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TECHNICAL MEMORANDUM 1418 

THE INTERACTION OF A REFLECTED SHOCK WAVE WITH THE 

BOUNDARY LAYER IN A SHOCK TUBEI 

By Herman Mark2 

SUMMARY 

Ideally, the reflection of a shock from the closed end of a shock 
tube provides, for laboratory study, a quantity of stationary gas at 
extremely high temperature. Because of the action of viscosity, however, 
the flow in the real case is not one-dimensional, and a boundary layer 
grows in the fluid following the initial shock wave. 

In this paper simplifying assumptions are made to allow an analysis 
of the interaction of the shock reflected from the closed end with the 
boundary layer of the initial shock afterflow. The analysis predicts 
that interactions of several different types will exist in different 
ranges of initial shock Mach number. It is shown that the cooling ef­
fect of the wall on the afterflow boundary layer accounts for the change 
in interaction type. 

An experiment is carried out which verifies the existence of the 
several interaction regions and shows that they are satisfactorily pre­
dicted by the theory. Along with these results, sufficient information 
is obtained from the experiments to make possible a model for the 
interaction in the most complicated case. This model is further verified 
by measurements made during the experiment. 

The case of interaction with a turbulent boundary layer is also 
considered. Identifying the type of interaction with the state of tur­
bulence of the interacting boundary layer allows for an estimate of the 
state of turbulence of the boundary layer based on an experimental in­
vestigation of the type of interaction. 

IThe information presented herein was offered as a thesis in partial 
fulf~llment of the requirements for the degree of Doctor of Philosophy, 
Cornell University, Ithaca, New York, June 1957. 

2Now at the Lewis Flight Propulsion Laboratory, Cleveland, Ohio. 
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A method is proposed whereby the effect of the boundary-layer 
interaction on the strength of the reflected shock may be calculated. 
The calculation indicates that the reflected shock is rapidly attenuated 
for a short distance after reflection) and this result compares favorably 
with available experimental results. 
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I - INTRODUCTION 

In recent years the shock tube has become an extremely important 
laboratory instrument for the study of nonstationary problems in fluid 
mechanics. A great deal of fundamental work has been done since Vieille 
first used the shock tube to study the "Discontinuite's Produites par la 
Detente Brusque de Gas Comprimes" (Comptes Rendus de l'Academie des 
Sciences, 1899, pp. 129-1288). Studies have been made of nonstationary 
wave phenomena) for example, refractions of shocks and expansions at 
contact surfaces) interactions between one-dimensional wave elements) 
shock waves traveling over bodies, and so forth. Other studies using 
the shock tube include the investigations of flows in the subsonic) 
transonic, and supersonic regimes and the investigation of various flame 
propagation phenomena. (A large bibliography may be found in refs. 1 
and 2.) More recently the shock tube has been used as the primary tool 
in studying the phenomena of magneto-hydrodynamics and chemical kinetics. 
In fact, the shock tube can so conveniently provide high-temperature 
gases that with but slight modification it can be used to produce nitric 
oxide from ordinary air (ref. 3). It is conceivable that such a process 
may become a commercial method for producing the chemical ingredients of 
fertilizers (nitrates)! Indeed then, the shock tube has proven to be 
very versatile in its applications as a research tool. 

In its simplest form the shock tube is essentially a long straight 
tube of constant cross section) closed at both ends and separated into 
two chambers by a thin diaphragm (fig. l(a)). One chamber is filled 
with a gas at high pressure) while the other chamber is evacuated, that 
is, contains gas at a much lower pressure. If the diaphragm is suf­
ficiently stressed, it will burst when punctured, and a compression wave 
which steepens rapidly (several diameters) into a shock travels into 
the low-pressure gas. At the same time an expansion wave broadening with 
time travels into the high-pressure gas. It is assumed that a plane 
surface separates the gases which were originally separated by the 
diaphragm. This "contact surface" travels down the tube in the direction 
of the low-pressure chamber and acts as the piston for setting the gas 
in motion. The whole wave system can be most easily visualized in the 
xt plane (fig. l(b)). In this figure the traveling waves can be 
followed along the tube and in time. It is generally assumed that the 
gas in each of the regions of figure l(b) is in a uniform state (i.e., 
uniform across the tube in all flow and thermodynamic variables as­
sociated with that state). In figure l(c) two pressure distributions 
along the tube are shown; one at time t = 0, and the other at time t > O. 
When the waves generated reach the closed ends of the tube) they are 
reflected as shown in figure l (b) . 

With the picture just described, it is possible to calculate the 
conditions for all the states involved, if the pressure ratio across the 
diaphragm is given, and the properties of the gases separated by the 
diaphragm are known. 
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Ideally then, the shock wave propagating into the low-pressure 
chamber generates in the gas through which it has passed a following flow 
with uniform temperature, pressure, and velocity. The gas velocity is 
somewhat lower than that of the wave and may be subsonic or supersonic 
depending on the strength of the shock wave. (It is supersonic in air 
if the shock-wave Mach number is greater than 2.068.) This uniform region 
lasts until the arrival of the contact surface (where the temperature 
and sound speed drop sharply) and may be used for testing models (i.e., 
as a wind tunnel) albeit for a short time. It may be used directly or, 
if supersonic, after expansion to higher Mach numbers. If the shock 
is allowed to reach the end of the tube, however, it is reflected at 
the closed end; and the reflected shock, traveling back up the tube 
(again ideally), signals the fluid following the initial shock of the 
presence of the closed end, and brings this flow to rest (region 5, 
fig.l(b)). Thus, ideally, this reflection process provides a slug of 
stationary high-temperature gas very useful for study in a number of 
important applications. With the advent of intercontinental ballistics 
missiles and hypersonic flow has come a great need for information about 
the properties of air (and other gases) at extremely elevated temperatures. 
There is hardly a more convenient way of producing gases at elevated tem­
peratures for laboratory study than the process outlined here, which 
(ideally) provides hot, stationary gases behind the reflected shock 
wave in a shock tube. 

In the work discussed so far, no mention has been made of the role 
played by viscosity. There were so many interesting problems to be in­
vestigated, theoretically and experimentally, without considering vis­
cosity, that it was not until very recently that any extensive work was 
done to examine the features of the ideal picture which would be modified 
because of the effects of viscosity. Certainly, in the flow following 
the initial shock wave, there is generated a boundary layer near the walls 
of the shock tube, across which the velocity of the flow decreases from 
that in the main stream to zero at the walls. Nonuniformities are thus 
introduced in the flow and thermodynamic variables that were previously 
considered uniform across the tube. Some of the consequences of these 
nonuniformities have already been investigated (refs. 4 to 11). The 
most noticeable effect is the attenuation of the shock wave as it travels 
down the tube. The boundary layer is usually very thin, and the shape of 
the initial shock wave is very little influenced. The boundary layer 
does act, however, to slow down the shock wave, and references 6 and 8 
have analyzed the effect and obtained results which check quite well with 
experiment. 

The problem which is involved when the shock reaches the closed 
end of the tube and reflects into the nonuniform flow following the ini­
tial shock is more complicated but poses many interesting questions. 
First of all, the question arises as to how the shock itself is modified 
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(in shape and strength) by interacting, not with the ideal flow, but with 
the boundary-layer flow which follows the initial shock. Then, too, it 
is desirable to know whether the high-temperature gas behind the reflec­
ted shock is stationary or, if the flow has been modified, at least to 
know whether this gas is still available for chemical kinetic studies and 
the like. It was with some of these questions in mind that the present 
work was undertaken. The report herein contained is of an analytical 
and experimental study made at Cornell University to determine and to 
clarify the phenomena involved in the real shock tube when the reflec­
ted shock interacts with the boundary- layer flow which follows the 
initial shock. First, an analysis is made to determine the kinds of 
interactions that can possibly occur, and under what conditions they 
are to be expected. This analysis is verified experimentally. The most 
complicated interaction is then studied in detail, and a model for the 
phenomenon is proposed. The features of the phenomenon are analyzed 
based on this model and these, too, are checked experimentally. Finally, 
assuming that this complicated interaction has been correctly described, 
a model is then proposed for calculating the attenuation of the reflec­
ted shock. This calculation is carried through for a given case, and 
comparison with experimental results on the attenuation of the reflected 
shock is presented. The results and the shortcomings of the present 
work are discussed, and some suggestions for further work are outlined. 

The author would like to express his sincere gratitude to Professor 
N. Rott of Cornell University, Graduate School of Aeronautical Engineering, 
for his able guidance throughout and for a number of particularly in­
valuable discussions. The author would also like to express his gratitude 
to Professor W. R. Sears, Director of the School, for helpful criticism 
of the work in progress, and to Professor E. L. Resler, Jr. for several 
important suggestions in the laboratory. The author is grateful for 
financial assistance to the Office of Scientific Research, and to the 
Office of Naval Research for financing the experiments. 
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II - THE IDEAL REFLECTED SHOCK WAVE 

THE INITIAL SHOCK WAVE 

In an ideal shock tube (fig. l(a)) it is assumed that the diaphragm 
separating the high-pressure chamber from the low-pressure chamber bursts 
instantaneously when punctured. Immediately a shock wave travels into 
the low-pressure gas and compresses it to some intermediate pressure. l 
At the same time expansion waves moving in the other direction allow ~ 
the high-pressure gas to expand to this same intermediate pressure. The ~ 
shock wave travels along the tube at constant speed Ul' and its strength 

is usually denoted by referring this speed to the speed of sound in the 
quiescent gas ahead of the shock al(i.e., by the Mach number Ml = Ul/al). 
It is assumed that the gas compressed by the shock is in a completely 
uniform state and is contained between the shock and the gas which has 
expanded from the high-pressure chamber. The sequence of events which 
follow the bursting of the diaphragm is shown in figure l(b). A typical 
pressure distribution before the diaphragm burst (time t = 0) and 
shortly afterwards (t = tl. > 0) is shown in figure l(c) . The gases in 

states 2 and 3 of figure l(b) are at the same pressure and are moving 
at the same velocity but, since the gas in 2 was compressed from state 1 
and the gas in 3 was expanded from state 4 (states 1 and 4 were original­
ly in temperature equilibrium), the temperatures in the two states are 
not the same. Thus we have 

where T is the temperature, p 
velocity. No fluid crosses the 
and 3, and so it, too, moves at 

( II-l) 

the pressure, and u the particle 
contact surface separating regions 2 
u2 = u3· 

If, in considering the shock, we change the axis of reference to one 
moving with the shock, we may write the Rankine-Hugoniot relations across 
the shock. 

Conservation of mass: 

( II-2) 

Conservation of momentum: 

( II-3) 
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Figure 1. (a) Diagrammatic sketch of a shock tube. (b) An xt 
diagram of the sequence of events following diaphragm burst. 
(c) Pressure distribution at time to = 0 and tl > O. 
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Conservation of energy: 

( II-4) 

where 

Ul shock speed 

u2 particle velocity in region 2 (with respect to the shock tube) 

Pl 2 densities in regions 1 and 2) respectively 
) 

H is ·the specific enthalpy and may be written (specific-heat rati o 
y = Cp/C v ) 

H= Y R. 
y - 1 P 

( II-5) 

Combining equations (11-2)) (11-3)) (11-4)) and (11-5) we can solve 
for P2) P2 ) and u2 in terms of the quantities in region 1 and the speed 

of the shock Ul . The quantities behind the shock are most conveniently 

given as function of Ml and are presented in reference 12) page 7. From 

reference 12 we have 

P2 

Pl = 

(y - 1)ML2 + 2 

2yM2 _ (y - 1) 
1)2 

2rMi - (y - 1) 

Y + 1 

~Y+l)Mi 
(y - 1)M2 + 2 

1 

(y - l~ [(y - l)r{ + 2J 
2 2 

(y + 1) Ml 

( II-6) 

(11-7) 

( II-8) 

(II-9 ) 

The expansion from region 4 to region 3 is isentropic, and so it may 
be shown (ref. 13, p. 87) that 

( II-10) 
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or since u4 0, P3 = P2' and u3 u2 

P4 P4 1 -- =-- = 
P3 P2 2Y4 

(11-11) 

1 - -- Ml [ T4 - 1 a 1 ~ 
Yl + 1 a4 

-~i)r-l 
Combining (11-7) and (II-ll) , we have 

P4 (2Tl 2 Tl - ,) 1 
-- = Ml -
PI Yl + 1 Yl + 1 

r -Y4 - 1 a1 ( 

Y4 + 1 -- Ml 
a4 

(II-12) 

Thus, if the diaphragm pressure ratio p /p is given and if Y 
4 1 

is known for the low-pressure (1) and the high-pressure (4) gases, 
Ml ( = Ul/al) is given by (11-12). This equation is plotted in figure 2(a) 

for Yl = 5/3, Y4 = 7/5, and various ratios of a4/al and in figure 2(b) 

for specific driver (high-pressure) and driven (low-pressure) gas combina­
tions. It is clear that the ratio of the sound speeds in the gases 
separated by the diaphragm is a most important parameter and (since 

a4 ~-~; ~ is the molecular weight of the gas) indicates that higher 
al ,,~ 
shock Mach numbers are obtainable at a given diaphragm pressure ratio by 
using a driver gas of lower molecular weight. The effect of lowering the 
molecular weight of the driver gas is shown specifically in figure 2(b) 
for various combinations of helium, hydrogen, argon, and air. 

From the definition of M2 and making use of equations (11-6) and 

(11-9), we may now write an expression for u2, the velocity of the gas 

in region 2 with respect to the shock tube (i.e., the laboratory) 

( II-13) 
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Thus 

l 
1 

u2 (y + 1)2MI [ (r - l)Mi + :)T - Ml 
[2~ - (y - l)J~Y-a2 l)M~ + 2rMI - (y 

( II-14) 

which reduces to 

2(Mi - 1) u2 
( II-15) -

{[2~I - (y - 11 [(y - l)MI + 2J }1/2 a2 

It is interesting to note from (11-15) that the flow in the shock 
tube behind the initial shock is supersonic (u2 > a2) if Ml > 2.068 

(for y = 1.4). Also it is important to realize in using the shock tube 
as a wind tunnel that, no matter how strong the initial shock may be, the 
following flow is only slightly supersonic (u2!a2 ~ 2 in air for Ml = ~) . 
To use the shock tube as a hypersonic wind tunnel, modifications are 
required (ref. 14). 

It is convenient to express u2 in terms of the conditions ahead 

of the shock, thus 

and, with the aid of equations (11-9) and (11-15), this is 

2(MI - 1) 

( Y + l)Ml 

( II-16) 

(II-l7) 

This expression for the velocity of the flow following the shock, 
in terms of the Mach number of the shock and the sound speed ahead of 
the shock, is true in general and gives the velocity of the following 
flow with respect to the laboratory coordinate system if the gas ahead 
of the shock is stationary. We will make use of this in a later section. 

THE REFLECTED SHOCK WAVE 

When the initial shock wave reaches the end of the tube, it is 
reflected (if the tube end is closed) as a shock wave which travels 
back up the tube and brings to rest the flow which has been accelerated 

If-
--.J 
OJ 
en 
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to u2 by the initial shock wave . The condition that no fluid can pass 

through the closed end suggests that the velocity behind the reflected 
shock is zero and the statement previously made then follows. If, for 
convenience, we locate ourselves in a coordinate system moving with the 
reflected shock, we may write for M3, the Mach number of the reflected 
shock: 

(11-18) 

where Urs is the speed of the reflected shock with respect to the 

laboratory, u2 is the particle velocity of the flow behind the initial 

shock, and a2 the sound speed of region 2. All the stationary shock 

relations of reference 10 are correct in this coordinate system and may 
be employed to relate M3 to Ms(= Drs/a5), and these will be used in 
subsequent discussion. 

into 
Now, in a coordinate system in which the reflected shock moves 
a quiescent gas, we may write (from (11-17)) 

u5 2 (M~ - 1) 
a2 y + 1 M3 

(II-19 ) 

where u5 is the following flow velocity behind the reflected shock in 

this coordinate system. In the laboratory coordinate system we know 
that the flow behind the reflected shock is stationary and that the 
flow ahead of the reflected shock has velocity u2. Thus, to shift the 

coordinate system to one in which the shock moves into a quiescent gas, 
we need only subtract (i .e., add in a negative direction) u2 from the 

entire system. This gives us 
shock, makes equation (11-19) 
following velocity u5 = u2 · 

and (II-17) that 

a quiescent zone ahead of the reflected 
valid in this system, and gives us a 
We can then write from equation (II-19) 

2 
2al (Ml - 1) 

2 
2a2 (M3 - 1) 

( II-20) 
( Y + 1) Ml ( Y + 1) M3 

Rewriting (11-20) 

2 2 ( II-21) 
y + 1 y + 1 
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and, using equation (11-9) for a2/al' we have: 

~ -1 I [2rMi - (y - l~ [(y - Mi- l 

M3 [(y + 1)M1] 
2 = 

Ml 
(II-22) 

Solving for M3, we arrive finally at 

[2 r2 
M3 

= 2yMl - (y - 1) 

(y - l)Mi + 2 
(11-23) 

The expression rII-23) is useful in calculating the Mach number of 
the ideal reflected shock. It should be noted that the Mach number rises 
monotonically to a limiting value which depends only on y. 

e t2 (11-24) lim M3 = ~ 1 
M ~ 00 Y 1 

Thus 

lim M3 2.645 for y 1.4 
Ml~oo 

and 

lim M3 2.235 for y 1.67 
M -+-00 

1 

A very interesting relation may be obtained if we notice that the right­
hand side of equation (11-23) is just the inverse of the expression for 
M2 from equation (11-6). Thus we have 

1 (II-25) 

which is a very useful relation for M3 , the Mach number of the reflected 

shock, since M2 is re.adilyavailable in normal shock tables for given Mi· 
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In a form analogous to Prandtl's relation we may write (11-25) 
(multiplying through by a~) 

15 

(II-26) 

where 
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III - THE REFLECTED SHOCK WAVE IN A REAL SHOCK TUBE 

THE LAMINAR BOUNDARY LAYER IN THE FLOW BEHIND THE INITIAL SHOCK WAVE 

The flow following the initial shock wave is, of course, bounded by 
the walls of the tube, and therefore a boundary layer is established along 
the wall behind the initial shock. The flow problem to be solved is then 
nonstationary, viscous, and compressible and will involve heat transfer 
(fig. 3(a)). 

Edge of the 
boundary 
layer 

Figure 3(a ). 

The problem is generally handled by first transferring the entire 
picture to a coordinate system moving with the shock . This requires the 
superposition of velocity Ul to the l eft i n figure 3(a). In this new 
coordinate system the problem is steady (fig . 3(b)) and resembles the 
classical Blasius problem of viscous flow over a flat plate in a free stream. 

Ul 

Figure 3 (b ) • 
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There are, however, some important differences. First, there may be 
a pressure distribution along the tube. Second, the flow is compressible. 
Also, in this steady coordinate system, the plate itself (i.e., the wall) 
is moving. These differences must be considered. 

In general the pressure variation along the tube is small, and so in 
the analysis the pressure is considered to be constant. The boundary­
layer equations for the laminar compressible case may then be written: 

Continuity: 

Momentum: 

Energy: 

where 

~(pu) ~(pv) 0 
dX+~= 

x distance along wall behind the shock 

y distance perpendicular to wall 

u,v velocities in x and y directions, respectively 

p density 

Cp specific heat 

K thermal conductivity 

f.l viscosity 

T t emperature 

The boundary conditions are: 

u(x, wall) u(x, mainstream) 

vex, wall) o T(x, mainstream) 

T(x, wall) Tw 

(III-l) 
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At this point we note that a stream function ~ exists which will 
satisfy the continuity relation of (III-l) if 

(III-3) 

If it is assumed that the viscosity ~ is proportional to the 
absolute temperature, it can be shown that the motion equation may be re­
duced to that for an incompressible case. By use of a Howarth-type 
transformation, we may find the relation between the independent variable 
for this imcompressible case Y and the physical variable y. Since 
there is no pressure gradient, this relation .is written (see ref. 15) 

or 

l y Tw 
Y = - dy o T 

Y = lY ....e.... dy 
Pw o 

since pressure is constant across the boundary layer. 

( III-4) 

(III-5) 

The equations we now have for an incompressible problem may be 
reduced to ordinary differential equations by use of Blasius' variable. 
So we write: 

(III-6) 

The motion equation (111-1) becomes 

f'" + ff" = 0 ( III-7) 

with boundary conditions 

fCO) = 0 

f' (0) ( III-8) 

f'(-)=1 
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This is the classical Blasius differential equation, but the problem 
differs from the classical problem in that the velocity at the wall is 
not zero (i.e., f'(O) = Ul/Ul - uZ). In reference 7 this problem is 

solved numerically and the solution presented for the range of shock 
strengths; this is reproduced from reference 7 in figure 4. It should 
be noted that the velocity distribution in the boundary layer presented 
in this manner is affected only a small amount over the range of shock 
strengths. 

In r e f e rence 5 Rott and Hartunian, using the numerical solution of 
reference 7 with some modification, have solved the heat transfer problem. 
By expressing the heat transferred from the gas and into the wall in 
terms of the wall temperature, they are able to determine an expression 
for the wall temperature rise (after the shock passes by) as a fraction 
of the temperature rise across the shock. This is shown to be: 

For air and steel walls this is 0(10-3). Thus we have the ex­
tremely important result that the wall temperature is essentially that 
of the original gas and tube in equilibrium before the passage of the 
shock. This result will be used in a later section in analyzing the 
behavior of the reflected shock. 

ATTENUATION OF THE INITIAL SHOCK 

As a result of the development of a boundary layer in the flow 
behind the initial shock in the real shock tube, the ideal picture of the 
shock propagating into the low-pressure gas must be modified. Although 
we might expect some change in the shock shape, this change in shape has 
been shown (ref. 4) to be confined to a very small portion of the shock 
near the wall; and actual photographs show (fig. 5) the initial shock to 
be not perceptibly modified from an ideal normal shock. It is found, 
however, that the actual speed of the shock is reduced somewhat from 
that calculated from equation (11-12) (fig. 6). This attenuation of 
the strength of the initial shock has been the subject for a number of 
analyses (for instance, refs. 6 and 8). For such an analysis it is 
usually assumed that the boundary layer is thin compared with the tube 
dimensions. Thus the flow is considered to be the ideal flow plus small 
perturbations due to the growth of the boundary layer. These perturba­
tions are carried by waves assumed to be generated at the wall by the 
wall friction and heat transfer (ref. 6) and are integrated along the 
tube to determine the effect on the shock strength. In reference 8 
these waves are assumed to be generated by vertica l velocity at the edge 
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Figure 5. - Initial shock wave at Ml = 2.15 
and Pl = 1.0 inch mercury absolute shortly 
before reflection. 
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of the boundary layer. Both methods average the generating process at any 
station along the tube, and the waves thus generated are considered to be 
one-dimensional. Since the boundary layer generated behind the initial 
shock (calculated as previously discussed in the coordinate system moving 
with the shock) develops a negative displacement thickness in region 2, 
the vertical velocity at the edge of the boundary layer in region 2 is 
negative (away from the tube centerline) and tends to decelerate the 
shock. In the expansion between regions 3 and 4, the negative bouridary­
layer thickness is decreasing; this tends to accelerate the shock. Heat 
transfer to the wall tends to decelerate the shock. The net effect of 
all of the factors considered in references 6 and 8 is to decelerate the 
shock wave. The justification of the many assumptions involved in these 
analyses is not so much that they finally agree with each other, but 
rather that their results agree with experiment. In figure 7 is plotted 
the shock attenuation against nominal shock number (ref. 8), and these 
results will be used later in this report. 

THE INTERACTION OF THE REFLECTED SHOCK WITH 

THE BOUNDARY LAYER IN A REAL SHOCK TUBE 

When the reflected shock leaves the closed end of the shock tube 
and starts to propagate back up the tube, it is confronted not only by 
the main flow following the initial shock, but also by the growing 
boundary layer developed i~ this flow near the walls. This boundary 
layer was described in THE LAMINAR-BOUNDARY LAYER IN THE FLOW BEHIND THE 
INITIAL SHOCK WAVE. If we examine the phenomenon in a coordinate system 
moving with the reflected shock, the situation encountered is represented 
in figure 8: 

~> 1 .. 

Boundary layer M(y) ~ ? 

'/"'//// / / h 
.. u4 

Figure 8. 

M~ < 1 

To transfer the problem to this coordinate system from the laboratory 
system, it was necessary to add Urs ' the velocity of the returning shock 
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with respect to the laborator y, to all velocities in the laboratory system. 
Thus u4' the velocity of the tube, is in this system 

(111-1) 

and from (11-18): 

It was pointed out in section II that may be calculated from 

= 2rMl - (; - 1) [ 2 ]l~ 
(r - l)Mi + 2 

(11-23) 

or 

(11-25) 

The Mach number M(y) in the boundary layer can also be determined 
(such a calculation has been made in appendix A for Ml = 2.24, and a 

plot of M(y) is shown in fig. 9); but a simplification in the picture 
will now be discussed. Since we want to determine what type of phenomenon 
can occur because of the falling off of the velocity in the boundary 
layer at the wall, we note that the difference between the main flow 
and the boundary-layer flow is greatest if we compare the main flow with 
a small layer of fluid near the wall . In the coordinate system of figure 8 
(i.e., with the reflected shock stationary), the velocity of this small 
layer near the wall is u4 (the wall velocity). The Mach number at the 

wall is also a minimum and is seen (fig. 9) to increase (at least for 
Mt~ < M3) to the mainstream value. We would expect then that whatever 

will occur to this small layer because of its velocity (and therefore 
energy) deficiency will occur subsequently, if at all, to the remainder 
(or a portion of the remainder) of the boundary layer. Thus, if we 
consider the entire boundary layer to be described by the stream tube 
closest to the wall, we are being conservative in looking for the effects 
of the energy deficiencies of the boundary layer. We are bound to find 
the widest limits for the regions in which phenomena resulting from 
boundary-layer energy deficiencies will occur. We will describe the 
boundary layer, then, as a jet of fluid of Mach number ~~ where 

(III-2) a 
gas at wall temperature 
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It has been noted in THE LAMINAR-BOUNDARY LAYER IN THE FLOW BEHIND 
THE INITIAL SHOCK WAVE that the wall temperature after the shock has 
passed is, to a very good approximation, the temperature of the gas and 
wall in equilibrium before the shock has passed, that is, Tw = Tl " 

Thus 

( III-3) 

To evaluate this in terms of Ml , the Mach number of the initial 

shock, we note that 

and from (11-6) 

[

(y - l)~m + 2~1/2 
2rM~ - (y - 1) 

m 

( III-4) 

Combining this with equation (11- 23), eliminating M3 , and solving for 

M4m, we have 

Since we have 

we can write 

2(y - l)MI + (3 - y) 

(3y - l)Mf - 2(y - 1) 

=-= -- -

(111-5) 

(III-6) 

Substituting from equations (11-9), (11-23), and (111-5) into (111-6) and 
solving for Mb~, we obtain: 

2(y - l)Mi + (3 - y) 
Mb~ = (y + l)Ml 

(III-7) 
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We note then that MbI f M3 and is a function only of Ml and y. 

Presented in figure 10 is a plot of ~1 against Ml for y = 1.4 and 

1.67 . Also included in this figure are the curves for 

shock Mach number for y = 1.4 and 1 .67. Note that as 
M3 , the reflected 

Ml takes large 
values and M3 approaches an asymptotic value, Mb1 approaches an asymp­
totic positive slope. 

2(y - l)t{ - (3 - y) 

(y + l)Mi 

lim ~1 = 2~y - 1) 
M dMl y+l 
l~'" 

(III-S) 

( III-9) 

This limit is 1/3 for y = 1.4, and 1/2 for y = 1.67. It is apparent 
that the v~lue of Mbl' which is originally lower than M3, will eventual-

ly overtake and exceed M3 and thus at this point (say Mr) divides the 

* Mach number range into two regions. Below Ml the value of Mb1 is 

always les s than M3 . This is not surprising, as the fluid in the boundary 

layer is deficient in velocity, and such a situation is to be expected. 
However, because of the cooling effect of the wall, the Mach number of 
the fluid in the boundary layeriMb1) rises as described and, at values 

* of Ml > Ml , exceeds M3 . It seems clear that the interaction phenomenon 

in the region where ~1 < M3 may not even resemble the phenomenon 

encountered when Mbl > M3 · Certainly a more intricate interaction is to 

be expected in the former region (Ml < Mf). Further investigation of these 

differences is indicated, and an argument suggested by Hess (ref. 17) for 
the interaction of shock waves with thermal boundary layers is extended 
for this purpose later in this section. 

Since the asymptotic values for M3 increase for decreasing y and 

the asymptotic slopes of the curves for Mb1 decrease with decreasing y, 
the value of Ml at which Mb1 overtakes M3 increases rapidly as y 

falls . If we write 

2 (~\M 
Y + lJ 1 (III-10) 

I 
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and from equation (11-24) we have 

( 
2 )1/2 

lim M3 = ~ 1 
M-+oo y 

1 

* we find the crossover Mach number Ml may be written approximately as 

~ . )1/2 '* _ 2y [ Y + 1 ] 
Ml - y-::--I 2( y - 1) ( III-n) 

and thus as y falls, approaching the value 1, we find that 

(III-12) 

Equation (111-12) indicates the rapid increase in the crossover 
Mach number with falling y. This is an important effect and will be 
referred to in a later section. 

It should be noted that for y = 1.4, ~I is at first (for low 

values of Ml ) subsonic, and does not become supersonic until Ml = 2.0. 

It is clear that MbI will be subsonic at first for all gases except 

monatomic gases since (from (111-8) or by weak shock approximation) 
(see appendix B) 

3y - 5 
y + 1 

( III-l3) 

We now have two adjacent streams (the main stream at M3, and the 

boundary layer at Mbl' M3) about to interact with the reflected shock. 

The reflected shock is stationary in this coordinate system and the 
situation is as in figure 11 . 

.. .. P4m 

.. 

Figure 11. 
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The pressure in the main stream P4
m 

behind a stationary, undisturbed 

shock wave may be immediately calculated from Rankine-Hugoniot relations 
(eq . (II-7)). 

2y 2 
Y + 1 M3 

y - 1 
Y + 1 

(III-14) 

Since M3 is a func t ion of Ml and y , this pressure ratio may be 

plotted against Ml 

of y. Th~ question 
energy fluid at Mbl 

and is so plotted in figure 12 for various values 

now arises : Is it at all possible for the lower 
to maneuver this pressure rise and enter the region 

behind the shock where the pr essure is now P4' To find the limit of 
m 

this possibility, we examine the stagnation pressure of the fluid at ~1' 

(III-15) 

for ~l <- 1. 

This, too, is shown in figure 12 plotted against Ml . At Ml = 1, 

P is greater than P4 but, as Ml is increased, P4 rises 
stagbl m m 

rapidly in this range and soon exceeds 
Pstagbl 

This occurs when 

/~ 1 [~~ :)~ ~ ~]- ( ~ ~ ~ 
y _ 1 [2(Y - l)Mi + (3 _ y)]2 
---2--- (y + l )Ml 

( III-16) 
\ 1 + 

At this point (the first pr essure cr ossover) Ml = 1.33 for y = 1.4, 

and Ml = 1.57 for y = 1 . 67 . As we continue to higher values of Ml 

(we assume that the boundary- layer compression is preceded by a shock 
when ~ 1 > 1), P4 exceeds p t until we arrive at the second 

--b~ m s agb l 
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pressure crossover. At this point overtakes and exceeds 

the pressure behind the undisturbed shock for all higher values of Ml · 

This occurs when 

2y 
Y + [2~ - (y -

1 (y _ l)~ + 
1)] (y _ 1) 
2 Y + 1 = 

{ 
y + l[ 2(r - 1)W, + (3 - r)~2}y~1 

_-2- (y + l)Ml J 
1 

2y [2(Y - l)Mr + (3 - y)]2 _ (y _ i\t- l 

( III-17) 

r + 1 ( r + 1)M1 r + i~ 

At this point (the second pressure crossover) we find that Ml = 6.45 

for y = 1.4, and Ml = 2.8 for y = 1.67. These curves are shown in 

figure 12. We note that the two crossover points divide the Mach number 
range into three regions, which we have called regions 1, 2, and 3 on the 
figure. In regions 1 and 3 the stagnation pressure of the boundary layer 
exceeds the pressure behind the undisturbed shock. Thus we can expect 
the boundary layer to pass continuously under the foot of the shock and 
into the region behind reflection. Although the boundary layer is actu­
ally growing in thickness (ocyvt), this growth is slow and will not ex­
sentially change the picture in this region. We are suggesting therefore 
that, at least in considering the problem of outlining the regions for 
the different interaction possibilities, we will disregard this growth. 
In region 2 in figure 12 we are confronted with an entirely different 
situation from that in regions 1 and 3. The stagnation pressure of the 
energy- deficient fluid in the boundary layer is exceeded throughout this 
region by the pressure behind the undisturbed shock. Recall that the 
width of this region on the Mach number plot was calculated by taking 
a conservative view of the boundary layer, and this would give the 
widest range for its occurrence . Whether or not this is quantitatively 
pessimistic (assuming that whatever occurs is undesirable) might be 
questioned, but this does not concern us now. We are concerned right 
now only with the fact that such a region exists, that it has upper and 
lower limits for its appearance, and with the question of what might oc­
cur when the boundary layer, by compressing even to stagnation pressure, 
cannot match the pressure in the region behind the reflected shock. At 
this point we can only say we would not expect a steady through flow of 
this energy-deficient boundary-layer fluid into the region behind the 
undisturbed shock. Rather we would expect a gathering up of this fluid 
in a region adjacent to the foot of the shock. Qualitatively we can 
imagine a quasi-steady picture of a ball of fluid, sitting next to the 
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foot of the shock and unable to pass into the higher pressure region be­
hind the shock, growing in some manner with time. For the details of the 
interaction picture, that is, the effect of this growing ball on the main 
flow, on the shock itself, and on the flow in the region behind the shock, 
it was necessary to resort to experiments. Fortunately the experiments 
which were made added enough information to allow a model for the phenome­
non to be projected, and the analysis could then continue ultimately to 
a complete picture of this interaction phenomenon. We will proceed now 
to a description of the experiments and will pick up this discussion 
after some of the results of the experiments have been presented. 
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IV - EXPERIMENTAL DETERMINATIONS 

DESCRIPTION OF THE EXPERIMENTAL SETUP AND EQUIPMENT 

The Shock Tube 

The shock tube (fig. 13) consisted of a five-inch-diameter circular 
heavy-walled steel pipe 33 inches long} connected at the diaphragm sec­
tion to a rectangular welded-steel wall tube} 2 by 4 inches in cross 
section and 142 inches long. The shorter high-pressure circular tube 
had an internal transition section which brought the cross section from 
circular to rectangular at the diaphragm station. At this station the 
two sections were held together by l-inch-thick flanges between which 
the celluloid diaphragm was pressed. Seal was effected by O-rings of 
slightly different diameters} one on each side of the diaphragm} and 
the flanges were held together by six 3/4-inch bolts. Diaphragms of 
commercial cellulose acetate sheet were employed and} depending on the 
pressure in the high-pressure chamber (which was varied from slightly 
below atmospheric to 60 lb/sq in. gage)} diaphragm thicknesses of 0.005 
to 0.025 inch were used. A brass lance was mounted in the high-pressure 
section and was fitted with a 3-sided steel arrow-barb for puncturing 
the diaphragm. The use of an arrowhead reduced considerably the critical­
ness of diaphragm thickness for proper puncture characteristics. Fastened 
at the end of the longer low-pressure chamber was the test section. It 
consisted of two 2-inch-square a luminum blocks 24 inches long squeezed be­
tween l-inch-thick glass plates which were themselves squeezed by an 
outer-support casting (fig. 14). Seal was obtained between glass and 

Outer -support 
housing 

Aluminum block 

Glass 

Figure 14. - Cross-sectional view through 
test section. 
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aluminum by use of a special glass to aluminum cement (Hy-Sol Company, 
Olean, N.Y.) of the epoxy-resin variety. The test section was sealed 
at one end to the steel tube by squeezing between the flanges of the 
outer-support housing and the steel tube flanges, a gasket-like strip 
of lucite in which O-ring channels had been cut. An end plate was 
sealed to the test section in a similar manner. The test section was 

37 

24 inches long and through the glass a length of 15 inches of the flow 
passage was made visible from upper to lower wall. The problem of sealing 
all of these surfaces w.as a formidable one, but with a Kinney vacuum pump 
it was possible to evacuate the low-pressure chamber and test section 
to pressures of 0.08 inch mercury absolute in about 15 minutes. The 
high-pressure section was of course fitted to be supplied with air 
from the laboratory air supply, or could be supplied alternately from 
helium or hydrogen tanks. The pressure in the high-pressure chamber 
was read on a 4-inch-face 30-inch - 100-pound-per-square-inch Lonergan 
vacuum-pressure gage. Mounted on the low-pressure section was a small 
tank 2 inches in diameter and 6 inches long which could be filled with 
gas from a supply tank, and whose contents could be measured and then 
dumped into the low-pressure chamber. The pressure in the low-pressure 
chamber was measured on a 60-inch mercury manometer which could be read 
to 0.01 of an inch. The entire shock tube was mounted on a rollable table 
so that it could be moved into proper alinement with the schlieren system. 

The Spark Schlieren System and Photographic Techniques 

The sc~lieren system used was the double mirror system and is 
discussed in detail in reference 18. In this system light passes from 
a source to a concave mirror and then through the test section. If 
the light source is located at the focus of the mirror, the light reflect­
ed from this mirror will be a parallel beam of rays as it passes through 
the test section. After traversing the test section, this light is 
brought to another concave mirror (preferably of the same focal length 
as the first) and is again brought to focus. Introduction of a knife 
edge at this second focus will permit schlieren photographs to be made 
when the light passing the knife edge is allowed to fallon a photographic 
plate. In the actual system used, Porro-Abb~ prisms were located at the 
two foci; one to bring the light from the primary source to the first 
mirror, and the second to bring the light from the second mirror to the 
lens of the plate-holder. The mirrors were 4 feet in focal length and 
12 inches in diameter. The pictures were made on 4 by 5 inch Royal Pan 
Film (ASA-200; this could be increased to 800 by overdeveloping). Since 
it was necessary to stop shock waves moving at thousands of feet per 
second, the light source for this schlieren system had to be of very 
short duration (=1 ~second). No such light system was available 
commercially, and so one had to be built. The requirements of such a 
system, then, dictated that it be capable of producing a very short time 
duration flash, sufficiently bright to expose the film satisfactorily. 



38 NACA TM 1418 

In discharging a condenser through a gap to produce a spark, we may be 
guided by the theoretical solution for the behavior of such a circuit 
in choosing the components and the operating values. For an LRC circuit 
(i.e., discharging a condenser through an inductance and a resistor) , 
we know that 

-2L R Rt ~ ) Q = QOe cos qt + 2Lq sin qt ( IV-l) 

where Q is the charge, R the resistance, L the inductance, C the 

capacitance, t the time, and q =~ LIC - :~2. 

Thus for a spark of short duration it is desirable to have very 
small inductance (R is essentially the resistance of the gap). For a 
high intensity spark we need as high an initial charge as possible (~). 

This latter suggests high voltage as well as high capacitance. The 
compromise then (once the voltage has been fixed) is between decreasing 
the capacitance to obtain small inductance and increasing the capacitance 
to obtain good storage value, at the expense of increasing the inductance, 
which will increase with the physical size of the condenser and thus 
increase the decay time. The smallest possible condenser which could 
operate at 10,000 volts was chosen. It had capacitance e = 0.5 ~fd 
and estimated inductance of L = 0.1 ~H. The resistance of the gap was 
also estimated at 1 ohm. This gave the hope of a decay time (to lie 
the value of initial charge) of 

2L 2X10- 7 
t = If= 1 seconds 

with an initial charge of 

~ = evO = 0.5X10,000X10- 6 = 5000 ~coulombs 

If 2000 ~coulombs flow for one ~second, the wattage in the spark 
will be roughly 107 watts. Thus the above values for C and Vo 
deemed sufficient to produce satisfactory exposures on Royal Pan film. In 
the actual experiment this spark light source not only exposed the film 
very satisfactorily but stopped very clearly the reflected shock phenomena. 
Even the faster initial shocks could be stopped satisfactorily (up to 
Ml = 4). The actual spark electrodes were made of brass rod 7/8 inch in 
diameter, hollowed out to leave liS-inch wall, and tapered 60 0 down to 
the spark gap (fig. 15). A liS -inch hole was drilled through the sparking 
point of each electrode so that, looking down through the hollow electrode, 
the spark could be seen filling the 1/8-inch hole whenever the discharge 
was triggered. This spot of light could then be focused by a small lens 
on a rectangular slot mounted on the Porro-Abb~ prism at the focus of the 
first concave mirror, the rectangular slot thus acting as a secondary 
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light source for the schlieren system. The whole system operated with 
amazing consistency, but the problem of triggering the spark at the proper 
moment had yet to be resolved. 

To condenser 
+10,000 volts 

Spark light 
to lens 
system 

To condenser 
ground 

Figure 15 . - Spark assembly. 

The Spark-Triggering System 

Bakelite 
bushing 

To teaser 
circuit 
+2,000 
volts 

The primary requirement of the spark-triggering system was to cause 
the condenser (which was maintained at 10,000 VOlts) to discharge through 
the spark gap, and provide a light source for schlieren photography at 
precisely the moment of interest. In the design of this system a great 
deal of time was spent devising a satisfactory pickup or signal generator, 
that is, a transducer of some sort to convert a signal from the shock 
into an electrical impulse to signal the spark-trigger system. Several 
types of pickups were tried but proved unsuccessful for various reasons. 
At first an attempt was made to design a very fast-acting mechanical 
switch, located in the wall of the low-pressure chamber, which would 
close rapidly when confronted suddenly by the increased pressure behind 
the shock wave. Although the diaphragm was made of the thinnest available 
rubber sheet that would stand up, and the switch itself was made of 
aluminum foil (0.005 in.), this switch required 2 to 4 milliseconds to 
close at the operating pressure ratios. This was generally above the 
minimum intrinsic time delay allowable but was not the most serious 
difficulty with this method. It was necessary to be able to photograph 
within 100 microseconds for proper observation of the interesting 
phenomena. This required an almost constant time dela y, whatever the 
time delay might be. In the case of the mechanical pressure switch 
the delay was sometimes acceptable but varied as much as 1000 to 2000 
microseconds, and was thus unsuitable for our program. Next a hot-wire 
signal generator was built and tested. This consisted of a heated coil 
(actually a "glow" ignition plug) which would be cooled by the flow 
behind the shock wave and, bec ause of changing resistance with cooling, 
generate a signal in a series resistance. This method was actually 



40 NAeA TM 1418 

satisfactory and gave dependable and accurate trigger signals. It had 
to be discontinued, however, since the type of hot-wire used would only 
last for two or three firings of the shock tube. Pieces of diaphragm 
hurtling down the tube would strike the hot wire and break it, and it 
thus required constant replacement. The pickup finally adopted consisted 
of a piezoelectric crystal encased in a metal bellows and mounted in the 
wall of the shock tube. When the diaphragm was punctured, the "sound" 
of the explosion of the diaphragm would travel down the steel wall of 
the shock tube itself and energize the crystal mounted in the wall. 
This sytem worked very well and very consistently. The only difficulty 
involved was the low strength of the signal (2 millivolts). This was 
easily handled by amplifying the signal 200 times to bring it to a 
useful value. 

The Tektronix oscilloscope model 512 could be triggered to sweep by 
a signal of approximately a half-volt, and could be adjusted to emit a 
50-volt signal at any time (up to 1 sec in 10 ~sec intervals) after 
the start of a sweep. This 50-volt signal was then sent to the trigger 
teaser (fig. 16). In the trigger teaser a 1 ~fd condenser charged to 
z2000 volts was immediately discharged upon receipt of a signal through 
a secondary spark gap of about 0.001 inch located within the volume of 
the main spark gap. The discharge through this teaser spark precipitated 
the discharge of the main spark and thus exposed the plate at the proper 
instant. 

This entire system, once adjusted, operated with good dependability 
and essentially reduced the problem of making exposures at the proper 
time to adjusting the time delay at the oscilloscope. Although theoretical 
values for the time delay (calculated from theoretical speed of the shock) 
were a great aid in determining the proper time delay, the last adjust­
ment for exact location had always to be made empirically. Once, however, 
the time delay was determined for a given Mach number (in a given gas), 
adjustment of the entire system was seldom necessary. 

Description of Experimental Methods 

Many of the experiments were made with air as the medium for the 
shock-wave travel. In this case the low-pressure chamber was evacuated 
to the proper pressure while the high-pressure side was filled with 
driver gas to the required pressure. The time delay for the spark 
discharge was set on the Tektronix oscilloscope from calibration tests 
previously made, and the schlieren system was adjusted previously with 
the aid of a bright constant-point light source substituted for the 
spark. The main and teaser condensers were already charged to 10,000 
and 2,000 volts, respectively, with gaps adjusted, so that at these 
voltages the entire system was just on the verge of firing and would 
discharge immediately on signal. The room was then darkened and the 
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Figure 16. - Trigger teaser diagram. 
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camera opened. With the lance driven home, the diaphragm would burst, 
and this was sufficient signal to the pickup in the shock tube wall t o 
start the train of events ending a few thousand microseconds later with 
the discharge of the main spark and exposure of the film at the exact 
instant of interest. Great care had to be taken to shield the entire 
electrical system so that no stray signal would trigger the spark and 
expose the film before the firing of the shock tube. With sufficient 
shielding, however, the entire system was quite dependable and gave 
usable results without extraordinary difficulties. When using hydrogen 
as a driver gas (with air in the low-pressure chamber) an explosion would 
usually occur when the contact surface (hydrogen) would hit the heated ~ 
air behind the reflected shock. This occurred, however, after the instant 
of interest and did not affect the photograph already made, as the light 
from the flash of the explosion was not focused on the plate. After 
every run the tube was opened at both ends, cleaned, flushed with air, 
and then reassembled in preparation for the following run. 

When argon (or any gas other than air) was to be the medium for 
shock travel, the system of operation had to be modified. In this case 
the low-pressure chamber was evacuated as before, and the high-pressure 
chamber filled with driver gas to the required pressure. Then with the 
time delay, trigger, spark, and schlieren readied as before, the small 
tank located on the low-pressure chamber was filled to a certain pressure 
with argon. The small tank pressure required was determined previously, 
and was of such a value that when the argon contained in the small tank 
was emptied into the low-pressure chamber of the shock tube, the final 
pressure of argon in the low-pressure chamber was the desired value (the 
value which gave the correct diaphragm pressure ratio for the required 
Mach number of the test). These machinations were necessary because 
the low-pressure side of the shock tube could not be perfectly sealed; 
and, without a perfect seal, air could leak into the chamber under 
vacuum. When air was the shock-travel medium, no contamination was in­
volved. However, when any other gas was used, air leaking in would 
dilute the gas and invalidate the results. Although the air leak was 
very slow, it was deemed necessary to resort to the method described to 
give the leak the minimum time to contaminate the gas in the low-pressure 
side. Thus, with the low-pressure chamber evacuated to as low a pressure 
as possible, the argon in the small tank was emptied into the shock tube, 
and a few seconds later the shock tube was fired. This system required 
great care in setting because any deviation in small tank pressure would 
give a deviation in the low-pressure chamber value. This would modify 
the diaphragm pressure ratio and change the Mach number and, therefore, 
the speed of the shock wave. With everything preset for timing, it 
was easy to miss the shock entirely in the photographs. However, given 
proper attention, the system operated satisfactorily (i.e., within the 
normal laboratory patience), and many clarifying photographs were made 
using argon and other gases as the shock wave medium. 
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DISCUSSION OF EXPERIMENTAL RESULTS AND TEE PROPOSED MODEL 

FOR INTERACTION IN REGION 2 (fig. 12) 

Variation of Shock Mach Number 

The first series of tests was made in an attempt to verify the 
calculation and assumptions of section III. Recall that the analysis of 
section III predicted the existence of three regions of shock - boundary­
layer interaction which would depend on the initial shock Mach number. 
Values of the Mach number at the boundaries of these interaction regions 
were also predicted, and were shown to depend on the ratio of specific 
heats y for the gas in which the shock traveled. In the first series 

• 

of tests, then, schlieren photographs were made of the interaction phenomena 
to verify the existence of the three regions and also, if these regions 
did exist, to ascertain whether the analysis would properly predict the 
Mach number boundaries for these regions. Since the analysis suggested 
something unusual would occur in region 2 (which up to this point could 
only be guessed), it could be expected that such a series of photographs 
would also show the nature of the phenomenon in this region. Once this 
would be determined, perhaps a clarification of the flow in the region 
behind the reflected shock would be possible. 

With these points in mind a series of photographs was made using air 
(y = 1.4) as the medium for shock travel and varying the Mach number of 
the initial shock over the range of interest. A convenient pressure 
level was chosen (Pl = 0.5 - 1.0 in. Hg abs). In region 1 (1 < Ml < 1.33) 

photographs were made at Ml = 1.16. These photographs indicated that 

almost no deviation from the ideal normal reflected shock occurred until 
the shock had traveled quite a distance from the reflecting wall (fig. 17). 
That is, there was no noticeable effect until the shock was traveling 
into the flow with a boundary layer that had grown to a thickness of 
several millimeters, thus reducing the channel width by several percent 
(about 14 in. after reflection). Even at this point the effect was 
limited to a slight curvature of the shock. (In fig. 18 we include, for 
comparison, a picture of the initial shock shortly before reflection; 
note that the pressure gradient, being in the opposite direction, causes 
the initial shock to appear as a lit pressure ridge, while the reflected 
shock always appears as a shaded pressure ridge.) As the Mach number of 
the initial shock was increased, no change in structure could be detec­
ted until a value of Ml = 1.5 was obtained (fig. 19). In this photo-

graph there appears a small but definite reaching forward of the shock 
near the wall. At Ml = 1.6, this reaching forward at the wall is ac-

companied by what seems to be a small tail originating at the point of 
intersection of the shock and the wall and extending for some distance 
into the region behind the reflected shock (fig. 20). It is not clear 

------------~ 
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(a) 3 Inches after reflection. 

C-46544 

(b) 14 Inches after reflection. 

Figure 17. - Reflected shock wave in air (y = 1.4) at Ml = 1.16. 
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Figure 18. - Initial shock wave at M1 2.15 
shortly before reflection. 
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Figure 19. - Reflected shock wave in a ir (y = 1.4) 
at M1 = 1.5, 2·75 inches after reflection; 
Pl = 0.9 inch mercury ab solute. 
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Figure 20. - Reflected shock wave in air (y = 1.4) 
at Ml = 1.6, 2.75 inches after reflection; 
P

l 
= 0.9 inch mercury absolute. 
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(a) 2.75 Inches after reflection; 
Pl = 0.9 inch mercury absolute. 

C-46545 

(b) 2.75 Inches after reflection; 
P

l 
= 1.0 inch mercury absolute. 

Figure 21. - Reflected shock wave in air (y = 1.4) at Ml = 1.8. 
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(c) 4 Inches after reflection; Pl = 0.9 inch 
mercury absolute. 

Figure 21. - Concluded. Reflected shock wave in 
air (y ~ 1.4) at Ml = 1.8. 
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Figure 22. - Reflected shock wave in air (y = 1.4) 
at ~ = 2.15, 2.75 inches after reflection; 
Pl = 0.9 inch mercury absolute. 
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Figure 23. - Reflected shock wave in air (y = 1.4) 
at Ml = 2.15, 2.9 inches after reflection; 
P

l 
= 0.9 inch mercury absolute. 
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at this point what role this tail plays in the interaction but a look 
at figure 21 (Ml = 1.8) soon gives the answer. In this photo it is ap-

parent that the "tail" of figure 20 is actually the bottom side of a 
small triangular pattern which has appeared near the wall at the base 
of the shock. The height of this triangle (perpendicular to the wall) 
is ' =20 times the thickness of the boundary layer at this point (about 4 
in. from the reflecting wall) and, moreover, the leading edge of the 
triangle is leading the main shock front. We are now well within region 
2 of figure 12, and a picture of the interaction phenomenon in this region 
is developing. In figures 21(b) and (c) are two more photos of the re­
flected shock (at Ml = 1.8) which show the pattern clearly, but in these 

the rearward leg of the triangle seems to have a slightly modified relation 
to the forward and bottom legs. Actually, these two rearward legs are 
not the same part of the phenomenon, and which rearward leg is visible 
depends on the schlieren sensitivity. An explanation for the difference 
between them had to wait until more pictures were made. In figure 22 
(Ml = 2.15) both rear legs are visible (the most rearward is very faint), 

but it was not until the picture in figure 23 was made (Ml = 3.0) that 

the difference was clear. In this photo, unfortunately, the bottom leg 
is not visible, but taking the relevant information from each photo 
makes it possible to describe the entire phenomenon. In figure 23 we 
can see clearly the most rearward leg. It appears to be a little tail 
originating at the intersection of the forward leg of the triangular 
pattern and the main shock. The line which sometimes appears as a rear­
ward leg of the pattern (in fig. 22, for instance) is clearly a fold in 
the shock sheet. This may be explained as follows: The phenomenon which 
exists at the wall boundary certainly exists on the glass boundary. 
Instead of seeing it in cross section (as we do at the bottom wall), 
we see a bottom view of it on the glass. Presumably, then, the picture 
(without corner effects) should look like the sketch in figure 24, the 
shaded area being the other view of the interaction of the shock wave and 

Figure 24. 
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(a ) 2 . 9 I nches after reflection. 

F i gure 25 . - Reflected shock wave in a ir (y = 1.4) at Ml = 3.0; Pl = 0.9 inch mercury absolute. 
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(b) 2. 5 Inches after reflection. 

Figure 25 . - Concluded . Reflected shock wave in air (y = 1.4) at Ml 3 .0 ; Pl 0. 9 inch 
mercury absolute . 
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the fluid boundary layer on the glass (see also fig. 25). However, 
due to the presence of the corner where the glass and wall meet, the 
shock sheet is apparently bent back in the corner, and the photos of 

55 

figures 23 and 25 show this folding back quite clearly. Thus, in describing 
the interaction two-dimensionally, this fold must be neglected whenever 
it appears. Also clearly visible in figures 25(a) and (b) is a light 
region behind the shock wave, which runs the entire height of the tube. 
This light area ends abruptly some distance behind the shock in a slightly 
darker vertical swath, and the field thereafter up to the reflecting wall 
seems relatively undisturbed . This latter part of the phenomenon will 
be discussed later, after presentation of the photographs which gave 
the clue to its meaning. 

Unfortunately the relevant pieces of the phenomenon do not all 
appear perfectly put together in anyone photograph. The entire phenomenon 
was of such a nature that, if the schlieren system was adjusted to make 
certain parts visible, other parts were lost. It was necessary, therefore, 
to piece together the relevant bits of information from all the photographs. 
Because of slight misalignments, three - dimensional effects, corner effects 
and so forth, extraneous material would appear and had to be disre-
garded . However, compiling t he relevant information obtained, it is 
possible to make a sketch of what we have observed so far, and this 
sketch appears in figure 26(a) . 
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Figure 26 (8). 
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An enlarged view of the region of interest is presented for discussion 
(fig. 26(b)): 

s 

Figure 26(b). 

With this picture of the actual phenomenon, it was possible to 
suggest a mechanism by which the interaction was taking place. With the 
model thus proposed and the assumptions it would involve, the shape of 
the interaction might then be calculated for any initial Mach number 
(within region 2 of fig. 12) and these calculations compared with 
measured values from the photographs f or verification of the model. 
The following model was proposed. 

Let us suppose OA (in fig. 26(b)) is an oblique shock which turns 
a supersonic flow through an angle COB. This immediately implies that 
the flow being turned is not boundary-layer fluid, since the boundary­
layer Mach number Mt~ < 1 until Ml > 2 and the phenomenon in question 

is already quite developed at Ml = 1.8. The boundary-layer fluid then 

must be passing under OB. It is concluded that OB is a streamline of 
the flow separating boundary-layer fluid from mainstream fluid, visible 
to the schlieren because of strongly varying temperature profile of the 
b oundary layer. The pressure is thus continuous across OB. If this is 
s o , then the pressure in r e gion OAB is the same as that of the boundary­
layer fluid under OB. To determine this pressure l e t us redraw the 
picture of figure 26(b) in the coordinate system moving with the reflec­
t ed shock, and modify the picture to be consistent with the discussion 
above (fig. 27). 
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Figure 27. 

In region 2 (fig. 12) the boundary layer cannot enter the region 
behind the undisturbed shock, even at stagnation pressure. Let us say, 
then, that the boundary-layer fluid compresses under OB subsonically 
t o the stagnation pressure associated with Mtl' We then have a method 

for calculating the pressure in region OAB. If we extrapolate this 
model into region 2 for values of Ml where Mtl > 1, we can calculate 

the angles COA and COB f or the entire region 2, since these are 
determined by M3 (which is known), the oblique shock relations, and 

the pressure of region OAB . Using this model and the oblique shock 
relations, these calculations were made (see appendix C) and are presented 
as the solid lines in figures 28 (for COA against Ml ) and 29 (for COB 

against Ml). Superimposed on these figures are measured values. Within 
the accuracy of measurement of such quantities from the photographs, the 
check between the measured and theoretical values is quite good, suggesting 
that the model for the interaction is quite a satisfactory one. The ex­
perimental data are slightly high at low values of Ml and slightly low 

at high values of Mi' These discrepancies arise from the assumptions 

involved in the calculation . The high values at low Ml can be accounted 

for in the assumption that the .entire boundary layer is a jet described 
by Mt2' This is actually not t rue, and thus the calculation will give 

a stagnation pressure (and ther efore a wave angle) lower than measured. 
At higher values of Ml , the assumption that the pressure below OB has 

reached stagnation pressure is questionable, and thus the calculation 
gives higher pressures (and the r efore larger wave angles) than the 
measured values. Over-all, however, the predicted values for wave and 

--- - - --------~-
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Figure 28. - Angle of the leading "foot" of region 2 shock-wave - boundary-layer 
interaction in air (y = 1.4) plotted against Mach number of initial shock. 
Experimental pOints are included for comparison. 
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deflection angles (COA and COB) are good and, at intermediate values 
of Ml , are close to the measured values. Perhaps we should note here 

that the effects of the two strong assumptions we have made act very 
fortuitously, over much of the Mach number range, in such a way as to 
reduce the over-all quantitative error. Thus the extreme assumption 
that we have stagnation pressure in the boundary layer couples with the 
conservative description of the boundary layer by ~l to give a rather 

good quantitative picture of the interaction. 

We have a start now in describing the phenomena occurring in region 2, 
but still have not shown that there is an upper bound (the second pres­
sure crossover), as predicted by the analysis of section III. Missing, 
too, is an explanation of the light region behind the reflected shock 
followed by the darker swath which appears in the photos of figure 25. 
The second of these problems was resolved by a group of extremely 
fortunate pictures presented in figures 30 to 33. These pictures were 
made at an initial Mach number of 2.15 and, of hundreds of pictures made, 
were the only ones to give the small piece of added information necessary. 
Examining these pictures (figs. 30 to 33) carefully, one can notice in 
all of them a line leading from the triple point back to the reflecting 
wall. This line is identified as the locus of all particles that have 
passed through the triple point (the point of intersection of the two 
oblique shocks with the main shock) and, as such, divides the main flow 
into two parts. The part of the main flow above this line has passed 
through the single undisturbed shock. The part of the main flow under 
this line (i.e., between this line and the wall) has passed through the 
two oblique shocks. This dividing line is visible to the schlieren be­
cause of the entropy difference arising between the two portions of the 
main fluid having different histories. Notice that as we move back 
along this line from the shock to the reflecting wall it takes a sharp 
dip in towards the wall boundary, and that this dip coincides with the 
dark swath running the height of the channel; that is, since the same 
phenomenon occurs in the interaction between the shock and the fluid 
boundary layer on the glass, we see it as a swath in the other view. 
Also faintly visible between this line and the wall (particularly in 
fig. 32) is another small region, presumably the ball of boundary-layer 
fluid which collects behind the foot of the shock. This smaller region 
is quite clearly outlined in two photographs made at Cornell Aeronautical 
Laboratory in Buffalol (figs. 34 and 35). It is clear, then, that the 
dip in the outer main flow occurs in conjunction with the termination 
of the rearward motion of the fluid in the boundary-layer stagnation­
pressure bubble. The dark vertical swath we see could be this ending of 
the bubble, or it could be an indication of a compression (since it is 
dark) of the fluid in the inner and outer main flow. It is now possible 

lThe author is indebted to Cornell Aeronautical Laboratory for 
making these photographs available. 
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C-46550 

Figure 30. Reflected shock wave in air (y = 1.4) at Ml 2.15, 
0.9 inches after reflection; PI = 1.B inches mercury absolute. 
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Figure 31. - Reflected shock wave in air (y = 1.4) at Ml = 2.15, 1.75 
inches after reflection; Pl = 1.B inches mercury absolute . 
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Figure 32. - Reflected shock wave in air (y = 1.4) at Ml = 2.15, 2.25 
inches after reflection; Pl = 1.8 inches mercury absolute. 
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C- 46553 

Figure 33. - Reflected shock wave in air (y ~ 1.4) at Ml = 2.15) 2.75 
inches after reflection; PI = 1.8 inches mercury absolute. 
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Figure 34. - Reflected shock wave in air (y = 1.4) in 
2 1/2- by 1 1/2-inch shock tube at Ml = 6 .0) shortly 
after reflection; PI = 10 millimeters mercury absolute 
(courtesy Cornell Aeronautical Laboratory). 
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Figure 35 . - Reflected shock wave in air (, = 1.4) in 
2 1/2- by 1 1/2-inch shock tube at Ml = 6 .0, approx­
imately 1/2 inch after reflection, showing inner ball 
of boundary-layer fluid; Pl = 10 millimeters mercury 
absolute (courtesy Cornell Aeronautical Laboratory). 
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to make more complete the picture of the interaction phenomenon, and this 
is presented in figure 36. 

S 

Figure 36 . - Interaction in region 2. 

We have included two extra features of the flow in figure 36 not 
heretofore noted. First, we have suggested that an expansion takes 
place in the portion of the main flow that has passed through the bifurca­
tion. This is required by the fact that at point B the pressure is 
nearly the stagnation pressure of the boundary layer and, when the 
secondary shock AB reaches the free boundary of the bubble, an expan­
sion is reflected from this surface. This is seen clearly as the light 
region in figure 32. Perhaps there are other shocks and expansions in 
this flow as the fluid travels over the bubble, but this is not clear. 
What is probable, however, is that this fluid of higher total pressure 
than the boundary-layer bubble cannot come to stagnation at the wall 
together with the bubble fluid. Thus, the stagnation point for this 
fluid will be somewhat to the rear of the end of the bubble, and some 
of this fluid may enter under the bubble. This is suggested schematically 
in figure 36. 

The interaction of region 2 (fig. 36) appears quite consistently in 
air when the Mach number of the initial shock has a value within region 
2 of figure 12 (section III). Several additional pictures at Mach 
numbers up to 5 are presented (fig. 37). The problem now is to show 
that this interaction disappears when the Mach number for air (y = 1.4) is 
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( a) Ml 4 . 24 . 

/' 

C- 46557 

(b) Ml '" 5 .0 . 

Figure 37 . - Reflected shock wave in a ir (y = 1.4) shortly 
after reflection; Pl = 0. 9 inch mercury absolute. 
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increased above 6.45, as is predicted. This turned out to be impossible, 
and the value 6.45 for the second pressure crossover was never checked. 
The reason for this follows from the discussion of section III, where it 
was pointed out that decreasing the value of y for the gas rapidly in­
creased the crossover Mach number. Thus, as the initial shock Mach 
number is increased towards 6.45 and y for air falls to approximately 
1.2, the crossover Mach number increases from 6.45 (at y = 1.4) to 
approximately 16. Some alternative method had to be devised to verify 
the existence of an upper Mach number boundary to region 2. The solution 
to this problem lay in using a monatomic gas for the shock-travel medium. 
Since a monatomic gas has a constant specific heat and also has a higher 
y than does a diatomic gas, both difficulties encountered, using air 
as the shock medium) in trying to verify the existence of an upper Mach 
number boundary to region 2 could be avoided. Not only is the value for 
the second pressure crossover Mach number lower (Ml = 2. 8 f or y = 1.67) 

than for diatomic gas) but also it will remain constant at this Mach number 
level; and an accurate check of the upper bound Mach number should be 
possible. Unfortunately a new difficulty arose. 

Examining figure 12, in which the undisturbed pressure 
shock as well as the boundary-layer stagnation pressure are 
against Ml for y = 1.67, we notice that the change in y 

the pressure crossover points considerably. The curve for 

behind the 
plotted 

has changed 

P4 has 
m 

been lowered) and that for Pstagbl has been raised. This, of course, 

moves the crossover points closer together than in the case for y = 1.4. 
The first crossover point has been raised to Ml = 1.57, and the second 

has been lowered to Ml = 2.8. However, although we have a well-defined 

region 2 (where the stagnation pressure of the boundary layer is lower 
than the pressure behind the undisturbed shock), the ratio of Pstagb2 

to P4 is never less than 0.9. If we examine the case for air (y 1.4), 
m 

we notice that this ratio (psta~ /P4 ) falls as low as 0.5 (at Ml = 
~Dl m 

2.15 - 3.25). Most important to note is that, in trying to locate the 
first pressure crossover for r = 1.4 experimentally (analytically 
Ml = 1.33)) it was not possible to obtain a really noticeable effect until 

the initial Mach number was raised to Ml = 1.5. At this value of Ml 

the ratio of the boundary-layer stagnation pressure to the pressure 
behind the undisturbed shock has fallen to ~0.8. If we take this as 
an experimental limit (at least for our experiment), this indicates 
that much above the value 0.8 for this pressure ratio the interaction 
between the boundary layer and the shock wave will be so small that it 
(the interaction) and its effects will not be detectable until a 
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relatively long time after reflection. This makes impossible an exact 
check of the crossover values as predicted from the analysis, but still 
allows a check to be made. To obtain an experimental value for the 
second pressure crossover, it is necessary to obtain the interaction of 
region 2 at some Mach number below the predicted value, and then increase 
the Mach number Ml until this interaction disappears (if it disappears). 

Since the ratio of boundary-layer stagnation pressure to P4
m 

is never 

less than 0.9 for y = 1 .67, it is always well above the experimentally 
determined limit value of 0.8 for this ratio and the region 2 interaction, 
and its effects will never be visible in pure argonl . To make the ex­
perimental verification of the second pressure crossover and to verify 
the existence of a region 3 in which the flew is relatively undisturbed 
(again as in region 1), a compromise must be made between two effects 
of the change in y of the shock-travel medium. The first effect of 
raising y is to reduce the value for the second pressure crossover. 
The second effect of raising y is to decrease the pressure difference 
between P4

m 
and Pstagb1 in region 2. Thus an intermediate value 

of y is desirable. That is, a value of y should be chosen which 
will reduce the Mach number of the second pressure crossover to a 
convenient value while not lowering the difference between P4 and 

m 
Pstagb1 below a value which will allow good photographs to be made of the 

region 2 interaction. The value decided upon for y was y = 1.62. 
Gas with this value of y was obtained by diluting argon with air and 
calculating y for the mixtures from the following relation 

Ymix L 
n 

where fn is the fraction of mixture of component n. 

Thus L fn 1. 
n 

At a mixture of 92 percent argon and 8 percent air we obtain a y 
f or the mixture of 1.62, and curves similar to those for y = 1.4 and 
1.67 of figure 12 are plotted in figure 38 for y = 1.62. Note that 
the lower pressure crossover is at Ml = 1.5, while the second pressure 

lPhotographs were taken in pure argon, and this proved to be the 
case. The interaction in region 2 for pure argon was so small as to be 
almost invisible. A later reference will be made to this matter in 
discussing the experimental work of R. Strehlow. 
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Figure 38. - Pressure ratio across normal shock at M3 and pressure-rise ratio 
in boundary layer described by Mb1, plot ted as a function of Ml for a gas 
of y = 1.62. 
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crossover has been lowered to Ml = 3.27 . This has been accomplished at 

the expense of raising the ratio of PstagbL/P4m to a minimum value of 

=0.8 (from a min . value of 0.5 at y = 1.4), but at this value we can 
expect that the region 2 interaction will be visible in the photographs . 
In figure 39 are shown several photographs of the interaction in this 
gas (y = 1.62) at Ml = 2.2 . Note that the interaction of region 2 is 
clearly discernible in these photos . The characteristic triangular 
pattern is present exactly as before (as for air), but now we are in an 
excellent position to check the second pressure crossover at 3.27, since 
the value for y will remain almost constant for this gas mixture in 
this Mach number range. As pointed out before, no exact check of this 
value is possible, since our experiment is limited in defining a boundary 
to region 2 by the maximum ratio of Pstag /P4 of approximately 0.8 

bL m 
and the boundary is calculated for Pstag /P4 = 1.0. However, we can 

bL m 
at least bracket the calculated value of the second pressure crossover 
with the experiment and show that the relatively undisturbed shock 
interaction of region 1 reappears above the calculated second pressure 
crossover. To this end photographs were made at an initial Mach number 
of 3.6, and in figure 40 is presented a photo of the interaction in this 
region. It is clear from this figure that the interaction of region 2 
is not present (as shown in fig. 39), and we have an almost undisturbed 
reflected shock as in region 1 (this is more clearly discernible in the 
original photographs). Thus we have obtained the region 2 interaction 
at a Mach number below the calculated second pressure crossover and a 
relatively undisturbed shock interaction at a Mach number above this 
value . We have determined an upper limit to the interaction of region 2 
and have bracketed the calculated value of the second pressure crossover. 

Reynolds Number Effects 

In the work done so far, it has been assumed that the shock inter­
acts with a laminar boundary layer. However, at some point behind the 
initial shock the boundary layer will become turbulent, and it is reason­
able to expect that this transition to turbulence of the boundary layer 
will be accompanied by a change in the interaction of region 2. Un­
fortunately, it is not possible at the present time to predict the 
conditions under which the boundary layer in a shock tube becomes 
turbulent . However, it seemed possible that an experiment could be de­
vised, without too much difficulty, in which we could attempt to observe 
the effect of transition to turbulence of the boundary layer on the 
shock-wave - boundary-layer interaction. For such a study the most 
desirable information would be a high-speed motion picture record of 
the behavior of the phenome~on from the moment of reflection of the 
shock to the time of arrival of the contact surface. Such a study 
would have required, however, considerable expansion of the equipment, 
and it was felt that a series of instantaneous pictures, properly spaced 
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(a) 1.25 Inches after reflection. (b) 1.5 Inches after reflection. 

Figure 39. - Reflected shock wave in gas of y = 1.62 showing the region 2 (fig. 12) 
interaction at Ml = 2.2. 
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Figure 40. - Reflected shock wave in gas of y = 1. 62 
at Ml = 3 . 6} 1. 5 inches after reflection. 
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over the time of interest, would show quite satisfactorily any of the 
interesting effects detectable by the schlieren system . Although it 

75 

was not quite possible with the equipment available to obtain such a series 
of photos in a single experiment, it was possible to simulate such a time 
sequence by repeating the experiment a number of times and exposing the 
film at increasing time after reflection. Maintaining all variables 
constant, such a series of experiments was made at Ml = 2.15 in air 

(Pl = 0 .9 in. Hg abs), and the simulated sequence was obtained. These 

pictures are presented in figure 41. In these photos the reflected 
shock is moving (as indicated by the arrow) from right to left. We 
note that the interaction (clearly that of region 2) grows with time but 
remains similar to itself in figures 41(a) to (f). This growth is 
discussed further in the next section . From figure 41(g) on, it is to 
be noted that the line of high density gradient which forms the bottom 
line of the triangular pattern, and which presumably is the boundary 
between the cold boundary layer fluid and the hot main fluid, begins 
to shorten. Finally in figure 41(k), it is no longer visible and is 
not present in any subsequent pictures. We take the shortening and 
final disappearance of this boundary to be the manifestation in the 
interaction phenomenon of the transition of the boundary layer from a 
laminar to a turbulent state . Certainly, as the boundary layer becomes 
turbulent, the phenomenon as proposed for the laminar case will become 
less and less necessary. The energy transferred from the main stream 
to the boundary-layer fluid by turbulent transfer obviates the difficulties 
encountered by the low-energy boundary layer in the laminar case. 
The shortening of the line dividing the main fluid from the boundary­
layer fluid in the series of pictures of figure 41 is the indication of 
the onset of this turbulent mixing effect. The final disappearance 
indicates that turbulent mixing has been completely substituted for the 
laminar interaction. Perhaps this laminar interaction still occurs at 
a much smaller scale for an extremely thin laminar sublayer, but this is 
so small as to be invisible in the photographs, and we can only surmise, 
as in the case of the steady shock-wave boundary-layer interaction 
(ref. 19) that such an interaction exists. 

It would be of value here if we could define a Reynolds number 
with which to characterize the flow. To do this, we have tried to make 
somewhat of an analogy between the flow in the shock tube and the flow 
over a flat plate in an airstream. The Reynolds number in the latter 
case may be defined as 

where Pw and ~w are the density and viscosity calculated for the 

conditions at the wall. U.., is the undisturbed free-stream velocity and x 
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(a) 1.35 Inches after reflection. 

C-46576 
(b) 1.65 Inches after reflection. 

Figure 41. - Reflected shock wave in air (y = 1.4) 
at Ml = 2 .15, PI = 0.9 inch mercury absolute, at 
increasing time after reflection. 
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(c) 2.0 Inches after reflection . 

• 
C-46560 

Cd) 2 .05 Inches after reflection. 

Figure 41. - Continued. Reflected shock wave in air (y = 1.4) 
at Ml = 2.15, PI = 0 . 9 inch mercury absolute, at increasing 
time after reflection. 

77 



78 NACA TM 1418 

(e) 2.4 Inches after reflection. 

C-46561 
(f) 2.6 Inches after reflection. 

Figure 41 . - Continued. Reflected shock wave in air (y = 1.4) 
at Ml = 2.15) PI = 0.9 inch mercury absolute) at increasing 
time after reflection. 
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(g) 2 .7 I nches after reflection . 

C-46562 
(h) 3. 1 Inches after reflection. 

Figure 41. - Continued. Reflected shock wave in air (r = 1.4) 
at Ml = 2.15) PI = 0 . 9 inch mercury absolute) at increasing 
time after reflection. 
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• 

(i) 3.6 Inches after reflection. 

C-46563 
(j) 3·7 Inches after reflection. 

Figure 41. - Continued. Reflected shock wave in air (y = 1.4) 
at Ml = 2.15, Pl = 0.9 inch mercury absolute, at increasing 
time after reflection. 

J 
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(k) 4.2 Inches after reflection. 

(1) 4 . 3 Inches after reflection. 
C- 46564 

Figure 41. - Continued . Reflected shock wave in air (y = 1.4) 
at Ml = 2 .15, Pl = 0.9 inch mercury absolute, at increasing 
time after reflection . 

81 
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(m) 5 . 6 Inches after reflection. 

(n) 6 .0 Inches after reflection. 

Figure 41. - Continued . Reflected shock wave in air (y = 1.4) 
at Ml = 2 . 15, Pl = 0 . 9 inch mercury absolute, at increasing 
time after reflection . 
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C-46566 
(0) 6.25 Inches after reflection. 

Figure 41. - Concluded. Reflected shock wave in air (y = 1.4) 
at Ml = 2.15, PI = 0.9 inch mercury absolute, at increasing 
time after reflection. 

83 
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the distance back along the plate from the leading edge. In our case 
the velocity over the stationary wall after the passage of the initial 
shock is u2 ' The distance the fluid at any point has traveled is given 

by this velocity u2 multiplied by the time of travel. If we wish to 

define a Reynolds number in this manner, it becomes 

u2 

Us 
Re - ------~------~--

The x used here denotes the distance the reflected shock has 
traveled back from the reflecting wall to the point in question and, to 
allow the use of this convenient variable, it is necessary to include 
several extra factors to obtain a Reynolds number as just described. 
These factors allow for the differences in speed between the return shock 
and the initial shock, and between the initial shock and the following 
flow. Using this definition for Reynolds number, we may now make an 
estimate of the value of Re at which the boundary layer bec omes turbu­
lent. Re-examining figure 41 for the purpose of determining a reasonable 
value for x, the distance from the reflecting wall at which the laminar 
interaction has disappeared, it is clear that at best we can obtain only 
an estimate of this value by interpolating between pictures. If we say 
that the laminar interaction has disappeared between figures 41(m) and 
(n), we obtain thus a value for x of 0 . 462 feet. Calculating the 
Reynolds number as previously defined, we obtain (see appendix D) 

Thus, by varying the time after reflection of a reflected shock in 
air at an initial Mach number of 2 . 15 and interpreting the change in the 
interaction as caused by transition of the boundary layer from laminar 
to turbulent, we are able to calculate a Reynolds number at which the 
boundary layer behind the initial shock presumably becomes turbulent. 

It is possible to make a cross check of this phenomenon by maintaining 
all variables constant (including the time after reflection) and varying 
only the pressure level at which the phenomenon occurs. A series such 
as this was made at Ml = 2.15. The film was exposed each time in this 

s eries z320 ~ s econds after r eflection . The pres sure level in the low­
pressure chamber was varied from 0.6 to 3.0 inches of mercury absolute 
in steps of 0.3 inch of mercury. This series of photos is presented in 
figure 42. Notice that here again the lower leg of the triangular 
pattern shortens and disappears. If we interpret this as before and 
make a similar interpolation and ca lculation, we obtain a value (see 
appendix D) 

j 
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(a) PI = 0.6 inch mercury absolute . 

• 

C- 46567 
(b) PI = 0.9 inch mercury absolute. 

Figure 42. - Reflected shock wave in air (y = 1.4) a t 
Ml = 2.15, approximately 3.9 inches after reflection, 
at increasing initial pressures (densities). 
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(c) Pl = 1.2 inches mercury absolute. 

C-46568 
(d) Pl = 1.5 inches mercury absolute. 

Figure 42. - Continued. Reflected shock wave in air (y = 1.4) 
at Ml = 2.15) approximately 3.9 inches after reflection) at 
increasing initial pressures (densities). 
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1.8 inches mercury absolute. 

---- - -
C-46569 

(f) Pl = 2.1 inches mercury absolute. 

Figure 42. - Continued. Reflected shock wave in air (y = 1.4) 
at Ml = 2.15) approximately 3.9 inches after reflection) at 
increasing initial pressures (densities). 
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(g) PI = 2.4 inches mercury absolute. 

C-46570 
(h) PI = 2.7 inches mercury absolute. 

Figure 42. - Continued. Reflected shock wave in air (y = 1.4) 
at M1 = 2.15) approximately 3.9 inches after reflection) at 
increasing initial pressures (densities). 
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(i) Pl = 3.0 inches mercury absolute. 

Figure 42. - Concluded. Reflected shock wave in air (y = 1.4) 
at Ml = 2.15, approximately 3.9 inches after reflection, at 
incI-easing initial pressures (densities). . 
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for the Reynolds number at which the laminar interaction disappears (a t 
Ml = 2.15 in air), and which we interpret to mean the transition of the 

boundary layer to turbulence. This value cross-checks with that obt ained 
from the former series within 6 percent. 

Certainly this is no more than a crude quantitative check of the 
transition of the boundary layer to turbulence. We assume that the 
phenomenon occurring is the detectable indication, in this experiment, 
of the transition of the boundary layer to turbulence and, of course, 
this may not be so. However, since there have been developed no really 
satisfactory techniques for this determination, this method may be used 
as a check to further experiments made along this line, until some im­
proved techniques are devised. 

A series of photos was made along with the latter Reynolds number 
variation experiment, at the same Mach number (Ml = 2.15) and over the 

same range of pressure-level variation, but at approximately 1000 ~sec ­

onds (~ 3 times the previous delay time) after reflection. These 
photos are presented in figure 43. It is t o be noted that the shock in 
these photos resembles very closely the shock interaction immediately 
after the disappearance of the laminar interaction. We conclude therefore 
that once the boundary layer becomes turbulent there are no further 
large changes in the interaction. Perhaps there is one further item 
of note. From figures 43(c) t o ( g) (pressures 1 .8 to 3.0 in. Hg abs), 
the shock - boundary-layer interaction on the glass wall (which we see 
in the other view in the photos) has a number of noticeable undulations, 
and most interesting to note is the fact that these undulations reach out 
ahead of what might be called the average interaction, particularly at 
the top and bottom walls (or perhaps the corners). Since instantaneous 
pictures cannot tell us if this is a time varying or a steady situation, 
this phenomenon remajns unexplained. 

DISCUSSION OF THE GROWTH OF THE INTERACTION AS FURTHER 

VERIFICATION OF THE PROPOSED MODEL 

We have seen now how the phenomenon which "handles the difficulty" 
predicted for the laminar boundary layer in region 2 appears, and how it 
may be described (fig. 36 of section IV). The shape of the interaction 
is easily calculated by using the proposed model and. assumptions 
(appendix C), and the results check satisfactorily with the values ob­
tained experimentally (figs. 28 and 29). From the pictures of figures 
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1.2 inches mercury absolute. 

(b) p = 1.5 inches mercury absolute , 
1 

C- 46572 

Figure 43 . - Reflected shock wave in air (y = 1.4) 
at Ml = 2.15) approximately 11 inches after 
reflection) at various pressure levels. 
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C-46573 
(d) Pl = 2.1 inches mercury absolute. 

Figure 43 . - Continued . Reflected shock wave in air 
(y = 1.4) at Ml = 2 .15, approximately 11 inches after 
reflection, at various pressure levels. 
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C-46574 

(f) PI = 2·7 i nches mercury absolute. 

Figure 43. - Continued. Reflected shock wave in air 
(y = 1.4) at Ml = 2.15, approximately 11 inches after 
reflection, at various pressure levels. 
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(g) ~l = 3.0 inches mercury absolute. 

Figure 43 . - Concluded . Reflected shock wave in air 
(y = 1.4) at Ml = 2.15 , approximately 11 inches after 
reflection, at various pressure levels. 
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30 to 33, it is clear that the interaction pattern remains similar to 
itself (see y/~ in table I) but grows with distance from the reflecting 
wall (i.e., with time). If we tabulate the information from figures 30 
to 33, we have 

x 

----'\1 
- ---

I ~ ·1 
TABLE I 

Figure x) y, t, 1], y/~ y/x I ft ft ft in. 

30 0.07 0.00716 0 .0252 0.03 0.284 0.102 
31 .14 .01365 .0496 .07 .275 .0975 
32 .177 .0171 .0612 .095 .279 .0967 
33 .22 .0218 .0796 .125 .274 .099 

Since the interaction remains similar to itself as it grows (i.e., y/~ 
is constant), it is sufficient, of course, to calculate the rate of 
growth of any linear dimension of the pattern in determining the time 
dependence of the growth of the entire interaction. For this purpose 
we choose to calculate the rate at which the dimension ~ of the figure 
varies with time. 

If we imagine ~ to be the diameter of a two-dimensional volume 
(a cylinder of arbitrary length) being filled by a tube of boundary­
layer fluid, we have the following picture : 

h(t) 

m .. 
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and we may write (if ~ 2r), per unit width: 

. 
III 

d( vol. ) 
Pstagb 7, dt (IV-2) 

Now, if 

m (IV-3) 

and 

(IV - 4) 

where ill is mass flow per unit time per unit depth, h is height h(t) 
of tube filling the cylinder, and u is the velocity in the boundary­
layer tube relative to the cylinder being filled, then we may write 
(combining eqs. (IV- 2) , (IV-3), and (IV-4)): 

( IV-5) 

or (if we assume Mtz and u constant) 

Thus 

and then 

r (IV-6) 

Thus we have 

( IV-7) 

Tqus we would expect the laminir interaction of regi on 2 t o grow 
as t 3/ 4 ( or, since x = ut, as x34) . Examining table I, we notice that 
~ oc xl as ac curately as we can mea sure it, a nd this compares f avor ably 
with the variation predicted by the rather crude analysis just given . 
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As we shall see in the following section, the reflected shock does not 
return at constant speed. This conflicts with the assumption that u, 
the fluid pickup speed, is constant. However, assuming a time dependence 
for u would not change the argument for the growth of the phenomenon, 
and would improve the quantitative estimate only slightly. An estimate 
(appendix E) of the size of the phenomenon calculated by using the 
previous analysis gives 

T] == hx (IV-8) 

For Ml == 2.15 at a distance x == 0.22 foot from the reflecting 
wall) equation (IV-8) gives T] = 0.098 inch. This compares favorably 
with the value from table I of T] == 0.12 inch at x == 0.22, if we con­
sider that the value of h can only be estimated. We have in fact used 
h == 5* (see appendix E), and this estimate could be off by a factor of 2 
or 3 in describing the effective height of boundary-layer fluid entering 
and filling the growing cylinder of stagnation fluid. 

We have mentioned previously the possibility of a lire-entrant jettr 

(section IV). If a portion of the main fluid does pass under the bubble 
as a re-entrant jet, then we would expect our measurement of T] to be 
somewhat higher than that which we calculated from the preceding analysis, 
the jet (invisible in any of our photos) raising the bubble somewhat away 
from the wall. Our measurements and calculation are consistent with 
this possibility. Perhaps the existence of a re-entrant jet eXPlains/the 
discrepancy between our calculated rate of growth proportional to x 3 4 
and the measured linear rate. It is clear in any case that the model 
herein proposed suggests that the reflected shock is picking up and 
carrying with it a portion of the oncoming fluid (the fluid in the 
boundary-layer stagnation-pressure bubble) . With the growth just described, 
the oblique shock which appears t o initiate the entire interaction 
phenomenon"and which precedes the main normal shock "processes" increasing 
amounts of main fluid. The leading edge of this obl ique shock advances 
at a speed greater than that of the shoc~ and thus maintains a growing 
lead over the main shock as the reflection proceeds into the oncoming 
flow. This type of interaction may certainly be called violent, since it 
leads to disturbances many times the size of boundary layer involved. 
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v - ATl'ENUATION OF THE REFLECTED SHOCK 

MODEL FOR THE A'ITENUATION PHENOMENON 

If we examine the model for the interaction of the shock with the 
laminar boundary layer as presented in detail in figure 36) we note that 
it will appear as in figure 44 if we consider the entire interaction in 
the shock tube. 

--
,,­

." 

..... 

" ..... 

--- ----

-..----- - '-

Figure 44. - Reflected shock traveling in shock tube. 

It was pointed out in section IV) and it is clear from figure 44 J 

that the fluid approaching the shock may be divided into three parts. 
First) there is the boundary-layer fluid which cannot enter the region 
behind the shock and collects in a ''ball'' of fluid under the foot of the 
shock. Then there is that part of the main fluid which passes through 
the bifurcated portion of the shock and into the region behind the shock 
between the dotted lines of figure 44 and the walls (top and bottom). 
Last) there is the remaining larger part of the main fluid which passes 
through the single normal shock and is presumably contained by the dotted­
line boundaries of figure 44 in the region behind the reflected shock. 
This division of flow implies that the fluid being acted upon by the re­
flected shock wave is separated into three portions by the interaction) 
each portion being processed in a different manner on its path into the 
region behind the shock. The boundary-layer fluid which cannot manage the 
shock pressure rise collects in a ball at the foot of the shock. The 
main fluid which passes through the bifurcation forms a sort of "super 
bubble" over the inner ball of collected boundary-layer fluid) and remains 
separated from the major portion of main fluid which passes through the 
single normal shock. Since the triple point follows approximately a 
linear growth as the phenomenon grows) the dip (at top and bottom) in 
the trace of fluid particles that have passed through the triple point 
indicates that there is motion of the central portion of main fluid after 
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it is passed through the shock. Let us consider this main body of fluid 
passing through the normal shock. It is clear that the situation here 
differs from that in which the flow is brought to rest by an ideal re­
flected shock. There is no reason to assume in the present case that the 
fluid compressed by the shock is brought to rest in the region behind the 
reflected shock anywhere but at the reflecting wall. In fact, the dark 
vertical swath of figure 25 (which coincides with the opening dip in the 
dotted boundary lines for this flow) suggests that another milder (at 
least in gradient) compression does take place before the fluid that has 
passed through the normal shock is finally brought to rest at the reflect­
ing wall. From an over-all point of view of the phenomenon, one might 
say that the main fluid sacrifices a part of itself to form a nozzle (or 
preferably, a diffuser) and in this manner overcomes the difficulty in­
troduced by the energy-deficient fluid in the boundary layer. For the 
purpose of the subsequent analysis it assumed that the nozzle is formed 
by all the fluid passing between the triple points and the walls. We 
realize, of course, that the picture of the phenomenon as represented in 
figure 44 is by no means steady, because of the growth of the interaction 
as the reflected shock travels back up the tube. Thus the dotted lines 
of figure 44 outline the flow instantaneously and are not streamlines of 
the flow at all. However, the growth is not very rapid. In fact, from 
table I we can see that y, the height of the triple point from the wall 
grows as 0.095 x, where x is the distance of the phenomenon from the 
reflecting wall. Thus it is not unreasonable to examine the situation 
with the effects of the growth considered, but still assuming that at 
any instant the phenomenon does not differ any great amount from, and is 
reasonably well depicted by, the steady picture that it resembles. At a 
given instant, then, we have the following description (fig. 45) of the 
portion of the main fluid passing through the single normal shock. 

s 

Figure 45. 
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We may now write (in the coordinate system moving with the shock, 
and assuming the picture of fig. 45 is a steady one) 

(V-l) 

or 

(V-2) 

Also) by definition and by the boundary condition that the fluid velocity 
at the wall is the same as that of the reflecting wall) we have at sta­
tion 4: 

write 

(V-3) 

Since the total temperature is the same at stations 3 and 4 we may 

y - 1 _2 
1+-2- M3 
l+y-l~ 

2 4 

(V-4) 

Combining equations (V-2)) (V-3)) and (V-4)) we have the relation 

(V-5) 

Since a2 and u2 vary very slightly due to attenuation of the 
initial shock wave) over the distance of interest to us they are constant 
and known . Thus equation (V-5) is a relation connecting M3 with M4 . 

If we assume now that the flow in figure 45 is isentropic from station 
3b to 4) we can then write 

M3b ( A4) y+l = A3b --------y-+"::-l-

( 
y _ 1 2 \ 2(y-l) (1 + y _ 1 2)2(y-l) 

1 + -2- M3b) 2 M4 

(V-6) 

which follows from continuity and isentropy. If we now write the normal 
shock relations connecting M3 and M3b 

(y - l)M~b + 2 

2yM~b - (y - 1) 
(V-7) 

1 
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we have a completely determined problem which may be sOlved by iteration 
once the dependence of A4/A3b on x (the distance from the reflecting 

wall) is known. For this purpose we might use the growth relation arrived 

at in section IV (~oc x3/ 4 ). However, the physical data are also avail­
able for the case Ml = 2.15 and, as closely as we can make the measure-
ments, they suggest a linear dependence on x. If we are to assume that 
this is so, we may write y = ax for the height of the triple point from 
the wall. Then, since the interaction also takes place on the side walls 
(the glass), and A4 = Sl S2 is the area of our rectangular tube, we have 

(v- e) 

from which to calculate A4/A3b' Thus the problem is completely solved 
(under Our assumptions) in the region of the laminar-boundary-layer shock­
wave interaction. 

Recalling that the laminar interaction eventually disappears when the 
boundary layer becomes turbulent, we should point out that the whole atten­
uation model just presented will no longer be valid in the turbulent inter­
action region. In fact, since photographs of the interaction made at times 
when the boundary layer has become turbulent show the shock to be only 
slightly distorted from normal, we would expect the shock wave, after the 
laminar interaction has disappeared, to return to the theoretical reflected 
shock speed. 

In the following section we will attempt a calculation based on the 
method just presented, and some comparisons will be made with available 
experimental data. 

CALCULATION OF A'lTENUATION OF THE REFLECTED SHOCK 

SPEED AT Ml = 2 .15 IN AIR 

At a nominal value of Ml = 2.15, we can calculate with the aid of 
figure 7 the Mach number of the initial shock just before it reflects 
from the wall 144 inches from the diaphragm station. Figure 7 (curve 
from ref. e) gives: 

0.124 

which for our case is 
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at x = 12 feet we have 

0.152 

Thus 

P2,actual = 0. 85 P2,ideal 

and, since we have nominal Ml of 2.15, 

P2,ideal 
Pl 

5.23 

5.23 X 0. 85 = 4.45 = P2,actual 
Pl 

Thus Ml before reflection is 1.99 (for nominal Ml = 2.15). Immediately 
we know (from fig. 10) 

and from equation (V-7) 

M3b = 0.634 

M4 also has the value 0.634 just at reflection. Now if we calcu­

late A3b from equation (V-8), letting a = 0.095 (experimental value), 

we have at x = 1/2 inch: 

0.93 

Thus we 

(1) Choose M3 = 1.70 

(2) From equation (V-5), M4 = 0.6148 

(3) From equation (V-6) and knowing A3b/A4 = 0.93, we have 
M:sb = 0.7057 
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(4) From equation (V-7), M3 = 1 . 487 f 1.70 

Since the value chosen for M3 does not coincide with the calculated 
value we must reestimate My Repeating this procedure, we try 

Once 

(1) M3 = 1.65 

(2) From equation (V-5), M4 = 0.5727 

(3) From equation (V-6) J M3b = 0.645 

(4 ) From equation (V-7), M3 = 1.682 f 
more we try 

(1) M3 = 1.657"-~--------'1 

(2) We calculate M4 = 0.58 
Check 

(3) And M3b = 0.676 I 
(4) From which ~ = 1.66~ 

1.65 

Actually the procedure can be simplified very much by using the 
chart of figure 46. By choosing an M3 and then going through the 

103 

chart following the arrows, the iteration procedure was very rapid and 
the whole procedure was repeated at 1/2-inch intervals for x from 0 
to 4 inches. The results are tabulated in table II. 



~ 

0 
(l) 
rJl 

-........ 
+> 
<t-t .. 

rJl 

::;,H 

l 

1100, 7 7 

1000 

900 

800 

700 

600 

500 

400 r ~ I I{ I I I \ \: '\: 

1.3 1.4 

.75 

M3b 

.8 

Figure 46. - Chart for iteration procedure necessary in calculating attenuating effect of the region 2 
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x A'5t/A4 

0 1 

1/2 0. 93 

1 . 862 

l~ 
2 .797 

2 .734 

~ 
2 

.672 

3 .614 

~ 2 .557 

4 .5025 

TABLE II 

[Ml,nominal :=: 2.15; Ml at 144 inches :=: 1.99; 

a2 :=: 1461 ft/sec; u2 :=: 1400. ft/sec] 

M3 M4 M3b * Urs P2/Pl P3b/P2 P3b/Pl P4/Pl 

1.726 0.634 0.634 1128 4.45 3.31 14.75 14.75 

1.657 .58 .676 1022 3.03 13.5 14.62 

1.57 .514 .677 893 2.71 12.1 13.75 

1.527 .481 .6915 830 2.55 11.37 13.40 

1.471 .438 .7115 750 2.36 10.51 12.96 

1.422 .397 .728 678 2.192 9.79 12.50 

1.376 .361 .748 610 2.04 9.1 12.08 

1.335 .326 .767 550 1.914 8.54 11.71 

1.295 .294 .792 493 1. 79 7.98 11.35 
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P4/P3b 

1.0 

1.08 

1.14 

1.18 

1.23 

1.28 

1.33 

1.372 

1.425 

It is interesting to note that during the laminar interaction period 
the reflected shock speed falls monotonically and rather rapidly. It 
seems that such a drop in speed could hardly go unnoticed, and in fact 
it has not. However, on an xt diagram (the usual experimental method 
for determining shock speeds) acceleration appears as curvature of the 
shock trace. Over the short distance in which this slowdown occurs (the 
first few inches after reflection) this curvature has perhaps gone un­
noticed. Let us examine this to see why. If we build an xt diagram 
(fig. 47) using the data in table II for the reflected shock speed (in 
which the shock slows down from 1128 ft/sec to half that speed in just a 
few inches), we note that the curvature is quite easily overlooked. In 
fact since the shock later accelerates (perhaps in part because of the 
disappearance of the previously mentioned attenuation configuration when 
the boundary layer becomes turbulent) the "s" shape encountered because 
of deceleration and acceleration could easily be averaged out as a straight 
line and the conclusion drawn that the reflected shock simply travels at 
lower speeds just after reflection. This has been observed experimentally. 
Experimental work done at Aberdeen Proving Grounds seems to bear this out. l 

lprivate communication from R. A. Strehlow, Dec. 1956. 
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o k-__________ -L ____________ ~----------~------------~-----------J 

5 4 3 2 1 
x, in. after reflection 

Figure 47. - Constructed xt diagram from calculation of reflected shock 
velocity, showing deceleration of reflected shock. Ml = 2.15; y = 1.4. 
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According to their findings) in all the gases for which they investigated 
experimental reflected shock velocity) they found that) for Ml > 1.3 
(the value predicted for the first pressure crossover in section III was 
1.33 for y = 1.4)) the reflected shock velocity was less than the the­
oretical value near the reflecting wall. In all gases but argon ( the only 
monatomic gas investigated)) the reflected shocks later accelerated. In 
the case of nitrogen the reflected shock speed after acceleration corres­
ponded almost exactly to the theoretical value. This experimental infor­
mation seems to bear out) at least qualitatively) the attenuation model 
proposed. In figure 48 is presented an experimental diagraml for a shock 
traveling in nitrogen with Ml = 2.06. The concave upward curvature of 
the reflected shock trace just after reflection is clearly visible. Fol­
lowing this deceleration is the acceleration previously mentioned which 
raises the reflected shock velocity very nearly to the value which is 
theoretically expected. 

lThe author is indebted to Dr. Ro ger A. Strehlow of the Ballistics 
Research Laboratory at Aberdeen Provins Grounds for making this picture 
available . 
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Reflecting wall 

C-46538 

Figure 48. - Experimental xt diagram showing deceleration of reflected shock wave imme­
diately after reflection followed by subsequent acceleration of shock wave. Ml = 2.06; 
Y = 1.4 (courtesy Ballistics Research Laboratory, Aberdeen Proving Grounds). 
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VI - A SUMMARY AND SOME SUGGESTED FURTHE:R STUDIES 

The shock tube, although known since the end of the last century, 
has become in the past decade a tremendously useful and versatile research 
and laboratory tool. Some of its uses in the study of one-dimensional 
nonstationary gas dynamics have been mentioned without detail, and the 
particular usefulness of reflecting the initial shock wave from the closed 
end of the tube has been discussed more completely. Ideally (one­
dimensionally) the initial shock signals a following flow in the shock 
tube which the reflected shock brings to rest. By this process there is 
produced conveniently in the shock tube a slug of stationary high­
temperature gas which is very useful in a number of studies. It is clear 
that this is completely true only if the flow is vne-dimensional. Be­
cause of the action of viscosity, however, a boundary layer with which 
the reflected shock must interact grows in the flow following the initial 
shock wave. A complete discussion of the methods by which this boundary 
layer is generally handled has been included. The results of this study 
indicate that the growing boundary layer has a very small effect on the 
shape of the initial shock, but does act to attenuate the shock somewhat 
(so that a nominal shock of Ml = 2.15 is attenuated to Ml = 2.00 in 
144 inches of travel down a tube 2 by 4 inches in cross section). 

Using the picture of the boundary layer provided by the previous 
analysis, and changing coordinates to those moving with the reflected 
shock wave, it has been possible to examine the problem imposed by the 
deficiency of energy in the fluid of the boundary layer (due to viscos­
ity) on the mechanism by which the initial shock afterflow (now no longer 
uniform) negotiates the pressure rise across the reflected shock wave. 
The analysis of these difficulties has been simplified by making the 
assumption that the boundary layer may be described as a jet of fluid 
entirely at ~1' the Mach number of a thin layer of fluid near the tube 
wall. This assumption is reasonable, since an examination of the Mach 
number distribution across the boundary layer in a typical case indicates 
the variation to be monotonic from wall to main stream. Thus this assump­
tion tends to give a conservative estimate for the appearance of diffi­
culties in the shock-wave boundary-layer interaction. A display of the 
Mach number of the main stream (i.e., of the undisturbed reflected shock) 
and the Mach number of the boundary-layer jet (now described by ~ 1) as 
functions of the Mach number of the initial shock immediately indicates 
two regions (and therefore two types) of interaction. In the first, the 
Mach number of the boundary layer is lower than that of the main stream; 
and, in the second, the Mach number of the boundary layer exceeds that in 
the main stream. A more careful study of the Situation, by considering 
the pressure behind the undisturbed normal reflected shock (defined by 
the main uniform stream and normal shock-wave relations) as well as the 
pressure of the boundary-layer fluid described by ~1' has shown that a 
third region appears in the initial Mach number regime. Of these three 
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regions, one, in which the stagnation pressure of the boundary layer is 
exceeded by the pressure behind the undisturbed normal reflected shock, 
is bounded by the other two regions in which this does not occur. An 
experiment was then devised to find out whether these two boundaries 
actually exist and if the predicted analytical values are correct. The 
results of this experiment show that these boundaries do actually exist 
and are predicted satisfactorily by the theory. To make this experimental 
verification, it was necessary, for detailed reasons which have been given, 
to use a particularly convenient mixture of monatomic and diatomic gases. 
However, when this was done, the results of the experiment successfully 
verified the predictions. Along with the former results, sufficient in­
formation was obtained from the experiment to make possible a proposed 
model for the interaction in the most complicated case. This model was 
further verified by measurements made during the experiment . 

Since the problem just discussed involved a consideration of the 
laminar boundary layer only, the case for the turbulent boundary layer 
now had to be considered . At the present time there is no certain method 
for knowing when the boundary layer of the flow generated by the initial 
shock becomes turbulent, so an experiment was devised to obtain some in­
formation concerning this matter. The experiment was designed on the 
assumption that the transition from laminar to turbulent boundary layer 
would be indicated by a transition of the shock-wave boundary- layer in­
teraction from an interaction corresponding to a laminar boundary layer 
to an interaction corresponding to the turbulent boundary layer. This 
turned out, apparently, to be the case. Below an experimentally deter-

mined value of Reynolds number of about 1.5Xl06 (the Reynolds number used 
is defined in the report), an interaction corresponding to the laminar 
boundary layer appeared . At the same Mach number (of the initial shock), 
but at Reynolds number greater than 1 . 5Xl06, the interaction was of a 
different character. This could be explained by supposing that the bound­
ary layer was in the first case laminar and in the second case turbulent. 
An experimental cross check of Reynolds number variation gave the same 
value of transition Reynolds number within about 6 percent. 

Because of the growth of the boundary layer with time, the laminar 
interaction with the reflected shock also grows in time, and an analysis 
has been made to determine this growth rate . The results checked reason­
ably well with the rate of growth measured experimentally . A calculation 
was made to determine the size of the interaction, and a good check was 
obtained with that experimentally determined. 

Following this, a model has been proposed whereby the effect of the 
boundary- layer interaction on the strength of the reflected shock may be 
calculated. This model indicates that, because of the difficulty the 
energy-deficient boundary layer has in negotiating the pressure rise 
across the reflected shOCk, the entire pressure rise of the main fluid 
no longer takes place across the reflected shock. Instead, a portion of 
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the main fluid sacrifices itself to form a diffuser and brings the flow, 
now only partially compressed by a weaker shock, to its final state of 
rest at the closed end of the tube. A calculation for the attenuation of 
the reflected shock has been made in a particular case, and the constructed 
xt diagram for this case compares favorably with the experimental xt 
diagram for the same conditions. 

It should be pointed out that there remain some interesting questions 
for further investigation . First, it would be very desirable to know if 
the transition Reynolds number obtained in the present work at a given 
Mach number will hold universally at all Mach numbers, or if same varia­
tion with Mach number will occur . For this information the experiment 
of section IV could be repeated over a range of Mach numbers, and the 
resulting variation (if any) of Retrans with Mach number could be ob-

tained. It would also be of interest to change the closed-end boundary 
condition and investigate the changes in interaction that would occur 
with an average (steady- state) flow through the tube. This might be of 
interest and supply valuable information on the problem of rocket motor 
screaming. It is already known that shock waves travel down the rocket 
motor and are reflected at the nozzle end only during screaming operation. 
It might also be of extreme interest to extend the present work to the 
case of a steady (approximately) normal shock standing in the nose inlet 
of a supersonic air-breathing jet engine and to determine the connection 
between the spill induced by shock-wave boundary-layer interaction and 
the buzzing problem which exists presently with these engines (for 
instance, ref. 20). 
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APPENDIX A 

MACH NUMBER DISTRIBUTION ACROOS THE BOUNDARY IAYER 

If T, the temperature in the boundary layer, is a function only of 
~ (~ is defined in eq. (111-6)), the energy equation may be written 
(af'ter ref. 7): 

Til + PrfT' = -Prey _ 1)~(f1l)2 (Al) 

where Pr is the Prandtl number (assumed constant); f(~) is defined in 
equation (111-6) (also f' = u/ue ; see the following sketch of the sta-

tionary initial shock wave) and ~ == 
Ul - u 2 _= Ue 

Since equation (Al) is linear, the solution for T/T2 may be written as 
the superposition of solution for zero heat transfer (insulated wall) 
plus the effect of heat transfer. Thus if we write (from ref. 7) 
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For Pr = 1 

(A3) 

and 

s =(~ ~) (A4) 

where 

From (111-6) the relation between ~ and y is 

So 

(A5) 

Combining equations (A2), (A3), (A4), and (A5), we have 

Tw 
- 1 

~ T2 
T2 

Y 2xvw = Tw ~ + U1 
(f - ~) + 

ue 
1 

r ; 1 ~[~~ (f _ ~) + t(l - t') + t"(O) - tJ (A6) 
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From Rankine-Hugoniot relations 

Ul (y + 1) - - (y - 1) ue 

r(y + 1) _ (y 
u

e 
LI 

~ = ----=u-::-
2
---­

(y + 1) ~ - (y - 1) 
ue 

Note also that 

(y - l)Mr + 2 
----------- = M~ 
2y~ - (y - 1) 

From reference 21 we may write (for Pr = 1) 
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(A7 ) 

(A8) 

(A9) 

T: = A + B(~) + c(~) 
2 

(AlO) 

where (by substituting eqs. (A3), (A4), (A7), (AS), and (A9) in (A2)) 

_ 1 ( Y ; l)Mf + 2 ~ 
2 \2yMl - (y - l)~ 

y - 1 2 = 1 + 2 Me 

B = 0 

C = _I L::.J: (5y - l)~ + 2 Jl 
~ 2 \2y~ _ (y _ l~ 

y - 1 2 
= ---M 2 e 

We have now express ions for T/T2 (== T/T2(Me; u/ue )) (eq. (AlO)) and, 

from figure 4 (or ref. 7, table I), u/ue against ~/~5' We have an ex­
pression for y in terms of ~ (for given initial Mach number) in equa­
tion (A6). Also, if we choose an initial Mach number, we have fixed Me' 

T2/~' and Ul/ue (eqs. (A7), and (AS)). 

I 
d m 
u 
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Now we define 115 as 11 at 

Ul u - - -
lIe ue 0.999 
Ul = 
ue 

- 1 

we have 

U 
U = l.OO2 at y = 5 (11 115 ) 

e 
and 

115 = 2.59 

We may now calculate and tabulate u/ue and T/T2 against y at any 
given x (here) distance behind the initial shock). For MI = 5 eM1 = 

2.24)} we have tabulated these quantities in the following table: 

[Mi = 5; u1/ue = 3.0; T2/Tw = 1.892; Me = 0.5418; x = 0.2 foot; 

115 = 2.59; Mt2 = 1.045; M3 = 1.84] 

1]/115 u/ue T/T2 
(T/T

2
)1/2 

u/ue y(in.) M(y) 1] 
(T/T2)172 

0 0 3.000 0.5296 0.7277 4.123 0 1.045 

0.1 0.259 2.4001 .7201 .8486 2.828 0.00246 1.276 

.2 .518 1.8949 .8477 .9207 2 . 058 .00553 1.467 

.4 1.036 1.2893 .9611 .9804 1 . 315 .0127 1 . 712 

.6 1.554 1 . 0709 . 9914 .9957 1 . 076 .0203 1.807 

.8 2.072 1 . 0134 .9984 . 9992 1.014 .0281 1.837 

.9 2.331 1.0053 .9994 .9997 1.006 .0320 1.839 

1.0 2.59 1.002 .9998 .9999 1.002 .0359 1.840 



116 NACA TM 1418 

M(y) is the Mach number of the flow as seen in the coordinate system of 
the reflected shock and is calculated from U/Ue/(T/T2 )1/2 (the quantity 
tabulated in column 6 of the table) by the following relation 

(All) 

M(Y) is shown plotted against y in figure 9 . 

" 
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APPENDIX B 

A WEAK SHOCK REFLECTED AT A WALL 

If we consider a weak shock traveling into a stationary fluid and 
allow the shock to be reflected from a wall perpendicular to the direc­
tion of motion of the shock, we may describe this phenomenon in the xt 
plane as in the following sketch: 

t 

x 

Considering the weak shock to be a simple P-wave we may write 
Q == constant across the wave. Thus 

Q == na - u == Constant (ref. 13) 

or 

(Bl) 

2 where n = -----, a == local speed of sound, u == particle velocity, and 
y - 1 

o and 1 are subscripts in regions 0 and 1, respectively, of the 
preceding sketch. 

From the steady-flow energy equation and Prandtl's relation 

(wOwl == a*2), it may be shown that the speed of a weak shock (to first 

order in particle velocity) is 

Across the reflected shock, we consider P constant. Thus 

(B3) 
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We may also write an expression for the speed of the reflected shock 
with respect to the fixed wall (in a manner analogous to that for equa­
tion (B2)) 

(B4) 

or 

(B5) 

Now from (Bl) (and since Uo = ~ = 0) we have: 

(B6) 

and from equations (B2) and (B6): 

Wo = aO + (Y ~ 1) u l (B? ) 

From equation {B3) 

(BS) 

Combining (B5), (B6), and (B8), we have 

wr = aO + (3Y 4-5) ul (B9) 

Equations (B?) and (B9) are expressions for the velocity of the in­
itial and reflected shock waves (to first order in particle velocity) 
with respect to the laboratory coordinate system. From section III we 
have (eq. 111-13) 

- 5 
+ 1 

This corresponds to 
dWr 
dwO 

given previously, and from 

dWr dwr/dul 
dwO - dwO!dul = 

3r - 5 
4 

Y + I 
4 

CiMtI which checks the limit Ml -+ 1 for ~. 
1 

3r - 5 
Y + I 

l 
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APPENDIX C 

CALCULATION OF ANGLES OF THE INTERACTION PATTERN 

In calculating the angles of the interaction pattern we have assumed 
the proposed model of section IV, which is shown in the following sketch: 

A 

If we have a given Ml , then M3 and Mt l are known from equations 
11-23 and 111-7, respectively, or from figure 10. With Mbl known, the 
stagnation pressure of the boundary- layer fluid may be calculated from 
isentropic relations or, for the case of compression preceded by a normal 
shock (as in the preceding sketch), by the Rayleigh pitot formula (ref. 
12, eq. 100) 

(Cl) 

Making the assumption that the pressure in region OAB is equal to the 
stagnation pressure of the boundary- layer fluid, we may use (from ref. 
12) the relations for oblique shocks : 

Pstagbl 
(y + 1) + (y - 1) 

_~ P3 M3 sin2 (COA ) ;:: -----""""2r- - - - - (C2) 



120 NACA 'I'M 1418 

and 

(C3) 

Pstagbl 
(y - 1) + (y + 1) 

P3 

Since M4 is known from normal shock relations) we can solve for 

the unknown angles COA and COB from these two relations. This has 
been done) and the results tabulated in the following table . The angles 
COA and COB are plotted against Ml in figures 28 and 29) along with 
measured values. 
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[ y 1.4] 

Ml M3 Mtl Pstag
b1 

Calculated Measured 

P3 
COAO COB

O COAO .COBO 

1.4 1.37 0 . 945 1.77 71.4 8 .5 

1.6 1.51 0.95 1.77 58.4 11.0 

1. 8 1.625 0.97 1.806 53.2 12.0 55.5 13.0 

~ J ~ I I 55.0 12.5 
58 .0 12.5 

2.0 1.731 1.00 1.892 50 . 2 12.8 

2.15 1.81 1.03 1.96 48 . 5 13.4 55.0 14.0 
51.0 13.6 
53.0 15.1 
51.0 13.5 
49.0 14.5 
50.0 14.7 
50.0 16.0 
49.0 12.5 

2.4 1.91 1 . 085 2.10 47 . 0 14.45 

2 ·.6 1.98 1.13 2.22 46.2 15.3 

2.8 2.05 1.18 2 . 37 46 .0 16.35 

3.'0 2.105 1.24 2.53 46 . 5 17.4 47.0 19.0 

j j j j I j 
51.0 18.0 
47.0 15.0 
48.0 19.0 

3.4 2.20 1.34 2.86 47 .0 19.4 

3.8 2.27 1.45 3.25 49 .0 21.6 

4.0 49 20 

J 4 7 22 

4.24 2.33 1 . 575 3 . 72 51.2 23.7 49 23 

4.6 2.37 1.68 4.13 54 . 0 25.6 

5.0 2.41 1. 81 4.67 57.2 27.6 
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APPENDIX D 

REYNOLDS NUMBER FOR THE REFLECTED SHOCK - BOUNDARY-LAYER INTERACTION 

The Reynolds number as defined in section IV is 

Re == (Dl) 

For the series of photographs in figure 41, the Mach number of the 
initial shock was kept constant. At constant ambient temperature, con­
stant Ml means that every term of the preceding expression is constant 

with the exception of x, the distance of the reflected shock from the 
reflecting wall. Rewriting the expression (Dl), we have: 

(D2) 

For given Ml and aI' the values of u2 , u2/al , and Mhz may be 
calculated from expressions (11-17) and (111-7) of the text. Values of 
p and ~ are available in reference 12 as a function of temperature. w w 
It has been pointed out previously that the wall temperature is assumed 
to be unchanged with the passage of the shock and thus Pw and ~w are 

obtained at the ambient (initial wall) temperature. Thus, for Ml = 2.15, 

a l = 1130 feet per second, and PI = 0.9 inch mercury absolute (= 2 . 285 
cm Hg abs), we have: 

From (111-7), 

Mhz = 1.03 

From (11-17), 

Thus, 

u2 1590 feet per second 

From reference 12 

at Ml = 2.15 



NACA TM 1418 123 

P2 = 0.002378 X 2.~~5 X 5.226 = 3.73XlO-4 slug/eu ft 

and (from ref. 12) ~w = 1.21XlO- 5 1bjft-sec 

= 3.76XlO- 7 slug/ft-see 

Thus (by interpolating for x from the photographs of figure 41J 
x = 0.462 ft) 

3.73XlO-4 X 1590 X 0.462 X 3 . 085 X 0.656 6 
Retr = = 1.47XlO 

3.76XlO- 7 

Similarly (by interpolating the photographs in fig. 42 J PI = 1.35 in. 

Hg abs) J from the experiment during whieh the Reynolds number was varied 
(at Ml = 2 .15) by varying the density only (distance from reflected wall 

was kept constant at x = 0.325 ft)J 

5.6XlO- 4 X 1590 X 0.325 X 3.085 X 0.656 

3 .76XlO-7 
1. 56Xl06 
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APPENDIX E 

CALCULATION OF THE SIZE OF THE SHOCK-WAVE - BOUNDARY-

LAYER INTERACTION 

From reference 5, equation 6.9 (in our nomenclature, and for 
and y = 1.4), assuming Tw = Tl , we have: 

0* u2 r, 2Ul - u2 _ (-J2 _ 1) u2 l 
~ = Ul - u2 Ll + 5Ul + u2 5Ul + U2J 

0* is the boundary-layer displacement thickness defined by 

Pr 1 

(El) 

(E2 ) 

and is positive if defined as given here. p(y) is the density across 
the boundary layer; u(y) is the velocity in the boundary layer in a 
coordinate system moving with the initial shock. 6 is defined in equa­
tion 6.4 of reference 5 as 

6= (E3) 

where Xi is the distance behind initial shock. 

Combining equations (El) and (E3) and solving for 0* at Ml = 2.0 

(the Mach number to which a nominal shock of Ml = 2.15 has decayed in 

144 in. of travel), and solving for ~w and pw from reference 12 at 

Tw = 5300 F, we obtain (since fixing Ml at a given temperature fixes 

Ul and u2 ) 

* -3 C-o = 0.7XlO ~xi (E4) 

where Xi is in feet. 

Now in terms of x, the distance the reflected shock has traveled 
from the reflecting wall, 

x. == (1 + Ul \x == (1 + Ml ~. v 
1 Ur~) Mbl~ 

(E5) 

1 
I 

r 
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Thus: 

6* = O.7XlO-3 x (E6) 

Now from section IV we have (eq. (IV- 7 )) 

11 = k-{t372 (E7) 

where 

k = 

and kl is defined by the expression for h(t)) the height of the stream 
of fluid entering the ball (section IV). 

Now since 

x = u t 

We may write (E7) as 

Thus substituting from (ES) we have: 

If we use 

8 Pbl 
3:rr P 

sta~1 

* 6 for h we have finally: 

S ~l 
11 = 3:rr P stagb I 

(ES) 

hx (E9) 

(E10) 

Substituting from (E6) for 6* we can calculate 11 for given initial 
conditions at a given distance from the reflecting wall. For example) 
at 
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we have (for y 

thus 

and from (E6) 

and from (ElO'): 

or 

Ml = 2.0 

Tl = 5300 F 

x = 0 . 22 foot 

1.4, from fig. 10) 

~l = 1.0 

0.634 

5* = 0.7XlO- 3 i/3XO.22 0.568XlO- 3 foot 

:~ (0.634)(0.568XlO- 3 )(0.22) 

~ = 8.21XlO-3 foot 

9.84XlO- 2 inch at x = 0.22 feet 
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