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| 'CONCERNING THE VELOCITY—OF EVAPORATION OF SMALL DROPLETS
IN A GAo AE‘M.OSPHEREl _

By N. Fuchs
SUMMARY

The evaporation velocity of liquid droplets under various conditiong
is theoretically calculated and a ‘number of factors are investlgated o
which are neglected in’ carryin° out the fundamental equation of Maxwall.._
It is shown that thé effect of these factors at the smeall drop sizes and
the small weight concentrations ordimarily occurring in fog cen be .calcu-
lated by simple corrections. The evaporation process can be regarded as
quasi—stationary 1n most cases. .

The question at hand, and also the equivalent question of the veloc—
ity of growth of dropnlets inh a Bupersaturated atmosphere, 1s highly sig—
nificant in meteorology end for certain industrial purposes. Since the
literature concerning this is very insufficient and many important as—
pects either aré not considered at all or are reported incorrectly, it
seems that a short discussion is not superfluous. Especial consideration
will be given to the various assumptions and neglections that are neces—
sary in deriving the fundemental equation of Maxwell. The experimental
work available, which is very insufficient and in part poorly dependable,
can be used as an accurate check on the theory only in very few cases.

I. THE FUNDAMENTAL EQUATION .

The theory of the evaporation process in a gas atmosphere owes its
beginnings to Maxwell (reference 1) and Stefan (reference 2). The theory
rests on the assumption that the vapor in the immediate neighborhood of
the liquid surface is completely saturated, and that consequently the
velocity of evaporation depends simply on the velocity of diffusion of tle
vapor into the surrounding space. This viewpo;nt was experimentally

The term.'Wé1001ty' ag uged in this ronort corresponds to 'rate"
as currently used in American rejorts. ’

1From Physikalische Zszitschrift der Sowjetunion, . vol. 6, 1934,.
pp. 22hk-243, .
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substantiated by Stefan himself, and also by Winkelmsnn (reference 3) and
except for a limitation ‘later discussed further, is regarded as an estab—
lished fact. : .

Since diffusion and heat conduc¢tion-are physically related concepts
and are also completely equivalent processes from a mathematical view-
point, use can be made of the heat transfer theory, which has been worked
out in great detail, in the theoretical calculation of the velocity of
evaporation.

-Now, turn to the derivation of the fuudemental equation for the ve—
locity of eveporation of small droplets in a gas atmosphere. To do so,
a series, of ‘eimplifying. asanptions mist be made. . Later, these assump—
tions. will be examined :one :by. one and corresponding corrections will be-
introduced 1n the fundamentel equation. The essumptlons are. TR e
1.1k arop 1s"ephorical. RS ST L
d12..There'is no motion of the drop relative to the ges”atmospheree ;n_'.
'33 The atmosphere extends unbounded in all directions.

. h The atmosphere is all at the ‘same temperature and pressure The o
. " lowering of temperature of the drop is neglected beceuse of:. '
the eveporation

':5, The eveporation process is stetionerj
6. The' vapor is saturated on the surfaCe of the drop,

T The vapor pressure of the drop 1s vaniehingly small in comparison
with the total pressure.

_Since the process takes place sphero—symmetrically, Fick's law,
d o S

= DAc g ‘ : 1

LT W

B TR
Yea

expreesed in spherical ccordlnetes, becomes

- ofer) _ Ba(cr) . - -.:M_f';'fl :r. ;
ot . ora ) o (2)

In the stationary instance this reduces to
3% (cx)
dr?

-0 | (3)
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or, integrated o
c=A +€; (4)

If c¢p 1is the concentration of the saturated vapor, and c¢3 ‘the concen—
tration at infinite distance from the drop, then there is obtained:

c-clﬂ(Co"'él)% (5)

where a 1s drop radius.

The amount of substance (expressed in moles) diffueing away per unit .
tlma is (reference 1), : .

= —nDr® E; = hnaD(co - c1) ' " (6)

Therefore the velocity of evaporation of the drop in a gas atmosphere,

ag opposed to evaporation in a vacuum, is proportional to the diameter
and not the surface. (Results are substantiated by Sresnewski (reference
k) and Morse (reference 5.) Topley and Whytlew-Gray (reference 6)
checked experimentally formula (6). Since

I =28 _ _ 2nmay a(a?) (1)
° M dt M dt .

where
7 liquid density
v drop volume

M golecular weight of liguid

- Then, from equations (6) and (7)

(a2 o = 6, )MD .- ' : :
dé: ) - _ 2(co > cayJMD k, a constant, (&)

that 1is, the drop surface changes linearly with time. Here, equation (6)
is assumed to hold even for constantly changing drop size. This is true,
down to a certain drop elze, for the most widely different experimental

conditions.
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A correction must be applied to equation (6) if the previous assump—
tions are not fulfilled.  Also, without loss of generality, o can be
written for cj;. Then equation (5) becomes

coa/r o (5*)

- e
and equation (6)

Iy = bnaDe, (6')

1}

II. FINITE VAPOR PRESSURE

Firse, let fall the assumption that the vapor pressure of the liguid
is vanishingly smsll compared to the gas pressure. Since the total pres—
sure is everywhere the same, so must there be a concentration lowering of
the gas equal and opposite to that of the vapor. Since, howsever, in the
stationary state no flow of the gas can take place, so must the diffusion
. of the vapor be compensated by a convection current of the gas mixture
directed toward the outside. The velocity of this current will be deter—
mined by the following equation:

‘ dc*
g = DY ———
clu=D 3

where the concentration of the ges has been designated as c¢', &and the
diffusion coefficient of this in the vapor as D'. But D' =D and

Qﬂl = - QS. Therefore
dr dr

D d ' _
u=-g?af.' (")
The total vapor flow then becomes
- 2 = . = - 2 ,__ —— ) ]
I = bnr (Ddr cu) br2 D <+ ) (8")

_If C 1is designated as c¢ + c', the constant'total molar concentration,

“f then

YT ¢ DC
c
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from which (reference 2)

I = ~knao 1n'('1'~39\ e (9)

(Concentration of saturated vapor is co.) (For r =«, c; = 0.)

' Expapéioﬁ'of the logarithm.léads 5o _
lmaDco <1 + —>_ I, ( > n - (10)

' ' As'& first approximation, the percent. errorsoinvolved in using (6')
1nstead of (10) is co/EC For water vepor at 20 C and atmospheric

pressure, this amounts to only l.2 percent.

III. LIMITED SPACE OF EVAPORATION

Here will be considered only the case of absorbing walls, on which
there obtains a constant vapor pressure. With nonabsorbing walls the
Process 1s obviously not stationary and will be dealt with in another
section. . .

Ir, for the sake of 31mplic1ty lt is assumed thet the vessel is
~spherical and' that the drop is located in the center, taen there is ob—
tained, instead of (5) and (0),

(co - cR)a R - r
c = . 11
;- aCR * r . R-a SRR (11)
- I
I = %ﬂ(co : qR)aP - o . (12)
a a
: l —— - l~'-—- —_—
R R .

where R is the veesel—radlus, and the constant vauor concentration at
the wall is designated by Cr. A vessel large with respect to the drop

size has practically . no influence on the velocity of evaporation. %




6 ' NACA TM No. 1160

IV, THE LOWERING OF TEMPERATURE OF THE DROP
BECAUSE OF ITS EVAPORATION

This correction is the most importent for volatile liquids. For the
derivation of this, first of all, the radiation of heat and convection
currents will be neglected, and only the flow of heat to the drop by con—
duction will be considered. If it is also postulated that the coefficient
-of heat conduction 1s constant at. all points of the gas atmosphere — that
is, independent of the temperature or composition of the gas—-vapor mixture
within certain limits ~ then, in the statlionary case the distribution of
the temperature and the megnitude of the heat flow are expressed, respec—
tively, in the same formnlas as the distribution of concentration and the
velocity of eveporation, and can be expvessed ag:

\
a
T, - T. -;(Tl = To) (13)

)
L]

knka (Ty - To) _ (14)

where T and T; are the temperatures at r and at infinite distance,
and To 1s the drop temperature with KX the coefficient of heat conduc«~

tivity and @ ‘the heat flow per unit time. The heat used in evaporation,
hovwever, is: _ f

Q' = Il = UralbDe, ' ' (25)

(1 = molar heat of evaporation) where D is assumed independent of tem—
perature.

(Translator!s Note: By virtue of its eveporative potential, a drop
initially at the seme temperature as its surroundings, if guite volatile,
will evaporatively self—cool ‘to a temperature below that of its surround—
ings such that the heat flow from the outslide will supply the latent heat
of vaporization ) o

In the stationary state Q mst equal Q' or (reference 1),

1Dc, cho

K KRT, (16)

T1~To=

P
since Maxwell states c¢o = RTQ' But T, and py are also related by the
vapor pressure equation
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=£(T,) . .. an

By (16) and (17) T, and py are clearly determined and are inde—

pendent of the size of the drop. The above-mentioned linear relationship
(equation (8) between the surface of the drop and the time remeins undis—
turbed by the lowering of the temperature.

In order to compare these formulas with expérimental results, or to
determine the value of the diffusion coefficlent, (16) and (17) are not
solved, but there is obtained directly from (14), (15), and (7)

Iol = 71 d(&z) | (18)

Ty, - To =
LU0 T bnKa oMK . at

From the measured values of Qi%%l there can be calculated T; — To,
Ty eand py (from (17)), and, finally, D (from.(8)).

For small T, — To equations (16) and (17) can be solved by means of

the Clausius—Clapeyron equation, and the following explicit expression for
the temperature lowering can be obtained:

_ ) laml\ ’ . ) ’ P
I=1, <1 ) | (19)

This correction was used by Topley and Whytlaw-Gray (reference 6)
in their investigation of the rate of evaporation of small spheres of
iodine by means of a spiral-spring balance.: The values of " D" obtained
in the manner described at various temperatures (14° to 30° C) differ
only about 1 to 3 percent from values determined directly. The tempera-—
ture lowering of the small sphures in this investigation vas, hOWever,
comparatively small (0.3° to 0.5° ).

Similar measurements were redehtly'hade by Houghton (reference 7)
on water droplets (a = 50u — 300u), which were hung on.very fine glass
fibers. The decrease in volume of the drop was measured microscopically.
The conventional psychrometric formula which Houghton used for calculat—
ing the temperature lowering led, of course; to merkedly varying values
of D. BSince, in thig case, the temperature lowering has a significant
value (about 15° at 25° C and in dry air), a study must be made ‘of the
- dependence of "D on temperature. As a first approximation, the assump—..
tion can be made that the coefficilent of heat conductivity is constant,
as is the distribution of temperature (13), and then the average value
of 1/2(Ky + Ko) can be teken for X in (16). The integration of equa— . .

tion (6) yields — for a variable D:
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I =452 | (20)
jr Dr2
a

"By differentiating (13), there is obtained:

~r2  a(Ty ~ To)

dr . __ &

For D it can be said, approximately,

P\2
D=2, (& (21)
o

(Transletor's Note: Other investigators give

p_ (e /2

Dy To/
See, for exampls, Sherwood, "Absorption and Extraction,” McGraw-Hill
Book Co., Inc., 1937.)

By substitution of this expression in (Qo)there is obtained:

_ Mhrega(Ty = To) _ L. Ty — |
I= T T = lfx'acoD,E; = bncgqa DllD_o | (22)
D
Q

(where D, corresponds to temperature Tl) .

Therefore D must be replaced in equation (6) by the geometric mean
vD1Do; but for small temperature lo_wering the ordinary aritlmetic mean
can be used. '

Use of that curve. will now be made in Houghton 8 results, which
shows the evapora.tion of a water droplet at 21.7° C in perfectly dry air,

a2
and corres'ponds to a gé—t-—) = 3.38 X _10 square centimeters per second.

If -there ' is set, in equation (18); 7'=1, 1= 10600 calories, 2M = 36,
KJ'a 6.0 % lO ca_l/cm .eec' . {(reference 8) then, :
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Ty — To = 16.56% To = 5.14° C; co = 3.79 X 10~7 moles per cubic centimeter

~ from which, according to (8), where c; = O,

D = /HoD, = 0.248

Finally, there can be caleulated for. D at 0° C, according to (21),
the value D ='0.224, which is a good approximation of the tabulated

‘value 0.220 (reference 9). . On the other hand, the curves given by Houghton

for evaporation in partially saturated air show strongly varying values of

.D; there could be considerable measurement error in the determination of
"the vapor concentration.

In order to evaluate the magnitude of the heat transfer by radiation,
which has been neglected, it will be assumed that the drop and also the
walls of the vessel are perfect black bodies. Then the heat influx to the
drop by radiation can be expressed by the Stefan—Boltzmann equation:

]

Ql' = ,-‘-1‘[3.20 (TJ_4 - To4)

If this equation is divided by (14), then:

e

Q- baoT,®
Q ‘K

T
(Translator's Note: This approximation assumes that T, -i%.)

By substituting the values ' 0 = 5.7 X 107° and K = 2540 absolute units,
(air at T, = 290° K), there is obtained:

Q1
T - 2.19a

Therefore, the neglectlng of radiated heat in the calculation of the
temperature lowering can introduce an error of only 2 percent at most for
a = 100 p, Acécording to an investigation of Langmuir (reference 10) the
effect of thermal convection can also be neglected.
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V. CONCENTRATION JUMP AT THE DROP SURFACE

The unanswered question of Stefan and Winkelmen concerning the exact
value of the concentration of vapor at the surface of an evaporating bvody
can be solved in the usual manner of ges kinetics. Quite analogous to
the changes of velocity and temperature, respectively, present at a solid
wall, there is & Jump in concentration upon the start of evaporation —
which was first reported by Lengmir (reference 11). This Jump at atmos—
pheric pressure generally has a venishing value on a flat surface, but
it is quite otherwise in the case of small drops, when the diameters be—
come comparable with the mean Tree path A of the vapor molecules.

One of the molecules escaping from the surface will be, after travel—
ing the distance- N, at an average distance & from the surface. The
ratio B = /h certainly depends on the value of A/a and lies within
the limits 2/3 (for a >>A) and 1 (for a << A). Per unit time
kxa2vc, molecules escape from the drop surface,.if veo 1is the number’
of molecules impinging ‘on & square—centimeter—per—unit time at a gas
concentration c¢o. Here the usual presumption is made that the coeffi-
cient of accommodation of the vapor molecules on the liquid surface is
exactly 1. At the same time Yma2ve; vapor molecules condense on the
same surface, where c¢; is the vapor concentration at a distance A
from the surface. Therefore, the resultant amcunt eveporating is equal
to I, = 4na®wm(co — ¢;). This must equal the amount carried through by
diffusion, I, = hn(a + A)Dcy. If there is substituted for D the ex—
pression of Meyer U4/3 )wvm, then there is obtained:

o1 = S0 (23)
1, b/3Ne & gN) o
a2
I= To (24)
1+ & A_o_B
3 s S a+ BA

~o

For the larger small drops (a.>> A, B % s therefore:

Io

e

(25)

1+22
3 a
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< ;-However, for the very small drops: (e << A, B = 1)

1% — &xg?co . hﬂa?covm _ hg&?covm_ ' '  (26)
T BN A 3a_3_=a_ 322 .
1+ 3a a+A T+ L2 ha+ 1+ h 72

Therefore, very small drops evaporate in a gas atmosphere with the
sams velocity as in a vacuum. Moreover, in solving equetion (24) it is
possible also to start from the velocity of eveporation in a vacuum, in
that this is multiplied by the probability that an evaporated molecule
does not again encounter the drop in its subsequent motion.

Equation (25) shows that the usual lineer change of drop surface
holding for small drops is no longer valid. Since A at atmospheric
pressure is of the order of 107 centimeter, the corrsction calculated
by (25) is already 7 percent for a = lu, and 40 percent for a = 0.lu.
A decrease in the rate of change of the drop surface, which began to be
noticeable at a = 1y, was actually observed by Speakman and Sever
(reference 12) on a series of organic compounds. The expleanation by
these authors that this phenomenon was due to a lowering of the vapor
Pressure of the drop by dissolved nonvolatile impurities, can perhaps
also be true. Unfortunately, the curves presented in the above-mentioned
boock do not vermit a quantitative comparison with equation (25).

In a recent work by Woodland and Mack (reference 13) an opposite
observation was made — an increase in d(a2)/dt upon diminishing the
8ize of the drop. The cause of this discrepancy met lie in something
else; in the proposed -explanation of. their findings, howsver, these
authors come to very erronmeous conclusions, such as the presence of a
layer of vapor, 0.5p thick, surrounding the droplet, and so on.

It 18 easy to see that thé correction of the change of vapor pres—
sure as a consequence of the curvature of the.surface and the charge of
the drop can be neglected in comparison with the correction Just discussed.

VI. NONSTATIONARY PROCESS .

The exact calculation of the velocity of evaporation in the nonste—
tionary case meets, in general, the. greatest mathematical difficulties.
Portunately, in practice most of the conditions of the process can be re—
gerded as quasi-stationary (that is, the process has at every instant
the same velocity as in the stationary state which corresponds to the-
boundary conditions at that instant) as follows:
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Into the infinitely e¢xtended gas atmosphere, in which the vapor con-
centration is everywhere zeroc, a drop of radius a 1is introduced at time
t = 0, Apart from the jJump in.concentration:at the surface, and so forth,
the primary problem is the solution of the differential squation (2) with
the following boundary and initial conditions, respectively:

O at t =0 and r> a,

o]

c cCodadt t> 0 .and r = a.

'The solution is given by the following expression:

From this there is obtained,

.. de o .
I ¢ -4na® D = = lLnaD (1 ___,> 28
na . = bnabeo (1 + = +/*Dt (28)

(r=a)

Since /er at atmospherlc pressure is of the order of magnitude l

4

: .
there can be substituted I = I, \l + —-—->I Thke correction amounts to
%

only 1 percent after 1 second, even in a heavy fog (a = 100u). In order
Yo decide to what extent the evaporation of a drop:.can be regerded as
gtationary, the time interval t, is compared, after which the correction

term a//nDt reaches a definite small value A, with the time tp
necessary for complete evaporation of -the drop.

Thus
) ¢ 2 -
t1‘~ = 2 -
and from (8) - - , c
| tp = 22X
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. therefore .. . .. _ :
: . _' . ..' W '- . ' tz .." AaﬂDy . : . ! " - . ’ - ) '.'

If there are substitited the values A £ O. 01, M= 18 end
-7 :

= 3.79 X 10 moles per cubic centimeter, which correepond to the
evaporation of water drops in dry air at 21 7°c (see above), then
t ’
Ttz ©
part of the time of total evaporation the velocity of evaporaticn exceeds .
the velocity corresponding to the stationary state by only 1 percent. In
damp air or with less volatile liguids the epproximation to the stationary
state is realized still) more quickly. The effect of the gradual reduction
of drop size which was left unconsidered in the discussion will be de-
scribed further.

= 0.043, or in other vords, even after the course of the twentieth

For the calculation of the velocity of evaporation of droplets of
solutione, the nature of the varlation of vapor pressure at the surface
with time btecomes important. If it is assumed that the concentration of
the saturated vapor is a time function c¢(t), then, instead of (27),
‘there is obtained

4Dx?

c = 22 //u c [t - LE—:—Eu—} e X ax (reference 15) (30)
. .

r —a
2 /Dt

which can be easily verified. From this is obtained (omitting the repe—-

tition of the somewhat dstailed calculations):
1

‘r c(0) + etl et[t(1 - xF))ax
= ~45xa2D §_C_ = ,-Hta.Dc(t) i 1+ - i___ ——— (31)
or - /Dex ¢ (t)

(r=e)
: R O W
ot R O A LA FE O} CHRA B /o ¥

N :
whete ¢!’ means *Ae/&, M < TIo
L o . B O PRI R B R & !
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Whether or not an approximation to the stationary state is posalble
here depends on the special form of c¢(t). In general, the following can
be said; wherein it is necessary to teke into account the most important
practical cases of the decrease in c(t) with time. In order to reach a
good approximation of the stationary state, it is sufficient that a/VDEw
increase by a definite amount A after a time interval +t, which is
small relative to the interval tg, wmeanwhile the factor times ay
remains ‘of the order of magnitude of 1. If lc‘"(t)l is designated by
f(t) and it is noted that: S

g : L 1 -
ce(t) =¢c(0) + f_ ct(t)dt = c(0) ~- tj f(tx)dx
. A 1 .
then this. factor tekes the following form:
1
. c(0) -2t [ £lt(1 - x?)yax
F = — : '1 -

o(0) - ¢ J/’_ﬁ £ (tx)ax
Ko)
With decreasing f(t) '
1 1 b
f f(tx)dx = ff[t(l - x)}dx > [f[t(l - x2)]ax

(o] o (o]

and for ts the interval will be taken after which c(t) is half of its
original value, that is, the root of the equation

1

9—-(3—) = tf f(tx)dx

-
In this interval F < 2.

With increasing f£(t), that value of t can be chosen for tg such
that F vanishes; c(t) will then not reach 1/2¢(0). 1In this interval
F<l. It is scmetimes more convenient to use tg' < tz instead of tg;
80 that the equation c(0) = 2tf(t) 1is satisfied.

Now, comsider the continuous diminishment of the eveporating droplet
due to disturbance of stationariness. The strict tredtiment of this prob-
lem is extremely complicated; as an approximate eatimate use can be made of
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the following consideration. If there is originally a statlonary state
corresponding to drop radius &, and vapor concentration cg, then the

states arising from a decrease in a of Qa at constanx Co, éand a de—
crease 1n cq of A&co at constant a, reapectively, are given by the -

following . expression' o . _ .

' ' e o 'r.v- a.+'éa>}
¢ ==4c.a—¢ 1=~y |\
and, respectively,

C=‘]' Go&."‘&ACQ [l"\]{ 2%:)}}

(¥ = Gauss' probability function.)

o

If, now, 8af\co = cola, then these expressions can differ from each
other only by an infinitely smsall amount in the second order. If, there—
fore, the time function co(t) = co(0)p(t) 1is a good approximation of

the stationary state, then the equation a(t) = a(0)p(t) should apply
for decrease in drop size with time., For the evaporation of the drop
there can be substituted, as a first approximetion, from (8)

a(t) = /a(0)2 -~ kt. Here then:

4t o (0)2 — kt
and for tg' there is obtained
' ta'k
a(0) = -
/a(0)2 — kta!
from which
2
tg' T.0.6 20 _ 0.6 ta

(tz is time of total evaporation.)

‘Then, return to a numerical factor 0.6 for equation (29); it follows
from this, that there can be assumed a quasi-stationary course of evapo—
ration of water droplets as a good approximation. This conclusion obvi—
ously agrees with the experimental results of Houghtén: ' —_—




16 ' NACA TM No. 1160

Thus far, the evaporation of a single drop in an infinitely extended
medium has been considered. In practice it is necessary to do, however,
with a large number of droplets. In this case the evaporation of a drop
takes place as though 1t were in a vessel with nonabsorbing walls, the = -
volume of which vessel being equal to the average volume enclosing each
drop. The rigorous soclution of this problem is very difficult. Practi-
cally, for the small weight concentrations occurring in fog, that is, a
large mean distance between the drops relative to thelr diameter, a sim—
ple approximation will serve. Then, assume that the droplet is in the
midpoint of a spherical vessel of radius R  with nonabsorbing walls. Tle
distribution of concentration for different times is shown In figure 1
with dashed curves; the solid curves corrsespond to the stationary state
{for absorbing walls with various vapor pressure, see sec. III).
(Translator's Note: The solid curve represente the stationary state for
the same boundary conditions that exist at a particular instent in the
nonstationary state.) It 1s sasy to see that a curve of the first type
must, in fact, lie under the curve of the second type with the same end-
points. There results, therefore, for the velocity of evaporation in a
known time t + At, a lower limit, (See equation (12).)

LnaD(co = Ctent)
17 -
o .

l-g

An upper limit can be obtained as follows. If the drop is placed
at time t in an unbounded space with vepor concentration c¢i, then its

evaporation will take place more quickly than in the vessel. In time
t + 4t it will reach the following valus:

I, = UnaD(co — o) L + —2—
2 VDAL

(see equation (28)).

If the time intervael At is chosen. such that

1+

then the pictured curves are actually obtained, which 4o not intersect
each other more than once. The equivalence of the two expressions for
the amount of material eveporated in time interval At and stored in
the gas atmosphere, respsctively, yields: :
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- . R .

. _l — l;av:&.])(cc, - ct)At = Ux f -[(cﬁ&(r) - ct(r)} rfar
R

where ct(r) is the value c¢t corresponding to the stationary distribu—

tion. By substituting the expressicn for c(r) (equation (11)), there
is dbtained

L o 3Da(c, —cplat
Oc'= Cpypt — Oy = s (32)
or, since
~ B2
ot T E
nD _
ac ¥ (oo ~oy) & (33)

At small values of &a/R the stationary curves give a good approx—
imation. With the same approximation (32) can be regarded as a differ—
ential equation. By 1ntegration, obtain : .

s‘. ot
—3Dat R -3Dat/R ’
)-H(aDCQG / Ioe > /

This equation is obviously only epplicable when the decrease in vol-
. ume of the drop can be neglected (at very small vapor pressures or pros—
sure differences). Otherwise, the system of differentiasl eguations (8)
and (32) muet be solved, which usually presents no difficulties.

ViI. MOTION OF THE DROPLETS

. The exact calculation of the velocity of evaporation of a droplet
moving with respect to the gas medium is scarcely possible. -In a coordi-
nate system relative to the drop (that is, drop at r =0, 2 =0, a = 0),
this problem leads to the differential equation:

g: e -7 grad c _ (35)
 where with v 1s meant the velocity vector of the gas stream, the value
of thls vector being determined in space by the nature of the flow.
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Even in the simplest case of leminar fiow, for which Stokes' law holds,
and a stationary state, equation (35) is practically insolvable, It can
be solved only for an infinitely small flow velocity: 1if this velocity
ig called V at a great distance from the drop, then let

CoB
c ==+ Vp
r

where the term Vo represents the disturbance of the concentration dis—
tribution caused by the flow. From (35) there is obtained (with
dc/ot = 0):

= N,
DVAp + ?1(5952 +Vgrad @)=
N o /
and, since the last term can be neglected;

co&@ -‘7;
Drov

Aq)=

If the Stokes expression for v is substituted in- this equatlon,

the following result is obtained: At two points which are symmetrlcal
with respect to the plane passing through the drop middle perpendicular

to the flow direction, &P possesses the same absolute value, but re—
versed sign. Since further, ¢ vanishes on the surface of the drop and
.- -at infinite distance from it, then the application of the potential theory
. leads to the conclusion that at two diametrically opposite points on the
.surface grad’'® has the game length and direction, that is, that the
acceleration of the evaporation produced by the stream on cne side of the
drop is exactly compénsated by the slowing down of the process. on the
other side.

This conclusion could approximately hold for a flow velocity, wherein
the transfer of material by convection can be neglected in comparison
with the transfer by diffusion ~ at least at distances not too far from
the drop, that is, when c¢|v| << D| gred c|. If by substitution here
¢ = coafr, there is obtained,

coaV Dc,a ©av
KL=z Oor — KL 1
r r D

(a ='r)
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Since 1t is known that D = 3 (n 1s coefficient viscosity of the

| ediunb o] 1ts den51ty), then aV/D becomes the femiliar Reynolds

expression apV/n. For small Reynolds numbers (for example, for free
fall of fog droplets) a vanishingly small influence of the motion on the
evaporation velocity would be expected. The validity of this conclusion
obviously can only.be decided by an experimental procedure.

In conclusion, it should be said again that all the considerations
and conclusions carried out7here are also directly epplicable to the
reverse process — the growth of drope in a supersaturated vapor.

Translation by Joka Nelson Howard and Mitchell Gilbert,
National Advisory Committee
for Aercnautics.
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