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.Tlieevaporation velocity of liquid “tiopletisunder VWious con&ti&
is theoretically calculated and a“number,”,offactors are tnv~stiga$~d””,,j:
which are neglected in’carryi~oy~ the fyndhental equation of ,MtieLIF..
It is shown that thd’effect of”theee facto~s at”the small drop sizes and’”‘
the small weight concentrations ordinarily occurring i,nfog cw be.calcu-
lated by simple corrections. The evaporation process can be regarded as
quasi-stationar~ in moat cases. .,., ,.,.,,:.-, ..- .,

The question at hand, and also the equivalent question of the veloc-
ity of growth of droplets”in a supersaturated atmosphere)-is highly sig-
nificant In meteorology and for certain industrial purposes. Since the
literatiareconcernin& this is very insufficient.andmany impor}ant ae-
pects either ar6 not considered at all or are reported incorrectly it
eeeme that a short discussion is not superfluous. Especial consideration
will be given to the various assumptions and neglections that are neces-
sary in deriving the fun@ental””equation of Maxwell. The e~erimental
work available, which is very ins@ficient and in part poorly dependable,
can be used as an accliratecheck on’the theory onlj in very few cases.

.. .;. ,-

1. TBE FUNDAMENTAL EQUATION
::.

., .,.,. . ,.”

The theory of the evaporation process In a gas atmosphere owes its
beginnings to Maxwell (reference1) and Stefan (reference2). The theory
rest% ‘onthe assumption that the vapor in the immediate neighborhood of
the liquid surface is completely saturated, and that consequently the
velocity of evaporation depends simply on the velocity of.,di,ffusionOf:th?tia.
vapor into the surrounding space. This viewpoint was”e=erime”ntally

*The term “Velocity”as used.im this re@t corresponds to “rate”
as currently used.in American repbrtq,. ““

IltromPhysikalische Zsitschrift.der Sowjetmnion} VO1. 6, 1934Y. ,;...,..
I?P“ 224-243,
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substantiated by Stef6n titi6H, end’als~ by.Wi&efi~ (reference3) and
except for a limitation.:1.~terdis,cueee,d,hfurther)is regarded as an estab-
lished fact.

,,. ,... ..... ,...-....
......... .. ..

,.. . . .. , .,,..i).. ~.”.““!
Since diffusion and heat condu&iou’:are”physicallyrelated concepts

and are also completely equivalent processes from a mathematical view-
point, use can be made of the heat l%fisfer~theory,which has been worked
out in great detail, in the theoretical calculation of the velocity of
evaporation. ,. ,.,,,

..~.ow,.t~to the derivationof the fundamental equation for the ve-
locity of,:e,tiaporationtismall droplets in a gas atmosphere. To do so,
a seri~,o.f:s$~lifyi~,ass~~tions ~’st-be made., .Later, these assump-.+...!.,1..
tio~:,,w.i~l,~e‘ekAmined,oneiby,one ‘“apdcdrrespondl~ correetj’ickWwill be:
introi.ucedfn thb;fundamenta l,e’quatton.The aseumpt.ions+?e: ‘~. . ~. ....../..!.,,,,( .’,., .,,..

,...-‘,,.. ,,.,,. . . . . .‘.,., ,..,.-
1, The’”&Qp is’”spherical, “,, “ ,: ,, .,. : :, ; ,;. ., ... .

../.”
2...Th:~e“isno motion of the drop relative to,the ~as’atmosphere;’,..,,

,...
......

.. . .., 1....:..-. . . . ....
.3. Ths atmosphere exten& .,&bounde-d.inall directions.

,.
i- .:..-. ,. ... . . .,,
4. The atmosphere is all at-’tJ&same temperature and pressure. The ,.

., .. ‘lowering of,temperatwe of the drop is,neglec$ed because of:,:,,... .
‘t%%evaporation,., ‘

,,,.
.. ,.,.. . .,, .,. .
“5tjThee+aporationprocees is stationav~. ‘ “ ‘“ “

...,,. .,. <,,, ,, .. ,.‘
6“;“The”vaporis saturatdd on ’the”s~faee of the drop: .

.,

,.

7. The vapor pressure of the drop is vanishingly small in comp&ison

Since
,.,.,,,

,,.
“4 .,,,., ..,..

—
with the total pressure.

the process takes place sphere-symmetrically,Fickls law,

.,
,.:m &=Mc.. . ,:

,,a” ,. ..-. .
!, ’4..,. ,.’..”.;.

..exprdeeedin sp’h6ricalcoordinates, beoomes
..,” .,,, .. ,,

,.
~(cr) = j L32(cr)‘

at &2

,,
,. (1)

. ... .,,
;’. .,,, .

,., :.
,, ,. ... ,.,

+
!“-, ,,,

. . . .,
. ..

,. (2)

In the stationary instance this reduces to

_=o
dr2

(3)
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or, integrated ....”” .“.’,,. .... ,. .,.
Bc= A+, F (4)

If co is the concentration of the saturated vapor, and c1 the concen-

tration at infinite distance from the drop, then there is obtained:

c- c1 = (co - cl): (5)

where a is drop radius.

The amount of substance (eqm?essedin moles) diffusiti awaY Per unit ..
time is (reference1),

10
z “dc

= -4xDr ~= kfiaD’(co- cl) (6)

Therefore the velocity of evaporation of the drop in a gas atmosphere, ‘“
as opposed to evaporation in a vacuum, is proportional to the diameter
and not the surface. [Resultsare substantiated by Sresnewski (reference
4) and Morse (reference5.) Topley and Whytlaw-Gray (reference 6)
checked experimentally formula (6). Since

where

7 liquid density

v drop volume

M, molecular weight of liquid
. .

Then,;from equatl.oh,e(6)and (7)

A(S2 = _ 2(:0 - am”= ~,
dt

a constant,
Y

(7)

(8)“

that is, the drop surface changes linearly with time. Here, equation (6)
is assumed to hold even for constantly changing drop size. This is true,
down to a certa$n drop size, for the most widely different experimental
conditions.

I
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A correction must be applied to equation (6)if the previous assunp
tions are not fulfilled. lAJ.so,without loss of generality} o can be
written for cl. Then equation (~) becomes

,...
., c = coa/r (5’)

and equation (6)
,..,

10 =.hfiaDco (6’ )

II. FINITE VAPOR PRESSURE.:,.
,.

Firse, let fall the assumption that the va>or pressure of the liquid
is vanishingly,emallcompared to the gas pressure. Since the total pres-
sure is ever~here the Same, so must there be a concentration lowering of
the gas equal and opposite to that of the vapor. Since, however, in the
stationary state no flow of the ~as can take place> so must the diffusion
of the vapor be compensated by a convection current of the gas mixture
directed tiward the outside. The velocity of this current will be deter-
mined by the following equation:

=D~&c‘u

where the concentration of the gas has been designated as c~, and the
diffusion coefficient of this in the valor as Dt. But IN = D and

dc~ ._&. Therefore
F dr

D dc
u= - -. -.~1 * (7’)

The total vapor flow then becomes

.If c
‘“’”then
::..

is designated as c + cl, the constant “totalmolar

(8’)

concentrateon,



from which (reference2) . .
. ,1=-hxaDC lnf”l”-~’j

..
...

(Concentrationof sat~ated vapor is co.) (For r = ~> CL = O ● )

. . ,.
Exp&ion of the logarithm leads to .

5

(9)

(10)

As”tiftrst approximation, the ’percent,errors_involved“inusing (61)
“CanalItite,adof (10)’is- co/2C,. ,Forwater vapq~ at2~,, ,

p’ixmsure,this amoimts to o-y 1..2percent. .. ,

III. LIM~TED SPACE OF,EV@@.TION

Here will be considered only the case of absorbing::‘

athospheri.c

walls, on which
there obtains a constant v~,porpressure. With nonabsor~ing w~ls the
process is obviously not stationary and will be dealt with in iinother
section.. ...,.., ,, .,,.:’
,. .,

Ifj ,forthe ‘sakeof simplicity,’it is ~sq~ed,that ihe”vei!selis
.’e~heric~’an~;that the drop is’located”in’”thecent~r, then there i,s’ob-
tained, instead of (>) and (6),

(c~– “ci)a R - r
c ‘CR+ —.—.-—... —--— (11)
:.: r . R-a . :: .

,.

k co-cR)aI)= 10. . ... l=,.( .—— - . (12)..’. ....” ...
... . .. 1-”.3 ‘ ~._s ;. .... .

,, R, , R.,
,,... < .,
where R js the:vessel-radius,and the co&stant va~or concentrationat
the wall Ie designatedby cR. A vessel large with respect to the drop

size haq”practlcally~no influence on”the velocity of evaporation; ::~”
...

.,
,. . .

. ., ‘, !. . . . . .
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IV. THE LOWERING OF T~ OF

BECAUSE OF ITS EVAPORATION

NACATM NO. Ia60

!rHEiw ““’”

This correction is the most important for volatile liquids. For the
derivation of this> first of al..l$the radiatign of heat and convection
currents will be neglected, and only the flow ok heat to the drop”by co~
duction will be considered. If it ia also postulated that the coefficient
of heat conduction is const-t at.all points of the gas atmosphere - that
is, independent of the temperature or composition of the gas-vapor mixture
within certain limits - th=~, in the stationary case the distribution of
the temperature aI@ the _itude of the heat flow are expressed, respec-
tively; itithe same formulas as ‘thedistribution of concentrationand the
velocity of evaporation, and can be.exp.ressedas:

Q= 4xK3 (T1 -To)

(13)

(14)

where T and T1 are the temperature at r and at infinite distance,
and To is the drop temperature with K the coefficient of heat conduc-
tivity end Q the heat flow per unit time. The heat used in evaporation,
however, is:

Qt = l.l = 4fialDco

(1 = molar heat of evaporation)”where D is,assumed independent
perature.

(TranelatorfsNote: By”virtue of Ita evaporative potential,

(15)

of tem-

a drop
initially at the same temperature“asits &mroundings, if quite volatile,
will evaporatively self-coolto a temperaturebelow that of’Its surround-
ings such that the heat flow from the outside will supply the latent heat
of vaporization,

... ..

In the stationary state Q’ must equal Qt or (reference1),

lDCO I.Dco
TL --To=—

K ‘~

Po
since Maxwell states co = ~. But To and PO are also related
vapor pressure equation

(16)

by the

I
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.,. P. = f(To) ., (17)

By (16)and (17) To and PO are clearly determined and are inde-

pendent of the size of the drop. The above-mentioned linear relationship
(equation (8)between the surface of the drop and the time remains u@le-
turbed by the lowering of the temperature.

In order to compare these form@as”~with experimental results, or to
determine the value of the diffusion coefficient; (16)and (17)are not
solved, but there is obtained directly from (14), (15), and (7)

Tl
l.l

-To=—=
41dKa

From the measured values of Q&#

To and PO (from (1”7)), and, finally,

For small TI - To equations (16)

71 d(a2)

WK.dt
(18)

there can be calculated T1 -To)

D (from.(8)). ,

and (17) can be solved by means of
the Clausius+lapeyron equation: and the follbwing explicit e~ression for
tha temperature loweri~ can be obtained:

(

l%J
I 10 l-— ,=

KRT12~
(19)

.,
.’ .,

This correction was used hyTopley and Whytlaw-Gray (reference6)
in their investigation of the rate of evaporation of small spheres of
iodine by means of a spiral-springbalance.. The values of D“ obtainad
in the manner described at various temperatures (14° to 30° C) differ
only about 1 to 3 percent from values determined dlrectl.y. The tempera-
ture lowering of the small spheres in this invest~gation was, however,.:
comparatively small (0.3° to 0.5° C). t

Similar me&nn?ements Were recently’tideby Hou&ton (reference7)
on water,droplets (a = ~@ -300w), which wer.ehu~on,very fine glass
fibers. The decrease in volume of the drop was measured microscopically.
The conventionalpsychometric formula which Houghton used for calculat-
ing the’temperature lowering led, of courqej to me.rkedlyva~ing values
of D. Since> In”this case>”the’temperat,tie.loweri~.ms a si@ficant
value (about 15° at 25° C and”in dry air); a-study mu~t be made of the
dependence of D on tempemture.. As a“first a~proximation} the aseump..,,
tion can be made that the coefficient of heat conductivity is constant,
as is the distribution of temperature .(13),:and then the aviage value
of l/2(K1 + Ko) can be taken for K in (16)0 The integration”ofequa-
tion (6) yields - for a variable D:

.
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‘BY differentiating (13), there is obtained:
,,.

For

...

See,
Book

dr dT—=
r2 a(T1 - To)

D it can be said, approximately, -

()
T2

D= D .-
0 T&

. .

(Tran.slatortsNote: Other investigators

3/2
()“,gm ‘.x,. .

Do ‘T/

(20)

(21)

give .,

. . .

for example, Sherwood, “Absorption and Extraction)” MoGraw-Hill
Co., Inc., 1937.) ,,

By substitution of this expression in (20)there is obtained:

“=%4% +=+’’0%2=’”’06s~~ ’22)..
Ji 5,, ,., .
0

(tihere D1 corresponds to temperature Tl). ‘+
;.,,

Therefore D must be replaced in equation (6)by the geometric mean

~; but for small tempetiture lowering the ordinary arithmetic mesn..
can be used.

;,
Use of that CUrV,9:W~tinow be made in Houghton~s r~sultsj which

shows tlm.evaporation of a Water tioplet at 21.7° C in perfectly”dry air,,.
.

and corresponds to a ~ =3.38 x 10A
dt

square centimetersper second.

If..~here”lsset, in equation ~18)j 7“= 1$ 1 = 106oo calori&$ ?14= 36,
?“ .,=6.0:X 10W c@Jcrns.ecO(reference 8) t~en,
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TL -To= 16.56°;To= 5.14°c; Co = 3.79x 10-7 moles per cubic centimeter

from which, according to (8), where c1 = 0,

,... D = & = 0.248
,.

,..
Finally, there csnbe calculated for. D at”O” C, according t: (21),

the value D =“0:224, which @ a good ap~roximation of the tabulated
‘value0.220 (reference 9)0 On the other,hand, the curves given.by Houghton
for evaporation in parti~w~ saturated air show strongly vary~ng values of
D- there could be considerable measurement error in the”determination of
‘“’t;evapor concentration.

.,.
In order to evaluate the magnitude of the heat transferby radiation,

which has been ne~ected, it WilI be ass~ed thak the drop and also the
walls of the vessel are.perfect black bodies. Then the heat influx.to the
drop by radiation can be expressed by the Stefan-Boltzmann equation:

‘“

,Ifthis equation is divided by (14), then:

Q K

(TranslatorfsNote: This approximation assumes that To <T~.)
..,.

–!5
By substituting the values ;o = 5.7 x 10 and K= 25koabsolute units,
(air at Tl = 290° K), there is obtained:

Therefore, the neglecting of radiated heat in the calculation of the
temperature lowering can introduce an error of only 2 percent at most for
a= 100~. Accordi~ to an investigation of Langmuir (reference10) the
effect of thermal convection can also be neglected.

.. . ..
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JWP AT THE DROP SURFACE

The unanswered question of Stefan and Winkelnwm concerning the exact
value of the concentration of vapor at’the surface of an evaporating body
can be solved in the usual mnner of gas kinetics. Quite analogous to
the changes of velocity and temperatures respectively} present at a solid
wall, there is a Jump in concentrationupon the s’tartof evaporation -
which was first reported by Langmuir (reference11). This Jump at atmos-
pheric pressure generally has a vanis~ng value on a flat surface, but
it is quite otherwise in the case of small drops, when the diameters be-
come compa?’ablewith “themeti”free path X of the ~por molecules.

,,,

One of the molecules escaping from the”surfacg will be, after travel-
ing the distance X’, at an average distance A from the surface. The
ratio $ = Ah certainly depends on the value of X/a and lies within
the limits 2/3 (for a>>~) and 1 (for a<<l). l?erunit time
4na2vco molecules-escape fro% the drop”eurfacp,,if Vco is the.,number”
of molecules Impingingon a square~entimete~per-unii time at a gas
concentration co. Here”the,tieualpresumption is made that the,coeffi-

cient of accouodation of “thevapor molecules on the liquid surface is “
exactly 1. At the same time 4flazvc1 vapor molecules condense on the

same surface, where c1 is the vapor concentration at a distance A
from the surface. Therefore, the resultant amount evaporating is equal
to 11 = 4fia2vm(co-cl). This must equal the amount”carried thrbughby

diffusion, 12 = bx(a+A)Dcl. If there is substituted for D the ex-
pression of Meyer 4/3 hvm, then there is obtained:

co
c1 =

‘I+ ~m
a2 —

I=
10

(23)

Forthe larger SEL1l drops (a.>> A, ‘/3~~ , therefore:

(24)
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Therefore, very small drops evaporate in a gas atmosphere with the
esme velocity as in a vacuum. Moreover, in solving equation (24) it is
possible also to start from the velocity of evaporation in a vacuum, in
that this Is multiplied by the yrobablllty”that an evaporated mblecule
does not again encounter the drop in its subsequent motion.

Equation (25) shows that the usual linear ch~e of drop surface
holding for small drops is no lon~er valid. Since X at atmospheric
pressure is of the order of 10--5centimeter, the correction calculateil
by (25) is already ~ peroent for a = lv, mnd 40 percent for a = O.@.
A decrease in the rate of change of,the dro~ surface, which began to be
noticeable at a g 1P, was actually observed by Spealcnanand Sever
(reference12) on a series of organic compounds. The explanation by
these authors that this phenomenon was due to a ,loweringof the vapor
pressure of the drop by dissolved nonvolatile impurities, can perhaps
also be true. Unfortunately, the curves presented in the above-mentioned
book do not permit a quantitative comparison with equation (25).

In a recent work by Woodland andMack (reference 13) an opposite
observation was made - an increase in d(aa)/dt upon diminishing the
size of the drop. The cause of this discrepancy must lie in something
else; in the proposed explanaticm oftheir findings, hcwever, these
authors come to very erroneous conclusions, such as the presence of a
layer of vapor, 0.5A thick, surrounding the.droplet, and,so on.., . !, ,.

It is easy to see that the correction.of the change of vapor pres-
sure as a consequence of the curvature of the.,surface ,andthe charge of
the drop can be neglected in comparison with the correc”t$onJust discussed..

.

VI, NONSTATIONARY PROCESS.

The exact calculation of the velocity of evaporation in the nonsta-
tionary case meets, in general, the,greatest mathematical difficulties.
Fortunately, in practice most of the conditions of the process,canbe re-
garded as quasi-stationary (that is, the process has at every ipstant
the same velocity as in the stationary state which corresponds to the
boundary conditions at that inatan~) as follows:
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Into the infinitely extended gas atmosphere, Itiwhich”the vaporcon-
centration is everywhere”zero, a drop of radius a is introduced at time
t = o. Apart $rpm the $uup in.conce~tration:atthe surface, and so forth,
the primary problem is thesolution of the differential eauatlon (2) with
the following boundary and Initial conditions, respective~: “

c =Oatt= O and r>a,

.“ c =co”at t;Oand r=a.
.. .,,..

“The,solutionis @ven by the

. 2+%
c

‘r&

follow&&expression:” ‘r ,: ,’

,,,
w

,.\.,.
...

. r-a.—
bt,
—,

‘2V’

.,
From this there is obtained,

.; ,.

.. .

(28)

Since ~~ at atmospheric pressure is of the order of magnitude 1, ‘
,

8 j
there can ‘besubstituted I ~ 10 ‘l + —!.

( @
The correction.amountsto

only 1 percent after 1 second, even in a heavy fog (a =’100u”). In order
to decide to what extent the evaportitionof a drop:can be regarded as
stationary, the”time interval tl” is compared,after which the,correction

term a/~fiDt reaches a definite small value & with the time t2
necessary for complete evaporationof ,thedrop.

Thus
.. .. az < ,,,.
. ,, “’t~.=— ,,..,,. ... .

@.2xD . .
and from.(8) : ,.,.

.,
,,.

t~ =
nay:,! ::, “.

2MDC0 “
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. .., .“

thererore .. .. .. ,..“ ..
.:. -,;- ..... . .

,...,,. ,..,,, : t; ,&&., . , , . ...’..“:(2j)
.m—“,,., ... . .......,,,- tz “A2YKD7 - ‘“ .,., . . ,...

,..’ .f,. .
. . .. .

:,. . .. . . .

If there are substituted the’values”A4”0.01; ,”M= 181 ,tid ; “;
-7

co = 3.79x 10 moles per cubic centimeter, which’’correspond~o the

evaporation of water dro~s in dry air at 21.T0 C (see above), then

tl
:.,,. .,,..,.

—= 0.043,tz or in other words, even after the course of the twentieth

part of the time of total evaporation the ,velocltyof evaporatioraexceeds
the velocity corresponding to the stationary state by only 1 percent. In
damp air or with less volatile liquids the approximation to the stationary
state is realized still more quickly. The effect of the gradual reduction
of drop size which was left unconsidered in the discussion will be de-
scribed further.

For the calculation of the velocity of evaporation of droplets of
solutions, the nature of the variation of vapor pressure at the surface
with time heoomes important. If it is assumed that the concentrationof
the saturated vapor is a time function c(t), then, instead of (27),
there is obtained

.>
c

,r

“c~t .-M] ;’2 dx (reference15)
—
~’fir 4DX2

L
r -a

(30)

which can be easily verified. From this is obtained (omittingthe repe-
tition of the somewhat detailed calculations):

I =-ka2D~= 4mDc(t) ~1+

(r=a)
!. , ,,., .

whe-~;”’cr:’mean8 ::&c/&.:”:‘ ‘VJ;’

c(o) + 2t

[l ~
C’[t 1 - x2)]dx

.!,* I,’‘. ~.: , , ,, ,4 <;$’ , \;.

i,., ,!. , ,, :,;,.. !, ,:, ,. q !.,.; ‘ , !!:,:;; ‘:;) ;; .,;., ..: ,
,. ,
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Whether or not an approximation to the stationary state is-possible
here depends on the special form of c(t). In general$ the following can
be said; wherein it is necessary to take into account the most important
practical c-es of the decrease in c(t)” with time. In order to reach a
good approximation of the stationary state$ it is sufficient that a/~
increase by a definite amount A after a time interval t, which is
small relative to the interval ts$ meanwhile the factor times aim
remains of the order of magnitude of 1, If Icl(t)l is designatedby
f(t) and it Is noted that: .

. c(t) = c(o) +
~/’ “:~)dt = c(o) - ‘ ( ‘(’x)&

then.this.factortakes the fo~owing.form:
1’

1: C(Q) - 2t:. .f[t(l-x2)]”dX
F= ‘

8
0(0)-t./. f(tx)dx

With decreasing f(t)

J-)1 1
n

1 f(tx)dx = )(f[t 1

0 0

and for ts the interval will be
original value, that is, the root

Q)=
2

In this interval F <2.

With increasing ?(t), that

./’
1

-X)ldx> f[t(l-x=)ldx

o

taken after which c(t) is half of its
of the equation

1

t I f(tx)dx
o.

value of t can be chosen for t3 such
that F vanishes; c(t) will then not reach l/2c(0). In this interval
I’<l. It is sometimes more convenient to use t3t c t3 instead of t=;
so that the equation c(o) = 2tf(t) is satisfied.

Now$ consider the continuous diminishment of the evaporating droplet
due to disturbance of atationariness., The strldt treti~iaentof this ~rob-
lem is extremely compltobted; as an approximate estimate use cm be made of
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the .followi~ considemtion. If there is originally a stationary state
corresponding to @rep radius &: and vapor concentration co, then,the

8tates arieing from a decrease in a
crease in co of MO at constant

followlng expres~lo”n:

{
=aca”’ “ r

c 1-C* 1
r LO .

and, respectively,

c= A
{

coa.-+o
r

of Aa a% constkt co, and a d-

a, respectively, ‘aregiven by the:

“( D-rFa+”& I
-9 “6’”

[1-$~jijj)]}
(V = Gauss’ probability function.)

If, now, eAco = c-, then these expressions can differ from each
other only by @ infinitely small amount in the second order. If,there-”,
fore, the time function co(t) = co(0)cp(t) is a good approximation of
the stationary state, then the equation a(t) = a(0)cp(”b)should apply
for decrease in drop size with time. For the evaporation of the drop
there can be substituted, as a first approximation, from (8)

a(t) =/a(O)= - kt. Here then:

and for t=t there is obtained

from which

tatk

a(0) =

,,

t3 t %0.6 * = 0.6 t,
k ..

(t~ is time of total evaporation.)

“Then,“returnto a n~rical factor 0.6 for equatibn (29); it follows
from this, that there can be asstid a quasi~tationary course of evapo-
ration of water droplets as a good approximation. This C@XIChlsiOIiobvi-
oue~ a~ees with the experimental reeulta of ~ought~n; -. .. : .“

--
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Thus far, ‘theevaporation of a single drop in an infinitely extended
medium has been considered. In practice it is necessary to do, however,
with a large number of droplets. Irithis case the evaporation of a drop
takes place as though it were in a vessel with nonabsorbing walls, the:’
volume of which vessel bei~ equal to the average volume enclosing each
drop. The rigorous solution of this problem is very difficult. Practi-
cally, for the small weight concentrations occurring in fog, that is, a
large mean distance between the drops relative to their diameter, a sim-
ple approximationwill serve. Then, assume that the droplet is in the
midpoint of a spherical vessel of radius R with nonabsorbing walls. Tk
distribution of concentration for different times is shown in figure 1
with dashed curves; the solid curves correspond to the stationary state
{for absorbing wal.lswith various vapor pressure, see sec. III).
(TranslatortsNote: The solid curve represents the stationary state for
the same boundary conditions that exist at a particular instant in the
nonstationary state.) It is easy to see that a curve of the first type
must, in fact, lie under the curve of the second type with the same end-
points. There results, therefore, for the velocity of evaporation in a
lmown time t + At, a lower limit. (See .equation (12). )

4fiaD(co-ct+~t)
11 =

.L_;

An upper limit can be obtained as follows<. It the drop is placed
at time t in sn unbounded space with vapor concentration et, then its

evaporationwill take place more quickly than in the vessel. In time
t + At it will reach the following value:

(see

then
each

12 = 4naD(co -
‘&+*)

equation (~)).

If the time interval At is chosen.such that

1+~=~
& 1-:

,.

the pictured curvee are actually obtained, which do not intersect
other more than once. The equivalence of the two expressions for

the amount of material’evaporated-in time interval At aid stored in
the gas atmotiphere,respectively,’yields:

. .
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.,: , .1‘“k.ll(co
“1-:’

:
,,,

where et(r) is the value
tion. By substituting the
is obtained

..’. ‘., ,.,

or, since

..-L

., a ,,

ct correspondi~ to
expression for c(r)

the stationary distribu-
(equation (11)), there

,, ., ykb(co - c~)At
“AC’= %At-%z B?

(32)

!“

(33)

At small values of a/R the stationary curves give a good e.pprox-
Imation. With the same approximation (32) can be regarded as a differ-
ential eqvatiti. By inte@at’ion, obtain’ ;. ..

. .

-3&t/R3
~:”, ;%. ......”

-3Dat/R ....’ ,.,’ I = 4fiaDcoe = Ioe
:. . .,,,

This equation is obviously only applicable when the decrease in vol-
ume of the drop can be neglected (at very small vapor pressures or pres-
sure differences). Otherwise, the.systenlofdifferential equations..(8)
and (32) must be solved, which usually presents no difficulties.

VII. MOTION OF TEE DROPLETS

The exact calculation of the velocity of evaporation of a droplet
moving with respect to the gas medium is scarcely possible. .Ina coordi-
nate system relative to the @op (that 1s, drop at r = 0, Z = O, u = O),
this problem leads to the differential equation:

(35)

where with ~ is meant the velocity veotor of the gas stream, the value
of this vector being detetined in space by the nature of the flow.



18 NACATM NO. 1160

Even in the si?mlest case of laminar flow, for which Stokes~ law holds,
and a stationar~ state, equation (35) ie practically insolvable. It can
be solved only for an infinitely small flow ’velocity:
is called V at a great distance from the drop, then

if this velocity
let

where the term V~
tribution caused by
aclat= 0):

and, since the last

-.

coa
c = —+wp

r

represents the disturbance of
the flow. From (35) there is

term can be neglected;

4=

expression for

the concentmtion dis-
obtained (with

o

; is substituted in,thie equation,
At two points which are s~etrical

If the Stokes

the following result is obtained:
with respect to the plane passing through the drop middle perpendicular
to the flow direction, @ possesses the same absolute value, but re-
versed sign. Since further, p vanishes on the surface of the drop and

. .a,t@finite, distance from it, then the application of the potential theory,.
.. ,lea@ to the conclusion that at two’diametrically opposite points on the

su~ace grad”@ has the ‘$amel“&@h and direction, that is, that the
acceleration of “t:heevaporation produced by the streiamon one side of the
drop is exactly c“ompensated”hythe slowing down of the procession the
other side.

This conclusion could approximately hold for a flow velocity, wherein
the transfer of material by convection can be neglected in comparison
with the transfer by diffusion - at least at distances not too far from
the drop, that is, when cl~l <<DI grad cl. If by substitution here
c = coa/r, there is obtained, ‘

coaV Dooa aV
~<<— rz ~ or —<<l

D

(a ~ r)
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Since it ts known that D ~~ (q is coefficient viscosity of the

medium, P Its density), then aV/D becomeg the familiar Reynolds
expression apV/~. For small Reynolds numbers (for example, for free
fall of fog droplets) a vanishingly small influence of the motion on the
evaporation velocity would be expected. The validity of this conclusion
obviously can only.be,dec.idedby an experimental procedure.

In conclusion, it shouldbe sai~ ~ain that all the considerations
and conclusions carried out ‘hereare also directly applicable to the
reverse process - the grotih of drops In a supersaturatedvapor.

Translation by Joka Nelson Howard and Mitchell Gilbert,
National Advisory Committee
for Aeronautics. . ~~ ~ ‘

,. .,
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