thresholds {40/60, 0/10}, {40/60, 0/20}, { 40/60, 0/5}, { 40/60, 20/40}
{ Green, Red}

Green Bucket 1,248, 16, 32

(in Packets)

Table 5: Three-color Simulation Sets and their Green Rate

Simulation 1D Green Rate [kbps]
1-720 12.8
1001-1720 25.6
2001-2720 38.4
3001-3720 76.8

Table 6;: Parameters, which combinations are used in each Set of three-color Simulations

Max Drop Drop Probability {0.1,05, 1},{0.1, 1, 1},{0.5,05, 1},{0.5,1, 1},{1, 1, 1}
{Green, Yellow, Red}
Drop Thresholds {40/60, 20/40, 0/10}, { 40/60, 20/40, 0/20}
{Green, Yellow, Red}
Yelow Rate 12.8, 128
[kbps]
Green bucket Size 1,2,4,8,16, 32
(in packets)
Y ellow bucket Size 1,2,4,8, 16, 32
(in packets)
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Table 7: Main Factors Influencing Reserved Rate Utilization Results

Allocation of Variation (in %age)
Factor/Interaction In two-color Simulations In three-color Simulations
TCP UDP TCP UDP
Green Rate 8.86% 31.55% 2.21% 20.41%
Green Bucket Size 86.22% 42.29% 95.25% 62.45%
Green Rate -
Green Bucket Size 4.45% 25.35% 1.96% 17.11%

Table 8: Main Factors Influencing Fairness Results in three-color Simulations

Factor/Interaction Allocation of Variation (in %age)
Ydlow Rate 41.36
Ydlow Bucket Size 28.96
I nteraction between Y ellow Rate
and Yédlow Bucket Size 26.49

NASA/TM—2001-210904 67



SATELLITE

N ROUTER2 { )
o
1.5 Mbps,
-2
125 milliseconds
o
1.5 Mbps,
5 S
125 milliseconds
o -5 .
' ROUTER 1 ROUTER 3
(e] “
o—
@
o -7
o—
@,
(e] n
o— 1.5 Mbps, 5 microseconds
@
v 8/
O
UDP o | 10 |
o—

10 Mbps, 1 microsecond

Figure 1. Simulation Configuration

NASA/TM—2001-210904 68

SINKS



Fairness in Two-Color Simulations
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Figure 2a. Simulation Results: Fairness achieved in two-color Simulations with Different Reserved
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Fairness Index

Fairness in Three-Color Simulations
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Figure 2b. Simulation Results: Fairness achieved in Three-Color Simulations with different
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Reserved Rate Utilization by TCP Customers in Two-Color Simulations
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Figure 3a. Reserved Rate Utilization by TCP Customers in two-color Simulations
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Reserved Rate Utilization by UDP Customers in Two-Color Simulations
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Figure 3b. Reserved Rate Utilization by UDP Customers in two-color Simulations
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Reserved Rate Utilization by TCP Customers in Three-Color Simulations
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Figure 3c. Reserved Rate Utilization by TCP Customers in three-color Simulations
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Reserved Rate Utilization by UDP Customers in Three-Color Simulations
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Figure 3d. Reserved Rate Utilization by UTP Customers in three-color Simulations
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Abstract

Delivering congestion signals is essential to the performance of networks. Current TCP/IP networks use packet
losses to signal congestion. Packet losses not only reduces TCP performance, but also adds large delay. Explicit
Congestion Noatification (ECN) delivers a faster indication of congestion and has better performance. However,
current ECN implementations mark the packet from the tail of the queue. In this paper, we propose the mark-front
strategy to send an even faster congestion signal. We show that mark-front strategy reduces buffer size requirement,
improves link efficiency and provides better fairness among users. Simulation results that verify our analysis are also
presented.

Keywords:Explicit Congestion Notification, mark-front, congestion control, buffer size requirement, fairness.

1 Introduction

Delivering congestion signals is essential to the performance of computer networks. In TCP/IP, congestion signals
from the network are used by the source to determine the load. When a packet is acknowledged, the source increases
its window size. When a congestion signal is received, its window size is reduced [1, 2].

TCP/IP uses two methods to deliver congestion signals. The first method is timeout. When the source sends a packet,
it starts a retransmission timer. If it does not receive an acknowledgment within a certain time, it assumes congestion
has happened in the network and the packet has been lost. Timeout is the slowest congestion signal because of the
source has to wait a long time for the retransmission timer to expire.

The second method is loss detection. In this method, the receiver sends a duplicate ACK immediately on reception of
each out-of-sequence packet. The source interprets the reception of three duplicate acknowledgments as a congestion
packet loss. Loss detection can avoid the long wait of timeout.

Both timeout and loss detection use packet losses as congestion signals. Packet losses not only increase the traffic
in the network, but also add large transfer delay. The Explicit Congestion Notification (ECN) proposed in [3, 4]
provides a light-weight mechanism for routers to send a direct indication of congestion to the source. It makes use of
two experimental bits in the IP header and two experimental bits in the TCP header. When the average queue length
exceeds a threshold, the incoming packet is markexbagestion experiencetth a probability calculated from the

average queue length. When the marked packet is received, the receiver marks the acknowledgmenE@ihg an
Echobit in the TCP header to send congestion notification back to the source. Upon receiving the ECN-Echo, the
source halves its congestion window to help alleviate the congestion.

Many authors have pointed out that marking provides more information about the congestion state than packet drop-
ping [5, 6], and ECN has been proven to be a better way to deliver congestion signal and exhibits a better performance
[4,5,7].

*This research was sponsored in part by grants from Nokia Corporation, Burlington, Massachusetts and NASA Glenn Research Center, Cleve-
land, Ohio.
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In most ECN implementations, when congestion happens, the congested router marks the incoming packet that just
entered the queue. When the buffer is full or when a packet needs to be dropped as in Random Early Detection (RED),
some implementations, such as tigesimulator [8], have the “drop from front” option as suggested by Yin [9] and
Lakshman [10]. A brief discussion of drop from front in RED can be found in [11]. However, for packet marking,
these implementations still pick the incoming packet and not the front packet. We call this policy “mark-tail”.

In this paper, we propose a simple marking mechanism — the “mark-front” strategy. This strategy marks a packet
when the packet is going to leave the queue and the queue length is greater than the pre-determined threshold. The
mark-front strategy is different from the current mark-tail policy in two ways. First, since the router marks the packet

at the time when it is sent, and not at the time when the packet is received, a more up-to-date congestion signal is
carried by the marked packet. Second, since the router marks the packet in the front of the queue and not the incoming
packet, congestion signals do not undergo the queueing delay as the data packets. In this way, a faster congestion
feedback is delivered to the source.

The implementation of this strategy is extremely simple. One only needs to move the marking action from the enqueue
procedure to the dequeue procedure and choose the packet leaving the queue in stead of the packet entering the queue.

We justify the mark-front strategy by studying its benefits. We find that, by providing faster congestion signals, mark-
front strategy reduces the buffer size requirement at the routers; it avoids packet losses and thus improves the link
efficiency when the buffer size in routers is limited. Our simulations also show that mark-front strategy improves the
fairness among old and new users, and alleviates TCP’s discrimination against connections with large round trip time.

The mark-front strategy differs from the “drop from front” option in that when packets are dropped, only implicit
congestion feedback can be inferred from timeout or duplicate ACKs; when packets are marked, explicit and faster
congestion feedback is delivered to the source.

Gibbons and Kelly [6] suggested a number of mechanisms for packet marking, such as “marking all the packets in
the queue at the time of a packet loss”, “marking every packet leaving the queue from the time of a packet loss until
the queue becomes empty”, and “marking packets randomly as they leave the queue with a probability so that later
packets will not be lost.” Our mark-front strategy differs from these marking mechanisms in that it is a simple marking

rule that faithfully reflects the up-to-date congestion status, while the mechanisms suggested by Gibbons and Kelly
either do not reflect the correct congestion status, or need sophisticated probability calculation about which no sound

algorithm is known.

It is worth mentioning that mark-front strategy is as effective in high speed networks as in low speed networks.
Lakshman and Madhow [12] showed that the amount of drop-tail switches should be at least two to three times the
bandwidth-delay product of the network in order for TCP to achieve decent performance and to avoid losses in the
slow start phase. Our analysis in section 4.3 reveals that in the steady-state congestion avoidance phase, the queue
size fluctuates from empty to one bandwidth-delay product. So the queueing delay experienced by packets when
congestion happens is comparable to the fixed round-trip firfiéerefore, the mark-front strategy can save as much

as a fixed round-trip time in congestion signal delay, independent of the link speed.

We should also mention that the mark-front strategy applies to both wired and wireless networks. When the router
threshold is properly set, the coherence between consecutive packets can be used to distinguish packet losses due to
wireless transmission error from packet losses due to congestion. This result will be reported elsewhere.

This paper is organized as follows. In section 2 we describe the assumptions for our analysis. Dynamics of queue
growth with TCP window control is studied in section 3. In section 4, we compare the buffer size requirements of
mark-front and mark-tail strategies. In section 5, we explain why mark-front is fairer than mark-tail. The simulation
results that verify our conclusions are presented in section 6. In section 7, we remove the assumptions made to facilitate
the analysis, and apply the mark-front strategy to the RED algorithm. Simulation results show that mark-front has the
advantages over mark-tail as revealed by the analysis.

1The fixed round-trip time is the round-trip time under light load, i.e., without queueing delay.
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2 Assumptions

ECN is used together with TCP congestion control mechanisms like slow start and congestion avoidance [2]. When the
acknowledgment is not marked, the source follows existing TCP algorithms to send data and increase the congestion
window. Upon the receipt of an ECN-Echo, the source halves its congestion window and reduces the slow start

threshold. In the case of a packet loss, the source follows the TCP algorithm to reduce the window and retransmit the
lost packet.

ECN delivers congestion signals by setting tbagestion experiencduxt, but determining when to set the bit depends

on the congestion detection policy. In [3], ECN is proposed to be used with average queue length and RED. Their goal
is to avoid sending congestion signals caused by transient traffic and to desynchronize sender windows [13, 14]. In
this paper, to allow analytical modeling, we assume a simplified congestion detection criterion: waetu#hgueue
lengthis smaller than the threshold, the incoming packet will not be marked; whescthal queue lengtbxceeds

the threshold, the incoming packet will be marked.

We also make the following assumptions. (1) Receiver windows are large enough so the bottleneck is in the network.
(2) Senders always have data to send and will send as many packets as their windows allow. (3) There is only one
bottleneck link that causes queue buildup. (4) Receivers acknowledge every packet received and there are no delayed
acknowledgments. (5) There is no ACK compression [15]. (6) The queue length is measured in packets and all packets
have the same size.

3 Queue Dynamics with TCP Window Control

In this section, we study the relationship between the window size at the source and the queue size at the congested
router. The purpose is to show the difference between mark-tail and mark-front strategies. Our analysis is made on one
connection, but with small modifications, it can also apply to multiple connection case. Simulation results of multiple
connections and connections with different round trip time will be presented in section 6.

In a path with one connection, the only bottleneck is the first link with the lowest rate in the entire route. In case of
congestion, queue builds up only at the router before the bottleneck link. The following lemma is obvious.

Lemma 1 If the data rate of the bottleneck link i packets per second, then the downstream packet inter-arrival
time and the ack inter-arrival time on the reverse link can not be shorter tdnseconds. If the bottleneck link

is fully-loaded (i.e., no idling), then the downstream packet inter-arrival time and the ack inter-arrival time on the
reverse link arel /d seconds.

Denote the source window size at tihasw(t), then we have

Theorem 1 Consider a path with only one connection and only one bottleneck link. Let the fixed round trip time be
r seconds, the bottleneck link rate tigpackets per second, and the propagation and transmission time between the
source and bottleneck router g If the bottleneck link has been busy for at leaseconds, and a packet just arrived

at the congested router at timiethen the queue length at the congested router is

Q(t) = w(t —t,) — rd. ()

Proof Consider the packet that just arrived at the congested router at.tiitnwas sent by the source at time- ¢,,.

At that time, the number of packets on the path and outstanding acks on the reverse lini was). By timet, ¢,d

acks are received by the source. All packets between the source and the router have entered the congested router or
have been sent downstream. As shown in Figure 1, the pipe length from the congested router to the receiver, and then
back to the source is— ¢,. The number of downstream packets and outstanding acks are;,)d. The rest of the

w(t — t,) unacknowledged packets are still in the congested router. So the queue length is

Q(t) = w(t —tp) — tyd — (r — t,)d = w(t — t,) — rd. @)
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Figure 1: Calculation of the queue length

This finishes the proof.

Notice that in this theorem, we did not use the number of packets between the source and the congested router to
estimate the queue length, because the packets downstream from the congested router and the acks on the reverse link
are equally spaced, but the packets between the source and the congested router may not be.

The analysis in this theorem is based on the assumptions in section 2. The conclusion applies to both slow start and
congestion avoidance phases. In order for equation (1) to hold, the router must have been congested for at least
seconds.

4 Buffer Size Requirement and Threshold Setting

When ECN signals are used for congestion control, the network can achieve zero packet loss. When acknowledgments
are not marked, the source gradually increase the window size. Upon the receipt of an ECN-Echo, the source halves
its congestion window to reduce the congestion.

In this section, we analyze the buffer size requirement for both mark-tail and mark-front strategies. The result also
includes an analysis on how to set the threshold.

4.1 Mark-Tail Strategy

SupposeP was the packet that increased the queue length over the thr&heohdl it was sent from the source at time

so and arrived at the congested router at tigelts acknowledgment, which was an ECN-echo, arrived at the source

at time s; and the window was reduced at the same time. We also assume that the last packet before the window
reduction was sent at timeg and arrived at the congested router at tithie

In order to use Theorem 1, we need to consider two cases separatelyTidrge and whefl” is small, compared
tord.

Case 1 If T is reasonably large (abord) such that the buildup of a queue of siZeneeds: time, the assumption in
Theorem 1 is satisfied, we have

T = Q(to) = w(to — tp) — rd = w(so) — rd, 3)

SO
w(sg) =T + rd. (4)

Since the time elapse betweegands; is one RTT, if packef” were not marked, the congestion window would
increase t@w(so). SinceP was marked, the congestion window before receiving the ECN-Echo was

w(sy) = 2w(so) =1 = 2(T +rd) - 1. (5)
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When the last packet sent under this window reached the router atjtintiee queue length was

Q(ty) =w(sy) —rd=2w(so) —1—rd =2T +rd — 1. (6)

Upon the receipt of ECN-Echo, the congestion window was halved. The source can not send any more packets before
half of the packets are acknowledged. 280+ rd — 1 is the maximum queue length.

Case 2 If T is small,rd is an overestimate of the number of downstream packets and acks on the reverse link.
w(sp) = T + number of downstream packets and acks" + rd. @
Therefore,
Qty)=w(sy)—rd=Quw(sg) —1)—rd<2(T+rd)—1—rd =2T +rd — 1. (8)

So, in both case®T + rd — 1 is an upper bound of queue length that can be reached in slow start phase.

Theorem 2 In a TCP connection with ECN congestion control, if the fixed round trip timesexconds, the bottleneck
link rate isd packets per second, and the bottleneck router uses thregHoltcongestion detection, then the maximum
gueue length can be reached in slow start phase is less than or eqBl4ord — 1.

As shown by equation (6), whéh is large, the boun@T + rd — 1 can be reached with equality. Wh&his small,
2T + rd — 1 is just an upper bound. Since the queue length in congestion avoidance phase is smaller, this bound is
actually the buffer size requirement.

4.2 Mark-Front Strategy

SupposeP was the packet that increased the queue length over the thr&sheohdl it was sent from the source at time
s¢ and arrived at the congested router at tigeThe router marked the packBt that stood in the front of the queue.
The acknowledgment aP’, which was an ECN-echo, arrived at the source at tmand the window was reduced
at the same time. We also suppose the last packet before the window reduction was serd;attimarrived at the
congested router at tinig .

Consider two cases separately: wiers large and wheff” is small.

Case 1l If T is reasonably large (abotd) such that the buildup of a queue of siPeeeds- time, the assumption in
Theorem 1 is satisfied. We have

T = Q(to) = w(to — tp) — rd = w(sg) — rd, 9)
SO
w(sg) =T + rd. (10)

In slow start phase, the source increases the congestion window by one for every acknowledgment it receives. If the
acknowledgment oP was received at the source without the congestion indication, the congestion window would be
doubled to

2w(sg) = 2(T + rd).
However, when the acknowledgment®farrived,T — 1 acknowledgments corresponding to packets prid? twere
still on the way. So the window size at timg was

w(sy) =2w(so) — (T —1)—1=T+ 2rd. (11)
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When the last packet sent under this window reached the router atjtintiee queue length was

Qty)=w(sy)—rd=T+2rd—rd =T + rd. (12)

Upon the receipt of ECN-Echo, congestion window is halved. The source can not send any more packets before half
of the packets are acknowledged. Be- rd is the maximum queue length.

Case 2 If T is small,rd is an overestimate of the number of downstream packets and acks on the reverse link.

w(so) = T + number of downstream packets and acks" + rd. (13)

Therefore,
Q7)) =w(sy)—rd=Quw(so) —T)—rd<2(T +rd)—T —rd=T +rd. (14)

So, in both caseq, + rd is an upper bound of queue length that can be reached in the slow start phase.

Theorem 3 In a TCP connection with ECN congestion control, if the fixed round trip tinneseconds, the bottleneck
link rate isd packets per second, and the bottleneck router uses thre$Holtcongestion detection, then the maximum
gueue length that can be reached in slow start phase is less than or edliat tai.

Again, wherT is large, equation (12) shows the boulid-rd is tight. Since the queue length in congestion avoidance
phase is smaller, this bound is actually the buffer size requirement.

Theorem 2 and 3 estimate the buffer size requirement for zero-loss ECN congestion control.

4.3 Threshold Setting

In the congestion avoidance phase, congestion window increases roughly by one in every RTT. Assuming mark-tail
strategy is used, using the same timing variables as in the previous subsections, we have

w(so) = Q(to) + rd =T + rd. (15)
The congestion window increases roughly by one in an RTT,
w(s;)=T+rd+1. (16)
When the last packet sent before the window reduction arrived at the router, it saw a queue |1&hgth:of
Q7)) =w(sy)—rd=T+1. a7
Upon the receipt of the ECN-Echo, the window was halved:
w(sy) =T +rd+1)/2. (18)

The source may not be able to send packets immediatelysaftéifter some packets were acknowledged, the halved
window allowed new packets to be sent. The first packet sent under the new window saw a queue length of

Q) =w(s1)—rd=T+rd+1)/2—rd=(T —rd+1)/2. (19)

The congestion window was fixed for an RTT and then began to increagg(tgowas the minimum queue length in
acycle.

In summary, in the congestion avoidance phase, the maximum queue lefigthisand the minimum queue length
is(T—rd+1)/2.
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In order to avoid link idling, we should ha§" — rd + 1)/2 > 0 or equivalently,l’ > rd — 1. On the other hand, if
min() is always positive, the router keeps an unnecessarily large queue and all packets suffer a long queueing delay.
Therefore, the best choice of threshold should satisfy

(T—-rd+1)/2=0, (20)

or
T=rd-1. (22)

If mark-front strategy is used, the source’s congestion window increases roughly by one in every RTT, but congestion
feedback travels faster than the data packets. Hence

Q(s7) =T +rd +e, (22)
wheree is between 0 and 1, and depends on the location of the congested router. Therefore,
Q7)) =w(sy)—rd=T +¢, (23)
w(sy) = (T +rd+e¢€)/2, (24)
Q1) =w(s1)—rd= T +rd+e€)/2—rd= (T —rd+¢)/2. (25)

For the reason stated above, the best choice of thresh@ld=isrd — e. Compared withrd, the difference between
rd — € andrd — 1 can be ignored. So we have the following theorem:

Theorem 4 In a path with only one connection, the optimal threshold that achieves full link utilization while keeping
gueueing delay minimal in congestion avoidance phasd is 1. If the threshold is smaller than this value, the link
will be under-utilized. If the threshold is greater than this value, the link can be full utilized, but packets will suffer an
unnecessarily large queueing delay.

Combining the results in Theorem 2, 3 and 4, we can see that the mark-front strategy reduces the buffer size require-
ment from abou8rd to 2rd. It also reduces the congestion feedback’s delay by one fixed round-trip time.

5 Lock-out Phenomenon and Fairness

One of the weaknesses of mark-tail policy is its discrimination against new flows. Consider the time when a new flow
joins the network, but the buffer of the congested router is occupied by packets of old flows. In the mark-tail strategy,
the packet that just arrived will be marked, but the packets already in the buffer will be sent without being marked.
The acknowledgments of the sent packets will increase the window size of the old flows. Therefore, the old flows
which already have large share of the resources will grow even larger. However, the new flow with small or no share
of the resources has to back off, since its window size will be reduced by the marked packets. This causes a “lock-out”
phenomenon in which a single connection or a few flows monopolize the buffer space and prevent other connections
from getting room in the queue [16]. Lock-out leads to gross unfairness among users and is clearly undesirable.

Contrary to the mark-tail policy, the mark-front strategy marks the packets in the buffer first. Connections with large
buffer occupancy will have more packets marked than connections with small buffer occupancy. Compared with the
mark-tail strategy that let the packets in the buffer escape the marking, mark-front strategy helps to prevent the lock-out
phenomenon. Therefore, we can expect that mark-front strategy to be fairer than mark-tail strategy.

TCP’s discrimination against connections with large RTT is also well known. The cause of this discrimination is
similar to the discrimination against new connections. If connections with small RTT and large RTT start at the same
time, the connections with small RTT will receive their acknowledgment faster and therefore grow faster. When
congestion happens, connections with small RTT will take more buffer room than connections with large RTT. With
mark-tail policy, packets already in the queue will not be marked but only newly arrived packets will be marked.
Therefore, connections with small RTT will grow even larger, but connections with large RTT have to back off. Mark-
front alleviates this discrimination by treating all packets in the buffer equally. Packets already in the buffer may also
be marked. Therefore, connections with large RTT can have larger bandwidth.
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Figure 2: Simulation model.

6 Simulation Results

In order to compare the mark-front and mark-tail strategies, we performed a set of simulations wittstiveilator

[8]. We modified the RED algorithm ims simulator to deterministically mark the packets when the real queue
length exceeds the threshold. The basic simulation model is shown in Figure 2. A number of spiges ., s,,

are connected to the router by 10 Mbps links, router, is connected te; by a 1.5 Mbps link, and destinations
dy,ds,...,d,, are connected te, by 10 Mbps links. The link speeds are chosen so that congestion will only happen
at the router;, where mark-tail and mark-front strategies are tested.

With the basic configuration shown in Figure 2, the fixed round trip time, including the propagation time and the
transmission time at the routers, is 59 ms. Changing the propagation delay between,ranter, from 20 ms to 40

ms gives an RTT of 99 ms. Changing the propagation delays between the sources and miwsrus configurations

of different RTT. An FTP application runs on each source. Reno TCP and ECN are used for congestion control. The
data packet size, including all headers, is 1000 bytes and the acknowledgment packet size is 40 bytes.

With the basic configuration,

rd = 0.059 x 1.5 x 10 bits = 11062.5 bytes ~ 11 packets

In our simulations, the routers perform mark-tail or mark-front. The results for both strategies are compared.

6.1 Simulation Scenarios

In order to show the difference between mark-front and mark-tail strategies, we designed the following simulation
scenarios based on the basic simulation model described in Figure 2. If not specified, all connections have an RTT of
59 ms, start at 0 second and stop at the 10th second.

1. One connection.

2. Two connections with the same RTT.

3. Two overlapping connections with the same RTT, but the first connection starts at 0 second and stops at the 9th
second, the second connection starts at the first second and stops at the 10th second.

4. Two connections with RTT equal to 59 and 157 ms respectively.

5. Two connections with same RTT, but the buffer size at the congested router is limited to 25 packets.

6. Five connections with the same RTT.

7. Five connections with RRT of 59, 67, 137, 157 and 257 ms respectively.

8. Five connections with the same RTT, but the buffer size at the congested router is limited to 25 packets.
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Scenarios 1, 4, 6 and 7 are mainly designed for testing the buffer size requirement. Scenarios 1, 3, 4, 6, 7, 8 are for
link efficiency, and scenarios 2, 3, 4, 5, 6, 7 are for fairness among users.

6.2 Metrics

We use three metrics to compare the two strategies. The first metric luffex size requiremerfor zero loss
congestion control. This is the maximum queue size that can be built up at the router in the slow start phase before the
congestion signal takes effect at the congested router. If the buffer size is greater or equal to this value, no packet loss
will happen. This metric is measured as the maximum queue length in the entire simulation.

The second metridink efficiency is calculated from the number of acknowledged packets (not counting the retrans-
missions) divided by the possible number of packets that can be transmitted during the simulated time. Because of the
slow start phase and possible link idling after the window reduction, the link efficiency is always smaller than 1. Link
efficiency should be measured with long simulation time to minimize the effect of the initial transient state. We tried
different simulation times from 5 seconds to 100 seconds. The results for 10 seconds show the essential features of the
strategy, without much difference from the results for 100 seconds. So the simulation results presented in this paper
are based on 10-second simulations.

The third metricfairnessindex, is calculated according to the formula in [17]nifconnections share the bandwidth,
andz; is the number of acknowledged packets of connedtjtimen thefairnessindex is calculated as:

m N2
b 20

fairness index is often close to 1, in our graphs, we drawihfairness index:

fairness =

unfairness =1 — fairness. (27)

The performance of ECN depends on the selection of the threshold value. In our results, all three metrics are drawn
for different values of threshold.

6.3 Buffer Size Requirement

Figure 3 shows the buffer size requirement for mark-tail and mark-front. The measured maximum queue lengths are
shown with ‘0" and “A”. The corresponding theoretical estimates from Theorem 2 and 3 are shown with dashed and
solid lines. In Figure 3(b) and 3(d), where the connections have different RTT, the theoretical estimate is calculated
from the smallest RTT.

From the simulation, we find that for connections with the same RTT, the theoretical estimate of buffer size requirement
is accurate. When threshdldis small, the buffer size requirement is an upper bound, ilhenrd, the upper bound

is tight. For connections with different RTT, the estimate given by the largest RTT is an upper bound, but is usually an
over estimate. The estimate given by the smallest RTT is a closer approximation.

6.4 Link Efficiency

Figure 4 shows the link efficiency for various scenarios. In all cases, the efficiency increases with the threshold, until
the threshold is aboutd, where the link reaches almost full utilization. Small threshold results in low link utilization
because it generates congestion signals even when the router is not really congested. Unnecessary window reduction
actions taken by the source lead to link idling. The link efficiency results in Figure 4 verify the choice of threshold
stated in Theorem 4.

In the unlimited buffer cases (a), (b), (d), (e), the difference between mark-tail and mark-front is small. However,
when the buffer size is limited as in cases (c) and (f), mark-front has much better link efficiency. This is because
when congestion happens, mark-front strategy provides a faster congestion feedback than mark-tail. Faster congestion
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Figure 3: Buffer size requirement in various scenarios

feedback prevents the source from sending more packets that will be dropped at the congested router. Multiple drops
cause source timeout and idling at the bottleneck link, and thus the low utilization. This explains the drop of link
efficiency in Figure 4 (c) and (f) when the threshold exceeds about 10 packets for mark-tail and about 20 packets in
mark-front.

6.5 Fairness

Scenarios 2, 3, 4, 5, 6, 7 are designed to test the scenario of the two marking strategies. Figure 5 shows lock-out
phenomenon and alleviation by mark-front strategy. With the mark-tail strategy, old connections occupy the buffer
and lock-out new connections. Although the two connections in scenario 3 have the same time span, the number of the
acknowledged packets in the first connection is much larger than that of the second connection, Figure 5(a). In scenario
4, the connection with large RTT (157 ms) starts at the same time as the connection with small RTT (59 ms), but the
connection with small RTT grows faster, takes over a large portion of the buffer room and locks out the connection
with large RTT. Of all of the bandwidth, only 6.49% is allocated to the connection with large RTT. Mark-front strategy
alleviates the discrimination against large RTT by marking packets already in the buffer. Simulation results show that
mark-front strategy improves the portion of bandwidth allocated to connection with large RTT from 6.49% to 21.35%.

Figure 6 shows the unfairness index for the mark-tail and the mark-front strategies. In Figure 6(a), the two connections
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Figure 5: Lock-out phenomenon and alleviation by mark-front strategy

have the same configuration. Which connection receives more packets than the other is not deterministic, so the
unfairness index seems random. But in general, mark-front has smaller unfairness index than mark-tail.

In Figure 6(b), the two connections are different: the first connection starts first and takes the buffer room. Although
the two connections have the same time span, if mark-tail strategy is used, the second connection is locked out by
the first and therefore receives fewer packets. Mark-front avoids this lock-out phenomenon. The results show that
the unfairness index of mark-front is much smaller than that of mark-tail. In addition, as the threshold increases, the
unfairness index of mark-tail increases, but the mark-front remains roughly the same, regardless of the threshold.

Figure 6(c) shows the difference on connections with different RTT. With mark-tail strategy, the connections with
small RTT grow faster and therefore locked out the connections with large RTT. Since mark-front strategy does not
have the lock-out problem, the discrimination against connections with large RTT is alleviated. The difference of the
two strategies is obvious when the threshold is large.

Figure 6(e) shows the unfairness index when the router buffer size is limited. In this scenario, when the buffer is full,
the router drops the the packet in the front of the queue. Whenever a packet is sent, the router checks whether the
current queue size is larger than the threshold. If yes, the packet is marked. The figure shows that mark-front is fairer
than mark-tail.

Similar results for five connections are shown in Figure 6(d) and 6(f).

7 Applyto RED

The analytical and simulation results obtained in previous sections are based on the simplified congestion detection

model that a packet leaving a router is marked if the actual queue size of the router exceeds the threshold. However,

RED uses a different congestion detection criterion. First, RED uses average queue size instead of the actual queue
size. Second, a packet is not marked deterministically, but with a probability calculated from the average queue size.

In this section, we apply the mark-front strategy to the RED algorithm and compare the results with the mark-tail
strategy. Because of the difficulty in analyzing RED mathematically, the comparison is carried out by simulations
only.

RED algorithm needs four parameters: queue weightinimum thresholdh,,,;», maximum thresholdh,, ., and
maximum marking probability,,,.... Although determining the best RED parameters is out of the scope of this paper,

we have tested several hundred of combinations. In almost all these combinations, mark-front has better performance
than mark-tail in terms of buffer size requirement, link efficiency and fairness.
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Figure 7: Buffer size requirement for different queue weight,, = 0.1

Instead of presenting individual parameter combinations for all scenarios, we focus on one scenario and present the
results for a range of parameter values. The simulation scenario is the scenario 3 of two overlapping connections
described in section 6.1. Based on the recommendations in [13], we vary the queuewsighdur values: 0.002,

0.02, 0.2 and 1, varyh,;, from 1 to 70, fixth,az 8S2thmin, and fiXpy,q, as 0.1.

Figure 7 shows the buffer size requirement for both strategies with different queue weight. In all cases, mark-front
strategy requires smaller buffer size than the mark-tail. The results also show that queueuwisightnajor factor
affecting the buffer size requirement. Smaller queue weight requires larger buffer. When the actual queue size is used
(corresponding ta = 1), RED requires the minimum buffer size.

Figure 8 shows the link efficiency. For almost all values of threshold, mark-front provides better link efficiency than
mark-tail. Contrary to the common belief, the actual queue size (Figure 8(d)) is no worse than the average queue size
(Figure 8(a)) in achieving higher link efficiency.

The queue size trace at the congested router shown in Figure 9 provides some explanation for the smaller buffer
size requirement and higher efficiency of mark-front strategy. When congestion happens, mark-front delivers faster
congestion feedback than mark-tail so that the sources can stop sending packets earlier. In Figure 9(a), with mark-tail
signal, the queue size stops increasing at 1.98 second. With mark-front signal, the queue size stops increasing at 1.64
second. Therefore mark-front strategy needs smaller buffer.
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Figure 8: Link efficiency for different queue weigt,,,, = 0.1

On the other hand, when congestion is gone, mark-tail is slow in reporting the change of congestion status. Packets
leaving the router still carry the congestion information set at the time when they entered the queue. Even if the queue
is empty, these packets still tell the sources that the router is congested. This out-dated congestion information is
responsible for the link idling around 6th second and 12th second in Figure 9(a). As a comparison, in Figure 9(b), the
same packets carry more up-to-date congestion information to tell the sources that the router is no longer congested,
so the sources send more packets in time. Thus mark-front signal helps to avoid link idling and improve the efficiency.

Figure 10 shows the unfairness index. Both mark-front and mark-tail have big oscillations in the unfairness index when
the threshold changes. These oscillations are caused by the randomness of how many packets of each connection get
marked in the bursty TCP slow start phase. Changing the threshold value can significantly change the number of
marked packets of each connection. In spite of the randomness, in most cases mark-front is fairer than mark-tail.

8 Conclusion

In this paper we analyze the mark-front strategy used in Explicit Congestion Notification (ECN). Instead of marking
the packet from the tail of the queue, this strategy marks the packet in the front of the queue and thus delivers faster
congestion signals to the source. Compared with the mark-tail policy, mark-front strategy has three advantages. First,
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it reduces the buffer size requirement at the routers. Second, it provides more up-to-date congestion information to help
the source adjust its window in time to avoid packet losses and link idling, and thus improves the link efficiency. Third,

it improves the fairness among old and new users, and helps to alleviate TCP’s discrimination against connections with
large round trip time.

With a simplified model, we analyze the buffer size requirement for both mark-front and mark-tail strategies. Link
efficiency, fairness and more complicated scenarios are tested with simulations. The results show that mark-front
strategy achieves better performance than the current mark-tail policy. We also apply the mark-front strategy to the
RED algorithm. Simulations show that mark-front strategy used with RED has similar advantages over mark-tail.

Based on the analysis and the simulations, we conclude that mark-front is an easy-to-implement improvement that
provides a better congestion control that helps TCP to achieve smaller buffer size requirement, higher link efficiency
and better fairness among users.
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Abstract and the source’s congestion window is reduced. Since it
has to wait for the timer to expire, timeout turns out to be

Computer networks use congestion feedback from thethe slowest feedback.

routers and destinations to control the transmission load.with duplicate ACKs, the receiver sends an acknowledg-
Delivering timely congestion feedback is essential to the ment after the reception of a packet. If a packet is not
performance of networks. Reaction to the congestion canreceived but its subsequent packet arrives, the ACK for
be more effective if faster feedback is provided. Current the subsequent packet is a duplicate ACK. TCP source in-
TCP/IP networks use timeout, duplicate ACKs and ex- terprets the reception of three duplicate ACKs as an in-
plicit congestion notification (ECN) to deliver the con- dication of packet loss. Duplicate ACKs avoid the long
gestion feedback, each provides a faster feedback thamyait for the retransmission timer to expire, and therefore,
the previous method. In this paper, we propose a mark-delivers a faster feedback than timeout.

front strategy that delivers an even faster congestion feed-
back. With analytical and simulation results, we show that
mark-front strategy reduces buffer size requirement, im-
proves link efficiency and provides better fairness among
users.

Both timeout and duplicate ACKs methods send conges-
tion feedback at the cost of packet losses, which not only
increase the traffic in the network, but also add large trans-
fer delay. Studies [3, 4, 5, 6, 7] show that the throughput of

the TCP connection is limited by packet loss probability.
Keywords: Explicit Congestion Notification, mark-front,

) . . : The congestion feedbacks from timeout and duplicate
congestion control, buffer size requirement, fairness.

ACKs are implicit because they are inferred by the net-
works. In timeout method, incorrect timeout value may
. cause erroneous inference at the source. In duplicate
1 Introduction ACKs method, all layers must send the packets in order. If
some links have selective local link-layer retransmission,
Computer networks use congestion feedback from thelike those used in wireless links to combat transmission er-
routers and destinations to control the transmission load.rors, the packets are not delivered in order. The inference
When the feedback is “not congested”, the source slowly of congestion from duplicate ACKs us no longer valid.

increases the transmission window. When the feedbackg, -1 rishnan and Jain's work in [8], which has been pop-

Li congestﬁd ' tfe [S)Ollj.rce. redtgcels its Wmdc:yv t? a”det\)”atlf ularly called theDECbit schemguses a single bit in the
e congestion [1]. Delivering timely congestion feedbac network layer header to signal the congestion. The Ex-

:(S e;;enEa_\I tor:he perforfrpan.ce otf1 networ_ks. The faster _theplicit Congestion Notification (ECN) [9, 10], motivated by
eedback is, the more effective the reaction to congestiony, o et scheme, provides a mechanism for intermedi-

can be. ate routers to send early congestion feedback to the source
TCP/IP networks uses three methods — timeout, dupli- before actual packet losses happen. The routers monitor
cate ACKs and ECN — to deliver congestion feedback. their queue length. If the queue length exceeds a thresh-
In 1984, Jain [2] proposed to use timeout as an indicator ©!d; the router marks th€ongestion Experiencetit in

of congestion. When a packet is sent, the source startdh® IP header. Upon the reception of a marked packet, the
a retransmission timer. If the acknowledgment is not re- "€C€iver marks thECN-Echdbit in the TCP header of the

ceived within a certain period of time, the source assumes@cknowledgment to send the congestion feedback back to
congestion has happened and the packet has been lost b€ source. In this way, ECN delivers an even faster con-
cause of the congestion. The lost packet is retransmittegd€stion feedback explicitly set by the routers.

In most ECN implementations, when congestion happens
*This research was sponsored in part by NSF Award #9809018 and 0S P ons, .e . gestio PP ’
NASA Glen Research Center. the congested router marks the incoming packet. When
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the buffer is full or when a packet needs to be dropped coming packet will not be marked; when taetual queue
as in Random Early Detection (RED), some implementa- lengthexceeds the threshold, the incoming packet will be
tions have the “drop from front” option to drop packets marked.

from the front of the queue, as suggested in Yin [12] and \ye 5150 make the following assumptions. (1) Receiver
Lakshman [13]. However, none of these implementations, i, qows are large enough so the bottleneck is in the net-

mark the packet from the front of the queue. work. (2) Senders always have data to send. (3) There
is only one bottleneck link that causes queue buildup. (4)

In this Paper, we propose the "mark-front” strategy. Whep Receivers acknowledge every packet received and there
a packetis sent from a router, the router checks whether its

. ) are no delayed acknowledgments. (5) The queue length is
queue length is grgater than the pre-determined threShOIdmeasured in packets and all packets have the same size.
If yes, the packet is marked and sent to the next router.

The mark-front strategy differs from the current “mark-
tail” policy in two ways. First, the router marks the packet :
in the front of the queue and not the incoming packet, so 3 Queue Dynamlcs

the congestion signal does not undergo the queueing delay . . _ _

as the data packets. Second, the router marks the packdf this section, we study the relationship between the win-
at the time when it is sent, and not at the time when the dow size at the source and the queue size at the congested
packet is received. In this way, a more up-to-date conges-fouter. The analysis is made on one connection, simula-
tion feedback is given to the source. tion results of multiple connections will be presented in

The mark-front strategy also differs from the “drop from section 6.

front” option, because when packets are dropped, only im- Under the assumptipn of one bottleneck, when congestion
plicit congestion feedback can be inferred from timeout or happens, packets pile up only at the bottleneck router. The
duplicate ACKs. When packets are marked, explicit and following lemma is obvious.

faster congestion feedback is sent to the source.
Lemma l If the data rate of the bottleneck linkdspack-

ets per second, then the inter-arrival time of downstream
packets and ACKs for this connection can not be shorter
than 1/d seconds. If the bottleneck link is fully-loaded,
then the inter-arrival time id /d seconds.

Our study finds that, by providing faster congestion feed-
back, mark-front strategy reduces the buffer size require-
ment at the routers; it avoids packet losses and thus im-
proves the link efficiency when the buffer size in routers is
limited. Our simulations also show that mark-front strat-
egy improves the faimess among old and new users, anq:)enote the source window size at timasw(t), then we
alleviates TCP’s discrimination against connections with have '

large round trip times.

This paper is organized as follows. In section 2 we de- Theorem 1 Consider a transmission path with only one
scribe the assumptions for our analysis. Dynamics of bottleneck link. Suppose the fixed round trip time $gc-
queue growth with TCP window control is studied in sec- onds, the bottleneck link rate éspackets per second, and
tion 3. In section 4, we compare the buffer size require- the propagation between the source and bottleneck router
ment of mark-front and mark-tail strategies. In section 5, is t,. If the bottleneck link has been busy for at least
we explain why mark-front is fairer than mark-tail. In sec- seconds, and a packet arrives at the congested router at
tion 6, the simulation results that verify our conclusions timet, then the queue length at the congested router is

are presented. Q(t) = w(t —t,) — rd. (1)

. Proof Consider the packet that arrives at the congested

2 Assumptlons router at timet. It was sent by the source at time—
tp,. At that time, the number of packets on the forward

In [9], ECN is proposed to be used with average queue path and outstanding ACKs on the reverse pathu@s-
length and RED. The purpose of average queue length ist,). By timet, ¢,d ACKs are received by the source. All
to avoid sending congestion signals caused by bursty traf-packets between the source and the router have entered the
fic, and the purpose of RED is to desynchronize sendercongested router or have been sent downstream. As shown
windows [14, 15] so that the router can have a smaller in Figure 1, the pipe length from the congested router to
gueue. Because average queue length and RED are diffithe receiver, and back to the source is ¢,. The number
cult to analyzed mathematically, in this paper we assumeof downstream packets and outstanding ACKSs (@re-
a simplified congestion detection criterion: when e tp)d. The rest of thev(t — t,) unacknowledged packets
tual queue lengths smaller than the threshold, the in- are still in the congested router. So the queue length is
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Receive

Atp 4 4 ) ,

total number of packets and acks r time downstream from the router = rd

Figure 1: Calculation of the queue length

If T is small,rd is an overestimate of the number of down-
stream packets and ACKs on the reverse path. So
Q) =w(t—tp) —tpd—(r—tp)d = w(t—t,)—rd. (2)
w(so) < T + rd. (4)
This finishes the proof.

Notice that in this theorem, we did not use the number Since the time elapse betweegiands, is one RTT, if

of packets between the source and the congested route.PaCketP were not marked, the congestion window would

to estimate the queue length, because the packets downlcrease t@w(so). BecauseP was marked, when the

stream from the congested router and the ACKs on theECN'EChO is received, the congestion window was
reverse path are equally spaced, but the packets between

)= —-1< — 1.
the source and the congested router may not be. wlsy) = 2w(so) =1 < AT +rd) — 1 ©)

When the last packet sent under this window reached the
. . router at timef;, the queue length was
4 Buffer Size Requirement
Qty) =w(sy)—rd <2T +rd-1. (6)

ECN feedback can be used to achieve zero-loss conges-
tion control. If routers have enough buffer space and the Upon the receipt of ECN-Echo, the congestion window
threshold value is properly set, the source can control thewas halved. The source can not send any more packets
queue length by adjusting its window size based on the before half of the packets are acknowledged. 230+
ECN feedback. The buffer size requirement will be the rd — 1 is the maximum queue length.
maximum queue size that can be reached before the win-
dow reduction takes effect. In this section, we use The- Theorem 2 In a TCP connection with ECN congestion
orem 1 to study the buffer size requirement of mark-tail control, if the fixed round trip time is seconds, the bottle-
and mark-front strategies. neck link rate isd packets per second, and the bottleneck

router uses threshol@ for congestion detection, then the

. maximum queue length can be reached in slow start phase
4.1 Mark-Tail Strategy is less than or equal toT + rd — 1.

SupposeP is the packet that increased the queue length
over the threshold’, and it was sent from the source at
time s and arrived at the congested router at tityelts
acknowledgment, which was an ECN-echo, arrived at the
source at time; and the window was reduced at the same
time. We also assume that the last packet before the win-4 2 M ark-Front Strategy
dow reduction was sent at ting¢ and arrived at the con-

gested router at timg . SupposeP is the packet that increased the queue length

If T is reasonably large (aboti) such that the buildup of ~ over the threshold’, and it was sent from the source at
a queue of siz& needs- time, the assumption in Theorem time s and arrived at the congested router at tigeThe

WhenT is large, the boun@T + rd — 1 is tight. Since
the queue length in congestion avoidance phase is smaller,
this bound is actually the buffer size requirement.

1 is satisfied, we have router marked the packé’ that stood in the front of the
queue. The acknowledgment Bf, which was an ECN-
T =Q(to) =w(to —tp) —rd=w(sg) —rd. (3) echo, arrived at the source at timeand the window was
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reduced at the same time. We also suppose the last packdtow joins the network and the buffer of the congested
before the window reduction was sent at tisgjeand ar- router is occupied by packets of old flows. With the mark-
rived at the congested router at tije tail strategy, the packet that just arrived will be marked,
but the packets already in the buffer will be sent without
being marked. The acknowledgments of the sent packets
will increase the window size of the old flows. Therefore,
the old flows that already have large share of the resources
T = Q(to) = w(to — tp) —rd = w(so) —rd, (7) will grow even larger, but the new flow with small or no
share of the resources has to back off since its window
If T'is small,rd is an overestimate of the number of down-  sjze will be reduced by the marked packets. This is called
stream packets and ACKs on the reverse path. So a “lock-out” phenomenon because a single connection or
a few flows monopolize the buffer space and prevent other
w(so) T +rd. (8) connections from getting room in the queue [16]. Lock-

. ._out leads to gross unfairness among users and is clearly
In slow start phase, the source increases the congestion

. . . undesirable.
window by one for every acknowledgment it receives. If
there were no congestion, upon the reception of the ac-Contrary to the mark-tail policy, the mark-front strategy
knowledgment ofP, the congestion window would be marks packets already in the buffer. Flows with large
doubled ta2w(so). However, when the acknowledgment buffer occupancy have higher probability to be marked.
of P’ arrived,T — 1 acknowledgments corresponding to Flows with smaller buffer occupancy will less likely to be

packets prior taP were still on the way. So the window marked. Therefore, old flows will back off to give part of
size attimes; was their buffer room to the new flow. This helps to prevent

the lock-out phenomenon. Therefore, mark-front strategy
w(sy) =2w(so) —(T—-1)-1<T+2rd. (9) s fairer than mark-tail strategy.

When the last packet sent under this window reached theT CP’s discrimination against connections with large RTTs
router at timet], the queue length was is also well known. The cause of this discrimination

is similar to the discrimination against new connections.
Qty) =w(s;)—rd<T+2rd—rd=T+rd. (10)  Connections with small RTTs receives their acknowledg-

ment faster and therefore grow faster. Starting at the same
Upon the receipt of ECN-Echo, congestion window is time as connections with large RTTs, connections with
halved. The source can not send any more packets besmall RTTs will take larger room in the buffer. With mark-
fore half of the packets are acknowledged.Se- rd is tail policy, packets already in the queue will not be marked
the maximum queue length. but only newly arrived packets will be marked. Therefore,

connections with small RTTs will grow even larger, but
Theorem 3 In a TCP connection with ECN congestion connections with large RTTs have to back off. Mark-front
control, if the fixed round trip time isseconds, the bottle-  alleviates this discrimination by treating all packets in the
neck link rate isd packets per second, and the bottleneck buffer equally. Packets already in the buffer may also be
router uses threshol@ for congestion detection, then the marked. Therefore, connections with large RTTs can have
maximum queue length that can be reached in slow startlarger bandwidth.
phase is less than or equal 10+ rd.

If T is reasonably large (abori) such that the buildup of
a queue of siz& needs time, the assumption in Theorem
1 is satisfied. We have

WhenT is large, the bound” + rd is tight. Sincethe 6 Simulation Results
gueue length in congestion avoidance phase is smaller,

this bound is actually the buffer size requirement. In order to compare the mark-front and mark-tail strate-

Theorem 2 and 3 estimate the buffer size requirement for9i€s, we performed a set of simulations with tiesimu-
zero-loss ECN congestion control. They show that the lator [11].
mark-front strategy reduces the buffer size requirement by

rd, a bandwidth round trip time product. 6.1 Simulation Modds

. Our simulations are based on the basic simulation model
> Fairness shown in Figure 2. A number of sources, s, -- -, S,
are connected to the router by 10 Mbps links. Router
One of the weaknesses of mark-tail policy is its discrimi- 7, is connected to, by a 1.5 Mbps link. Destinations
nation against new flows. Consider the time when a newdy,ds, ..., d,, are connected te, by 10 Mbps links. The
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1.5Mb, 20ms

10Mb, 2ms m

Figure 2: Simulation model.

link speeds are chosen so that congestion will only happenlink efficiency, and scenarios 2, 3, 4, 5, 6, 7 are for fairness
at the router; , where mark-tail and mark-front strategies among users.
are tested.

With the basic configuration, the fixed round trip time, in-

cluding the propagation time and the processing time at
the routers, is 59 ms. Changing the propagation delay be- _ '
tween router, andr, from 20 ms to 40 ms gives an RTT We use three metrics to compare the the results. The first

of 99 ms. Changing the propagation delays between ther.nEtriC is thebuf_fer §ize requir_emerfmr Z€ro Iqss conges-
sources and routet; gives us configurations of different tlo_n control, which |s_the maximum queue size that can be
RTTs. An FTP application runs on each source. The databu”t_Up atthe routter in the slow start phase be_for_e the con-
packet size is 1000 bytes and the acknowledgment packegesnon feedback takes effect. If the buffer size is greater
size is 40 bytes. TCP Reno and ECN are used for Conges_or equal to this value, the network will not suffer packet
tion control ' losses. The analytical results for one connection are given

) ] ) . ) in Theorem 2 and 3. Simulations will be used in multiple-
The following simulation scenarios are designed on the connection and different RTT cases.

basic simulation model. In each of the scenarios, if not

otherwise specified, all connections have an RTT of 59 The second metnidink efficiency is calculated f_rom the
ms, start at 0 second and stop at the 10th second. number of acknowledged packets and the possible number

of packets that can be transmitted during the simulation
time. There are two reasons that cause the link efficiency
to be lower than full utilization. The first reason is the
2. Two connections with the same RTT, starting and slow start process. In the slow start phase, the congestion
ending at the same time. window grows from one and remains smaller than the net-
_ . . work capacity until the last round. So the link is not fully
3. Two cor_mecnons with the same RTT, but the first used in slow start phase. The second reason is low thresh-
connection starts at 0 sec_ond and stops at fche Sth S€CH1d. If the congestion detection threshdlds too small,
ond, the second connection starts at the first SecondECN feedback can cause unnecessary window reductions.
and stops at the 10th second. Small congestion window leads to link under-utilization.
4. Two connections with RTT equal to 59 and 157 ms Our experiments are long enough so that the effect of the
respectively. slow start phase can be minimized.

6.2 Metrics

1. One single connection.

The third metricfairnessindex, is calculated according to
the method described in [17]. #h connections share the
bandwidth andz; is the throughput of connectian the

5. Two connections with same RTT, but the buffer size
at the congested router is limited to 25 packets.

6. Five connections with the same RTT. fairnessindex is calculated as:
7. Five connections with RRT of 59, 67, 137, 157 and _ (™ ;)
257 ms respectively. fairness = mS T a2 (11)
i=1 "3

8. Five connections with the same RTT, but the buffer
size at the congested router is limited to 25 packets. When all connections have the same throughput, the fair-
ness index is 1. The farther the throughput distribution is
Scenarios 1, 4, 6 and 7 are mainly designed for testing theaway from the equal distribution, the smaller the fairness
buffer size requirement. Scenarios 1, 3, 4, 6, 7, 8 are forvalue is. Since the fairness index in our results is often
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Figure 3: Buffer size requirement in various scenarios

close to 1, in our graphs, we draw the fairness index: faster. For the same value of threshold, faster feedback
] ) translates to more window reductions and longer link
unfairness = 1 — fairness, (12) idling.
to better contrast the difference. When the router buffer size is small, as in Figure 4(c) and

The operations of ECN depend on the threshold vélue Figure 4(f), mark-front has better Iir_1k efficiency. This is
In our results, all three metrics are drawn for different val- Pecause mark-front sends congestion feedback to source

ues of threshold. faster, so the source can reduce its window size sooner
to avoid packet losses. Without spending time on the re-
transmissions, mark-front strategy can improve the link
6.3 Results efficiency.

Figure 3 shows the buffer size requirement for mark-tail _. . .
and mark-front strategies. The measured maximum queu«JT:'gure 5 shows the unfaimess. Again, results for mark-
lengths are shown withC™” and “A”. The corresponding ront strategy are drawn with solid line, and results for

analytical estimates from Theorem 2 and 3 are shown with mark-tail strategy are dr_awn with dashed line. .In F'.g'
dashed and solid lines. Figure 3(a) shows the buffer sizelre 5(a), the two connections have the same configuration.
requirement for one single connection with an RTT of 59 Which connection receives more packets than the other is

ms. Figure 3(b) shows the requirement for two connec- not deterministic, so the unfairness index seems random.

tions with different RTTs. Figure 3(c) shows the require- However, in general, mark-front is fairer than mark-tail.

connections have different RTTs, the analytical estimate connection starts first, occupies the buffer room and locks
is calculated from the smallest RTT. out the second connection. Although they have the same
From these results, we find that for connections with equal time span, the second connection receives fewer pack-
RTTs, the analytical estimate of buffer size requirement is ets than the first. Mark-front avoids this lock-out phe-
accurate. When threshof is small, the buffer size re- nomenon and improves the fairness. In addition, as the
quirement is an upper bound, wh&h> rd, the upper  threshold increases, the unfairness index of mark-tail in-
bound is tight. For connections with different RTTs, the creases, but the mark-front remains roughly the same, re-
estimate given by the largest RTT is an upper bound, but isgardless of the threshold. Results for five same connec-
usually an overestimate. The estimate given by the small-tions are shown in Figure 5(d).

est RTT is a closer approximation. Figure 5(c) shows the difference on connections with dif-

ferent RTTs. With mark-tail strategy, the connections with
Figure 4 shows the link efficiency. Results for mark-front small RTTs grow faster and therefore locked out the con-
strategy are drawn with solid line, and results for mark- nections with large RTTs. Mark-front strategy avoids the
tail strategy are drawn with dashed line. In most cases,lock-out problem and alleviate the discrimination against
when the router buffer size is large enough, mark-front connections with large RTT. The difference of the two
and mark-tail have comparable link efficiency, but when strategies is obvious when the threshold is large. Results
the threshold is small, mark-front have slightly lower effi- for five connections with different RTTs are shown in Fig-
ciency because congestion feedback is sent to the sourcere 5(f).
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Figure 5(e) shows the unfairness when the router buffer [5] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macro-

size is limited.
marks the incoming packet when the queue length exceeds

In this scenario, the mark-tail strategy

the threshold, and drops the incoming packet when the
buffer is full. The mark-front strategy, on the other hand,

marks and drops the packets from the front of the queue [

when necessary. The results show mark-front strategy is
fairer than mark-tail.

v

Conclusion

In this paper we study the mark-front strategy used in
ECN. Instead of marking the packet from the tail of the
gueue, this strategy marks the packet in the front of the

gueue and thus delivers faster congestion feedback to the
source. Our study reveals mark-front’s three advantages

over mark-tail policy. First, it reduces the buffer size re-

quirement at the routers. Second, when the buffer size is [9]

limited, it reduces packet losses and improves the link effi-
ciency. Third, it improves the fairness among old and new
users, and helps to alleviate TCP’s discrimination against
connections with large round trip times.

With a simplified model, we analyze the buffer size re-
quirement for both mark-front and mark-tail strategies. [11] UCB/LBNL/VINT Network Simulator - ns (version
Link efficiency, fairness and more complicated scenar-
ios are tested with simulations. The results show that
mark-front strategy has better performance than the cur-[12] N. Yin and M. G. Hluchyj, Implication of dropping
rent mark-tail policy.

[13]
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