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GAS MOTION IN A ZOCAL SUPERSONIC RXG1ON AND CONDITIONS

OF POTENTIAL-FLOW EREAKDOw

By A. A. Nikolskii and G. 1. Taganov

For a certain Jkch number of the oncoming flow, the local
velocity first reaches the value of the local velocity of sound
(M = 1) at some point on the surface of the body located within
the flow. This Mach number is designated the critical Mach nuniber
Mcr. By increasing the flow velocity, a supersonic local region

is formed bounded by the body contour and the line of transition
from subsonic to supersonic velocity. As is shown by observations
with the Toepler apparatus, at a certain flow Mach number M > ~r~

a shock wave is formed near-the body that closes the local super-
sonic region from behind. The formtion of the shock wave is
associated with the appearance of an additional resistance defined
as the wave drag.

In this paper, certain features are described of the flow in
the local supersonic region, which is boundedby the contour of the
body and the transition line, and conditions are sought for which
the potential flow with the local supersonic region becomes impos-
sible and a shock wave occurs.

_..—

In the first part of the paper, the general properties of the
potential flow in the local supersonic region, bounded by the con-
tour of the profile and the transition line, are established. It
is found that at the transition line, if it is not a line of dis-
continuity, the law of monotonic variation of the angle of inclina-
tion of the velocity vector holds (monotonic law). An approxima-
tion is given for the change in velocity at the contour of the body.
The flow about a contour having a straight part is studied.

In the second part of the paper, an approximation is given of
the magnitudes of the accelerations at the interior points of the
supersonic region. With the aid of these appro~tions, it is

*“Dvizhenie Gaza v Mestnoi Sverkhzvukovoi Zone i Nekotorye
Uslovia Razrushenia PotentsialfiogoTechenia.” Prikladnaya
Matematika i Mekhanilsa. Vol. 10, no. 4, 1946, pp. 4S1-502.
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shown that for profiles convex to the flow the breakdown of the
potential flow,associated with an increase of the Mach number of
the oncoming flow, cannot be due to the formation of an envelope
of the characteristicswithin the supersonic region.

On the basis of the monotonic law, the transitional Mach
nuniber M is found, beyond which the potential flow with local
supersonic region becomes impossible.

I - PROPERTIES OF POMINTIAL FLOW WITH LOCAL SUP~SONIC REGION

1. Properties of Supersonic Flow Boundedby Solid Wall

and Transition Line

The flow in the supersonic region about a wing profile of
usual form with a flow about it of a Mach number higher than
critical is considered. In accordance with these conditions, two
types of such flow may occur:

(a) Transition from supersonic flow to subsonic flow. - In
this case, the supersonic region is boundedby part of the solid
contour AB and the transition line A=l, which is indicated
by a dotted line, as shown in figure 1. The magnitude A = w/+,
where w is the absolute magnitude of the velocity and + is
the critical velocity (the velocity at which the flow velocity is
equal to that of s?und);

(b) Transition from supersonic flow to subsonic flow with
aid of shock wave. - In this case, the supersonic region is bounded
by the solid contour J@, the transition line X= 1, and the
shock wave CB (fig. 2).

Though each point of the supersonic region, two character-
istics of different families pass.. The minlnmm angle between the
direction of the velocity at a given point and each of the char-
acteristics is equal to the Mach angle a.

If the velocity vector is rotated by the angle u in a
counterclockwise direction, the direction of the vector will coin-
cide with one of the characteristics that shell be denoted as the
characteristic of the
other characteristic,
of the second family.

first
which

family in contradistinction to the
shall be denoted as the characteristic

*

d



NACA TM NO. 1213 3

In case (a), each of the characteristics drawn from an arbi-
trary point P of the contour has a point in common with the
transition line A=l (fig. 1).

In case (b), all the characteristics of the second family end
on the transition line, but not all characteristics of the first
family possess this property.

By displacing the point P on the contour in the direction
towsmd the base of the shock wave B, it is found that originating
from a certain point D of the contour, the characteristics of
the first family no longer end on the transition line but intersect
the shockwave (fig. 2). The essential difference of l+e flow with
local supersonic region from other mixed flows (for example, flow
from a Laval nozzle) lies in the fact that from each point of the
contour there originates at least one characteristic that ends on
the transition line.

The region ADCA, in which both characteristics drawn from the
points of the contour end on the transition line, is denoted as
region I; the region DCBD, in which only the characteristics of
the second family fall on the transition line, is denoted as
region 11.

In case (a), the entire supersonic region coincides tith
region 1, hence, all theorems derived in thispaper and the
approximations for the flow in region 1, obtained from the single
assumption of the ending of the characteristics of both families
on the transition line, will also hold for case (a).

Hereinafter, there will often be considered, together with a
certain point P of the contour, simultaneous points on the
line A = 1, which are the ends of the characteristics originat-
ing from poi.nt P. The end of the characteristic of the first
family ~ill always be designatedby the same letter as the point
of the contour but with subscript 1 and by the sign *. Similarly,
the end of the second characteristic will be designatedby sub-
script 2 with sign *, as shown in figures 1 and 2.

In the following derivations, the fundamental magnitudes are
the inclinations of the tangents at an arbitrary point P of the
contour to the axis of abscissas, denoted always by eks the

inclinations of the velocity vector on the transition line at
points PI* and P- are denoted by f31* and e2*, respectively.

All three magnitudes ‘k) 81*> -d e2* are functions of the

arc length of the contour.
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An arbitrary point P on the contour in the supersonic region
is considered. The characteristic of the first family PP2* is
represented in the plane of the hodograph of the velocity by an arc
of an epicycloid of the second family P’P2*’ (fig. 3). Let

e=e* - $k be the polar angle between the points P2*’ and

Pi*’. For the magnitude A at the point P of the profile, the

following eqpation is obtained:

(1.1)

where A=f(e} is the equation of the epicycloid so set up that
the equation f(0) = 1 holds. This equation, as Is known, has the
form (reference 2)

arc sin

In determining 62*

[
(X+l)$- i}+(Jm: ‘1*2)

frcmthe given A and ek

ez+‘ek+d~) (1.3)

where q is the function
functions f(e) and CF(A) are given in figure 4.

reciprocal to f. The graphs of the

By considering the characteristic of the first family starting
from point P (fig. 3),

where f
(1.3).

For
families
obtained

A =f(ek - (31*) ‘%*

and cp are the ssme functions

= ek - q)(A) (1.4)

as in equations (1.1) and

the points of region I where the characteristicsof both
end on the transition line, the following equation is
from equations (1.3) and (1.4):

(1.5)
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Thus

THEOREM 1. - The inclination of the contour at any point P
of zone I is the arithmetic mean of the inclinations of the veloc-
ity vectors at the points of the transition line, which are the
ends of the characteristics starting out from point P.

Eqwtion (1.3) and the second equation (1.4) permit, for a
certain distribution of the velocities on the given contour, deter-
mination of the inclinations of the velocity vectors at the ends
of the characteristics lying on the transition line.

2. Monotonic Law of Change in Angle of Inclination

of Velocity Vector on Transition Line

If in the equations of an adiabatic gas, the nondimensional
velocity
vector to
following

(1 -

A and-the angle of inclination- e- of the velocity
the x ax5.sare taken as the unknown functions, the
equations are obtained:

sin $: ae *—- COS&A+ ACOS&+ Asine—=
ay ax ay

The character of the change of the magnitude @ along the
line A=A1 = constant. On one side of this line, let A<A~

and on the other side let h >Xl (fig. 5). The normal to the

line A= Al is drawn in the direction of decreasing velocity.

By considering a certain point of this line andby teking the
direction of the y axis to agree with the direction of the
normal to this point, from equation (1.6)

(1.6)

where Ml is the Wch number for A = xl, and el is the angle

between the velocity vector and the positive direction of the
—-.

.
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tangent to the line A = Al at a fixed point of this line. By
eliminating from equattons (1.7) the magnitude ~~ and by
determining from the obtained equation 3e/&

(1.8)

In the subsonic flow, 1 - %2 Sin2 el >0 for any e and

because &@n~O, then ?K3fis<0. Thus .9, in this case,

changes monotonically along the l& A = constant.

By considering the transition line where Al = 1 and by

starting from the assumption that the transition line is not a
line of discontinuity (reference 1), that is, that all the deriva-
tives &3/&$ &~n, ?H@s, and a~~n are finite on the tran-
sition line, the following equation is obtained from equation (1.8)

ae
–=c0s2e& -
as

and therefore the condition &?/& ~ O. ~US

(1.9)

THEOREM 2. - If a point moves along the transition line so
that the region of subsonic velocity lies to the left, the velocity
vector will monotonically turn in the clockwise direction.

.

The condition a8/as = O along the transition line, In the
case where a transition from the subsonic to the supersonic veloc-
ity occurs, was previously obtained by S. A. Christianovich.

The property of monotonicity is not, however, characteristic
for supersonic flow. In this case, the inequality 1 - # Sinz 8>0’
and the inequality 1 - @ SiT12e C O could hold ~d therefore the
value of se/as can change sign.

From further discussion, it will be clear that the fact
expressed by theorm 2 determines, to a considerable extent, the
character of the flow in the local supersonic region and also the
possibility or impossibility-ofthe simultaneous existence of the
subsonic and supersonic flows without change in the potential char-
acter of the flow. This fact will hereinafter be termed the “law
of monotonicity on the transition line,” or simply the “monotonic
law.”

0

.

.

.-
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3. Property of Monotonic Change of Velocity Magnitude

and Its Inclination along Characteristics

By making use of the results of section 2, it will be proved
that:

7

THEOREM 3. - If in the supersonic region there is given a
section of the characteristic of one family, such that the char-
acteristics of the other family originating from the points of
this segment end on the transition line, the angle of inclination
of the velocity vector and the magnitude of the velocity are mono-
tonic functions along the given segment of the characteristic.

By considering a certain point C on the segment AB of the
characteristic, draw from the points A, B, and C to the line of
transition the characteristics of the family different from the
family to which the characteristic AB belongs (fig. 6). The ends
of these characteristics lying on the transition line are &j %,
and C*, respectively.

In the plane of the hodograph, points A, B, and C are
represented by the points A’, B’, and C’, respectively, lying
on a certain epicycloid Y; and the points &, B*, and C*

are represented by the points ~’} B*’, and C*~, respectively,

lying on the circle A = 1. ~Ikchpair of points> A’ and &’J

B’ and B+’, and C’ and C*’ lie on one of the eplcycloids of

the family different from the one to which the epicycloid Y
belongs (fig. 7).

As the point C’ moves along the epicycloid 7 and its cor-
responding point C*’ moves along the circle A = 1, the polar

angles EJ at the points C’ and C*’ either s-taneouslY

decrease or simultaneously increase because each straight line,
e constant, intersects the epicycloid only at one point. When
po~nt C moves in the same direction from point A to point B
along the segment of the characteristic AB, the point ~ moves

along the transition line from point ~ to point & liketise
in one direction as the characteristics of one family do not
intersect. In accordance with theorem 2 of the preceding section,
it follows that the point &’ likewise moves along the circle
A = 1 in the same direction. Himce, the polar angle e for the
point C’ varies monotonically and, as follows from the properties
of the epicycloid, the magnitude of the velocity A likewise
varies monotonically for point C’.
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In the supersonic region I about the profile determined in
section I, both families of characteristics satisfy the conditions
of theorem 3 so that in moving along any characteristic, the inclina-
tion of the velocity vector 6 and the magnitude of the velocity A
vary monotonically. For motion directed toward the transition line
along the characteristics of the first family, both magnitudes e
and A monotonically decrease; whereas the characteristics of the
second family (the left one), f3 monotonically increases and ~
monotonically decreases. From the obtained property of the mono-
tonic variation of the magnitude of the velocity and the a@le of
inclination of the velocity vector along each of the character-
istics of region 1, it follows that this region is represented as
a single sheet on the corresponding region of the hodograph.

In the supersonic region II, only the characteristics of the
first family satisfy the conditions of theorem 3. On moving along
the characteristicsaway from th&profile, both magnitudes (1 8nd
A monotonically decrease. On moving along the characteristics of
the second fsmily in region 11, the property of monotonicity of the
change in the magnitudes (3 and A does not, in general, hold.

By making use of the known properties of the characteristics
in the plane of the flou and in the plane of the velocity hodo-
graph, the directions of concavity, as shown in figure 8, are
obtained in the region of applicability of theorem 3 for small
Mach numbers. This direction of concavity of the characteristics,
as follows from the results of S. A. Christianovich (reference 1),

takes place only in the case MC% = 2/~~=1.585. Bymak-

ing use of the results mentioned, it is found that if M =% for

a certain point K in the region of applicability of theorem 3,
the characteristicshave the appearance represented in figure 9.
Point K is always a point of inflection of the characteristics.

4. Variation of Velocity at Profile in Supersonic Region

It is assumed, as Is usually the case, that in the supersonic
region the profile is everywhere directed comex to the flow. In
the supersonic region at the profile, an arbitrary point K and
the characteristicof the second family KK~ are assumed to
originate at this point (fig. 10). For point K from equation (1.1),
A sf(ea - ek) where f is the function introduced according to

equation (1.1).

—
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In accordance with theorem 2, de%/d(- ek) ~ O; hence, by
making use of equation (1.10)

(1.11)

~t ezx - ek =T(A), where CP is.the reciprocal function

of f. Hence

t

where the differentiation is effected along the epicycloid in the
plane of the hodograph (fig. 11). Two points A and B are
assumed to be on the epicycloid, the polar angle between which is
equal to de. The value of A is also assumed to be greater at
point B than at point A.

From point A, an arc of the circle A = constant is drawn to
the intersection with the straight line OB at point C, the
length of the arc being taken equal to do. The angle between the
tangents to the arc of the circle AC and the arc of the epicy-
cloid AB at point A is equalto the Mach aqgle a. Hence,
dA = tg a do and because dc = AM, then

The graph of the function f‘[(P(A)]=
figure 5. The inequality (1.11) therefore

d~de = ?&ga.

Atg a is given in
assumes the form

(1.12)

As is shown by the preceding inequality, this value depends
only on the magnitude A at the given point. By comparing equa-
tion (1.10) and inequality (1.11), it is found that inequality (1.12)
may be expressed as an equation if and only if at a given point of
the profile de2*/dek = 0. If this relation holds true on a cer- ‘-
tain segment AB of the profile (fig. 12), the condition e2* =

constant is obtained. All the characteristics of the second fern-
ily starting from AH are then represented in the plane of the
holograph by the same epicycloidof the second family y (fig. 13)
because at their ends, l@ng on the line A = 1, the velocity is
constant. Hence, the entire region ‘%*% (fig. 12) is also

represented in the plane of the hodograph by the segment of the
epicycloid A’B’, upon which the points of the segment AB will
also lie.
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family in the region ABB2*A2*

with constant velocity on
each; that is, in this region a certain Meyer flow (rarefaction)
must-occur. However, as will be shown in section 6; the realiz&
tion of such flow under the conditions of the problem Is impossible.
Hence, in the relation (1.12), the equality can hold only at certain
points of the contour.

In the supersonic region 1, the characteristics of the first
family likewise end on the line A = 1. By applying considerations
analogous to those previously mentioned, the second inequality along
the profile in region I is obtainedi

(1.13)

In the case where the equality in relation (1.13) is attained
on a certain segment of the profile AB in the region bounded by
the characteristics of the first family originating at points A
and B, the transition line,and the profile, a Meyer flow (compres-
sion) takes place, the straight lines being the characteristics of
the second family (fig. 14). As will be shown in section 6, such
flow likewise cannot be realized under the conditions of the problem
and therefore, in relation (1.I.3),the equality can be attained only
at certain points of the contour. By conibiningrelations (1.12)
and (1.13), the following inequality is obtained on the contour of
region I:

*
5 Atga (1.14)

Inequality (1.13) is of little interest in the case of a shock
wave that closes the supersonic region because in this case in
region 1, the velocity generally does not decrease so that the rela-
tion refers mainly to the case of the flow with supersonic region
without a shock wave. In this case, region I coincides with the
entire supersonic region.

The equation for the change in the velocity can also be
obtained for the case where a certain segment of the profile is
concave to the flow. Thus, for any point C on the segment AB
(fig. 13)

A = f(8> - ek)

.
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But f’(e2* - ek) = A tg a, hence

By making

therefore from

[NACA Cement:

use of the

inequality

ax<
dek -

- Atga (1.15)
—.—-.._

law of monotonicity, ‘2*/Wk~0 and
(1.ls)

(iLA<
—.-ltga
d(?k

equation (1.16) is apparently

(1.16)

in error.]

Thus, on the segment of the profile having a concavity facing
the flow, the velocity drops and, as follows from relation (1.16),
its drop cannot be too slow. Inequality (1.16) differs essentially
from relations (1.12) and (1.13), which show that on the convex
segment of the profile, the velocity cannot vary too rapidly.

Strictly speaking, these conditions are true up to those
changes in the flow that are brought about by an oblique shock
wave (fig. IS). By considering the characteristic of the second
family c+&c~ and its prolongation Clc, it is found that the -

transition through the shock wave in the flow plane correspo@s
. to the displacement along the segment of the strophoid CIIC1

, in the plane of the velocity holograph (fig. 16). Hence, the
transforms of the segments Clcti and CIC of the character-
istic lie on two different epicycloid of the second family. How-
ever, by making use of the fact that at the point C’l the stro-
phoid and epicycloid have a common tangent and the same radius of
curvature, it is found that with an accuracy up to small magni-
tudes of the third order, relative to the changes in velocity in
the shock wave, these two epicycloid may be considered as coin-
ciding. Inequality (1.16) holds with the same degree of accuracy.

5. Flow in Supersonic

of Straight

The straight sefgnent AB

Region Arising from Presence

Se~nt on Profile

is assumed to be on the profile in
the supersonic region. The characteristic of the second family
CC2* originates from the arbitrary point C, which is assumed to

be on the straight segnent AB (fig. 17). At point C, the
eqU53tiOIIiS ~= f(e2* - ek).
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As point C moves along segment AB in the flow direction,
the magnitude ek remains constant because of the rectilinearity

of the segment and the magnitude %*) in accordance with theo-

rem 2, does not increase. Hence, using the fact that f is a
monotonically increasing function of its argument:

!rEECmM 4. - On a straight se~ent of a profile in a super-
sonic region, the velocity in the flow direction does not increase.

It is assumed that the straight segment 1s located in the
supersonic region I (fig. 18).

From the ends of the straight segment to the transition line,
the characteristics of the first family A& and BB1* and of

the second family AA2* and B% are drawn. Let @k = eo on

AB. l?rompoint C near point A, the characteristic of the
second family is drawn to the intersectionwith the character-
istic AA~* at point C’. Fran theorem 3, it is found that

e(ik)>e(c’) 2e(c), but @(A) = e(c) = eo, hence e(ct) = e.
and, as again follows from theorem 3, e=eo over the entire

segment of the characteristic CC’.

By movingpoint C from point A to point B, it is found
that the characteristics AA~* and BB2* necessarily intersect

and in the triangle ABD, formedby the se~nt AB and these
characteristics, e = e. = constant. Hence, it follows that
A . co~tant and tie characteristics of both families are
rectilinear.

The entire region
‘Z+%

is represented in the plane of
the velocity hodograph by a single epicycloid of the second family,
as all the characteristicsof the secund family are represented by
a single epicycloid passing through the point e = O., ~= A(A).

Hence, over the entire region considered, a certain Meyer flow
(rarefaction)will take place with straight characteristicsof the
first family. Similarly, the entire region

2
%* *

is repre-
sented in the plane of the hodograph by a single ep cycloid of the
first family, over which a Meyer flow (compression)will take
place with straight characteristics of the second family.

As was previously stated and as will be shown in section 6,
the realization of Meyer flows under the conditions of the problem
is impossible.

u

●

—

.

●
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Meyer Flow in Local Supersonic Region

a Meyer flow is assumed to be between the
C2 of the second family with straight

characteristics of the first family (fig. 19).

From a certain point A of characteristic Cl, the straight
characteristic of the second family is drawn to its intersection
at point B with the characteristic C2 ● On the straight line AB,

the Mach angle a = constant, hence, it intersects the character-
istics Cl and C2 at the same angle y = z - 2a.

Set AB = 2 and denote by P the angle formedby the straight
line AB with the axis of abscissas. The straight characteris-
tic Al%, infinitely near AB, is considered. The segments of

the straight lines AB and AIB1 are denoted, respectively, by

dsl and ds2 on the characteristics Cl and C2 and the angle

between AB and AIB1 is denotedby @. Thus, the following
equations are obtained:

.* &2=.k&wE% sin y (1.17)

where r is the distance between point A and the point of inter-
section of the straight lines AB and AIB1. t

Set the length of the segment Al% equal to 2 + dZ. Fran

figure 18, the eqyation dZ = (ds2 - dsl) Cos y is obtained, or
by making use of equations (1.17) “

dz=2ctgyd$ (1.18)

In the pl=e of the hodogaph, the characteristic Cl is
represented by an epicycloid.

The directions AB and Al% coincide with the direction of
the normals to this epicycloid drawn at the points AC and A’1,
corresponding to the points A and Al (fig. 20). The angle
between the radius vector and the direction of this normal is equal
tothe Mach angle a. Hence, !3=a+6 and dP=da+d8.

Thus, bytiing use of equation (1.18)

.-

dz—=ctgy(da+lw)=- ctg2ada+ctg7d@
z

(1.19)
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or by integrating

in+=
‘m+) ’’gy”

(1.20)
o

0

where 20, ~} and 60 characterize a certairiinitial point.

For a > Yr/4 and 6 > eo,
tion (1.20) are positive so that

If

An
between

both terms on the right of equa-
the following inequalities hold:

,A + 1, then a+ti/2 and 2+=.

entirely analogous result is obtained for the Meyer flow
the characteristics of the first family with straight

characteristics of the second family. Thus -

THEOREM5. - A Meyer flow, between two characteristicsof one
family with straight characteristics of the second family, cannot
be entirely realized up to the line A= 1 in a finite region.

If on the characteristic Cl, represented in figure 19, the

equality A = 1 is attained at a certain point D, then by making
use of the preceding result, it is found that the tangent at
point D to the characteristic Cl is asymptotic for any char-

acteristic C2 placed relatively to Cl, as shown in figure 191.

From theorem5, it follows that along the straight part of the
profile in the local supersonic region, the magnitude of the veloc-
ity cannot be constant. If such were the case, then between the
characteristics of the second family originating at the ends of
this segment a Meyer flow would take place. This realization,
because of the finiteness of the local supersonic region, is
impossible as follows from theorem5. Thus theorem 4 may be more
definitely stated as follows:

lAccording to S. A. Christianovich, if a Meyer flow originates
frcm a straight characteristic on which A= 1, the character-
istics of the other family do not originate from this straight
line.

●

a

A,

.

.
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THEOE3?46. - On the straight segment of a profile in the super-
sonic region, the velocity decreases.

II - CONDITIONS FOR HRlQKD2WN OF POI’ENTIALFZOW

WITH LOCAL SUPERSONIC I?XGION

The occurrence of a wave resistance for a flow with large sub-
sonic velocity about a body is assumed to be connected with the
instant when at any point on the surface of the body a velocity is
reached equl to the local velocity of sound.

The study of the results of a nuniberof tests has shown, how-
ever, that the occurrence of a shock wave and therefore the arising
of a wave resistance sometties takes place beyond I&. Photographs

obtained by the Toepler method show in certain cases a local super-
sonic region extended deep into the flow without any shock wave.

The necessity for the breakdown of the potential character of
the fluw with local supersonic region, that is, the necessity for
the appesxance of a shock wave, has
demonstrated for a single case. It
to describe certain conditions that
a breakdown of the potential flow,

1. Deformation

not yet been theoretically
will therefore be of interest
are known to be accompanied by ‘–

of Contour

of a

tour

How the deformation of the contour can lead to the breakdown
previously existing potential flow is considered. —

A flow with local supersonic region about a curvilinear con-
for a Mach number of the oncoming flow such that the flow is

potential (fig. 21) is considered. -

From points A and B of the contour, the characteristics
of both families are drawn both in the flow plane and in the plane
of the hodograph. Because of satisfying the condition of monotonic-
ity of change of the angle on the transition line, the transforma-
tions of the points AM, %*, Al*, and %X in the hodograph

plane are located on the circle A = 1 in the sane order as on the
transition line in the flow plane. The contour is defomned in such
a way that the segment of the arc AB transfozns into a straight
segment (fig. 22).
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By virtue of theorem 6, section 1, the velocity along the
straight segment AB can only decrease. By drawing the character-
istics in the holograph plane andby making use of theorem 1, it
is found that the transforms of the points Az*> Bz*} Al*> and
B1* are not located on the circle A = 1 in the order in which
these points are arranged on the transition line in the flow plane.
Consequently, the deformation of the contour breaks up the mono-
tonicity on the transition line. Thus

THECEIEM7. - The characteristics of the first femily that
originate from the points of a straight segment of the contour can
never end on the transition line but must fall on a shock wave.

If the contour deformation considered is effected continuously,
it is evident that the breakdown of the potential flow occurs before
the defomed segment becomes straight. This fact permits the con-
clusion that at a given Mach number of the oncoming flow, any pro-
file convex to the flow canbe so deformed that a new profile is
again obtained convex to the flow, the flow about which for the
same Wch number is no longer possible without a shock wave.

2. Impossibility of Formation of Line of Discontinuity

Within Local Supersonic Region

Investigationwill reveel whether the impossibility of realiza-
tion of a continuous flow within the supersonic region for given
boundary conditions, as expressed in the intersection of the char-
acteristics of one family and the formation of a supersonic shock
wave within the region, can be a cause for the breakdown of the
potential character of the gas motion.

K&m&n (reference 3) makes the assumption that the probable
cause of the appearance of shock waves is the fornmtion of an
envelope of the Wch lines in the supersonic zone for a certain
Mach nuniberof the oncoming flow.

The envelope of the characteristics of one family, as shown
byS. A. Christianovich (reference 1), coincides with the line
of discontinuity that is determined as the geometric locus of the
points at which at least one of the derivatives &/ax, ae/ay,
~~&, or ~~y becomes infinite. Hence, to investigate the
problem of the possibility of the formation of supersonic shock
waves within the supersonic region on increasing the Mach number
of the oncoming flow, it is necessary to obtain the value of the

--

.
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acceleration at the points of the supersonic region. It will be
shown that on the contour of the profile infinite accelerations
cannot occur.

Given a certain flow in the supersonic region with continuous
transition from supersonic to subsonic velocities (sec. I, pt. 1,
case (a)); assume a certain point K on the contour in the super-
sonic region and take the x axis in the flow direction (fig. 23).
Equations (1.6] then become

(M2-l)&Ag=o

Thus

(2.1)

(2.2)

(2.3)

where k is the curvature of the contour at point K and R is
the radius of the curvature at tMs point. By makixQ use of
inequality (1.14) and equations (2.2) and (2.3)

From eqmtions (1.20)

(2.4)

(2.5)

Relations (2.4) and (2.5) show that the magnitudes &@x,
aefiy,a7jax,and a~y are always finite on the contour within
the supersonic region provtded that everywhere R ~ O. The case
R = O (infinite curvature) at some point is a special case and never
occurs on real profiles. Therefore, assume that on the contours
considered, at all points R> ~ where ~ is a certain co~tant.

The maximum possible value of the acceleration at the interior
points of a local supersonic region is computed. The differential
equations of the characteristics of the first and second families
in the plane x,y ae, respectively,
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dy=tg(e+a)dx W=tg(e -a)= (2.6)

Moreover, along the characteristics of the first and second
families, respectively, the relations hold (see for example
reference1)

0 + 0 = 2~ = constant o- fj. q . comt=t (2.7)

where

F’romrelations (2.6) and (2.7)

(2.8)

(2.9)

By differentiating the first relation with respect to ~, the
second with respect to q, and by subtracting one from the other,
the following eqyation is obtained for the v~ue of x:

,

.

.

.

(2.10)

From relations (2.7)

By making use of these equations and choosing tie coordinate
system so that the direction of the x axis coincides with the
direction of the velocity at some point A (fig. 24), the relation
between the partial derivatives of
obtained from equation (2.10)

x at the point considered is

$=0 ( )

da.
a’(o) = TO

(2.12)



1-
0rJ

NACATM NO. 1213

Let dl and de
the characteristics of

19

be the lengths of the elementary segments of
the first and second families, respectively.

In passing from point A to neighboring points in the di~ections-
indicated in figure 24, dZ and ds will be taken as positive

where the derivative d2/d~ is taken along a characteristic of the
second family and the derivative ds/dq is taken along a char-
acteristic of the first fsmily. By making use of equations (2.13),
relation (2.12) can be reduced to one of the two following forms:

(2.15)

Along the characteristic ~ = constant, relation (2.14) may
be considered as an ordinary differential equation relative to the
magnitude cos a dZ/d~ and similarly along the characteristic
q = constant, the relation (2.15) may be considered as an ordi-
~ differential equation relative to cos a ds/dq. By setting
z = cos a dZ/d~, the following linear equatton of the first order,
based on equation (2.14), is obtained for determining z along
the characteristic ~ = constant:

The solution of this differential eqwtion has the form

Z.exp

(2.16)

where qO is the value of q at a certain initial point on the

characteristic considered, ~ = constant, and ZO = cos ~(dZ/d~ )0

is the value of z at this point. The integral under the sign of
the e~onential function in equation (2.17) can be readily computed,
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if the magnitudes entering the e~ression under the integral are
expressed in terms of the Mach angle a, by making use of the
relation

FJ
~=+ 1

sin2 ~ + (%-1)/2

and the relations

d~=~=-w a
—=Atga
de

which hold along the characteristic of the first family ~ = constant}
the first of which follows from relations (2.7) and (2.11) and the
second of which was already obtained in section 1, part 4. The
following e~ression is thus obtained:

[c‘fi2a l_jin2~+2/2(~-1~*1}sin2~ sin2a+ l/2(x-ljJ

Hence, by replacing in equation
expression, and denotingby G(a,~)

logarithm sign in (2.18)

[ ()cOsa%=& cos’~ %0

An entirely similar solution of

(2.18)

(2.16) the magnitude z by its
the expression under the

equation (2.15) gives

,

“

.

m making use of the property of monotonicityof change of the
magnitude of the velocity and the angle of inclination of the
velocity vector along the characteristics in the local supersonic
region (sec. 1, pt. 3), It is noted that dZ/~ > 0 and ds/drj > 0.
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Moreover, a’(a) > 0.
the following inequalities

Hence,from equations (2.19) and (2.20),
are obtaine&.

(2.21)

(2*22)

In order to obtain the accelerations at a certain point K of
the local supersonic region, the characteristics of the first and
second fsmilies are drawn from this point up to the intersection
with the contour at points A and B, respectively (fig. 25).

‘et a=aol and a=ao2 at ‘ints A ‘d ‘~ ‘espectively”
AISO, let the radii of curvatuxe at A and B be R1 and R2Y

respectively.

The inequalities (2.21) and (2.22) at the point K are con-
sidered where point B is taken for the initial point in inequal-
ity (2.21) and in inequality (2.22) point A is used. Bymdsing
use of relations (1.14), (2.1), and (2.7), approximations are
easily obtained for the magnitudes dE/dZ at point B and dq/ds
at potnt A

+o$aoz “ q+% (2.23)
B

By taking the directionof the x exis at point K alonga
streamline, the following eqyatione are obtained:

1i3=—— ()Su+s!ll
2cosadz de

hE=-At-( )q+
2cos CLds

(2.24)

where the relation u’(A) = - ctg a~h is used. Bymskinguse of
inequalities (2.21), (2.22), and (2.23) and equations (2.24) at
point K, the following inequalities holding at this point are
finally obtained:

.
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where

[

‘Z&
N(a) = sin2 a

J

N(%)
L(~,R) =YJ”

sin2a + l/2(X-l

The inequalities (2.25) show that the absolute values of the
derivatives cannot exceed certain finite values, depending on the
Mach number at the given point of the supersonic region and the
minimum fixed radius of curyature on the part of the contour that
is a boundary of the supersonic region.

The assumption that the cause of the formation of a shock wave
is the envelope of the characteristicswithin the local supersonic
region is therefore invalid. Thus, it is possible to formulate

THEOREM 8. - If for certain conditions determini
ng the motionof the gas2 a potential flow existed with local supersonic region

the fon,uationof a shock wave within or on the boun~ of the
supersonic region, arising from any change in these conditio~,
cannot be preceded by the occurrence of infinite accelerations at
the interior points of the supersonic region. That is, if the
curvature of the psrt of the contour lying in the supersonic region
does not become infinite. -.

n
%hen the flow about the body is infinite, ‘theconditiom

determining the motion of the gas are the Mach number of the oncom-
ing flow and the shape of contour of the body.

.

.

.

.

—.

.

.
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The theorem obtained refers only to the internal points of the
supersonic region. From Lneqyalities (2.25), no conclusion can be
drawn as to the finiteness of the accelerations on the transition
line because the right-hand sides of three of them approach infin-
ity as the transition line is approached. Hence, the question
whether the shock waves are preceded by the occurrence of infinite
accelerations at the points of the transition line remains open.

3. Criterion of Collapse of Potential Flow

In section II, part 1, it was shown that a deformation of the
contour can lead to the collapse of the potential flow. Before the
deformation of the curvilinear segment of the contour at its points,
the inequality dA/d(-~)> -Atg aholds. At the endof the

deformation, however, at the points of the obtained straight seg-
ment, dh/d(-ek) = ‘~> as follows from theorem 6.

Hence, for any intermediate state of the deformed contour
there is first attained, at some point of the segment, the equation

+$J=-” (2.26)

This state of the deformed contour is, in a certain sense,
critical because for further deformation of the contour, inequal-
ity (1.13) breaks down and thus the flow becomes impossible with-
out a shock wave.

In the given case condition, equation (2.26) is the criterion
of breakdown of the potential flow. Equation (2.26) may also be a
criterion for the breakdown of the potential flow in the case where
the flow is about a fixed contour but where the Mach number of the
oncoming flow increases.

If for a certain klachnumber, a potential flow existed with
local supersonic region and at the points of the contour, the
inequality

.

—

were satisfied, then if with increase in the Mach number of the
oncoming flow inequality (1.13) starting from a certain J@ch number
breaks down, this limiting Mach number would correspond to the
attaining of equation (2.26) at some point of the contour.
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The Mach number of the oncoming flow, for which at scme point
of the contour condition (2.26) is satisfied, will be denoted as
the breakdown Mach number M.

The number I@ is thus the limiting Mach number beyond which
the body is Subject to wave resistance. ‘

The breakdown criterion (2.26) can be conveniently repre-
sented in another form, by considering the magnitude

e1* = ek - fink) (2.27)

where @) is a known function shown in figure 4. By differen-
tiating this equation along the contour

But cp’(Ak) = l/(~ktg ~) so that the following equation for

the breakdown criterion is obtained equivalent to (2.26):

dek
—=0
ds

(2.28)

It shouldbe noted that the breekdown of inequality (1.13) at
any point of the contour does not lead to the breakdown of the
potential character of the flow near this point but-makes impossible
the ending of the characteristics of the first family from the
neighborhood of this point on the transition line as the law of
monotonicity would otherwise fail to hold at the transition line.
‘lb characteristics of the first family must, in this case, merge
in the shock wave.

In order to determine the magnitude N of a given contour,
it is necessary to know how for an increase in the Mach number of
the oncoming flow, the value of the velocity at the points of the
contour changes for a potential flow with local supersonic region.

At the present time, certafn methods are known for the approxi-
mate solution of the problem of the flow about a fixed contour for
Mach numbers exceeding ~r. (See, for example, references 4 and 5.)

.

.

.

.

.



NACA TM ~0. 1213 25

In all these methods, the convergence of the process of the
successive approximations has not been proven; hence, the results
of the computations made with the aid of these methods must be
regarded with reserve. It seems probable, however, that up to
the time when the potential flow is actually possible, these methods
at least qualitatively represent the true character of tie change
in the distribution of the velocity on a fixed contour with increase
tn the Mach numiberof the oncoming flow.

It is thus of interest to see whether from these solutions
there is a tendency toward the attainment on the contour of the
condition (2.28) with increase in Mach number.

From the geometric data of a wall and distribution of the
velocity along the wall, obtained in the work of G&tler (refer-
ence 5) for a I&ch number of the oncoming flow M = 0.9, the angles
of inclination 61* were computed using equation (2.27). The

pattern of the lines of flow and the lines of equal velocities for
this case is shown in figure 26. The dependence of ‘%* on the

coordinate along the wall ~ is represented in figure 27. ——

As maybe seen, the flow is near the breakdown. The monotonic
decrease of the angle proceeds w to ~ = 5.5, after which the
angle remains almost constant or slightly decreasing.

In figure 28 is shown the dependence of 61* on x for the

flow about the profile, which is considered in an American inves-
tigation as M = 0.75 and M = 0.83. The velocity distribution
over the contour and the boun~ies of the local supersonic region
are shown in figure 29. In figure 28, it is very clearly seen
that the tendency toward a breakdown of the monotonicity on the
transition line increases with increase in the velocity. At
M =0.75, somewhat exceeding Mcr, “the angles decreas~ almost

as fast as on the contour. Tor M = 0.83, the monotonicity of
change of the angle ‘1* has already broken down. Hence, at

M< 0.83 there is already a breakdown of the potential flow near
this profile. Strictly speaking, the breakdown for M = 0.83 no
longer has significance. Thus, in the #ven solutions, a tendency
is revealed to attain on the contour condition (2.28) on increas-
ing the Mach nuiber of the oncoming flow.
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4. Infinite Accelerations in Accurate Solutions

In section II, part 2, it is shown that an infinite accelera-
tion on a contour can occur only if the curvature of the contour
at any point is infinite.

An exact solution of a certain flow with local supersonic region
with the occurrence of infinite acceleration at two symmetric points
of the contour was given by Ringleb (reference 6). According to the
results of this section, this flow indicates an infinite curvature
of the contour at these points. Figure 30 shows the flow pattern
and the velocity distribution. At points P and Q of the contour,
Ringleb obtained infinite values of the derivative of the velocity,
that is, infinite accelerations. It is found that in the plane of
the hodograph, at the points corresponding to P and Q in the
flow plane, the transform of the streamline and the epicycloid have
a common tangent.

In the work of K&r&n during 1941 (reference 3), the Ringleb
solution is analyzed in detail with the object of showing for this
type of flow the possible reasons for the formation of shock waves
in the local supersonic regions. K&m&n showed that if at the con-
tour in the supersonic region there is a point with infinite accel-
eration and a value of ~$/&l # = (where $ is the stream func-
tion and 13 is the angle of inclination of the velocity vector)
then, as in the case of Ringleb, the transform of the streamline
in the plane of the hodograph touches the epicycloid at a point
correspondi~ to the point with infinite acceleration in the flow
plane. K&man identifies this contact in the hodograph plane with
the presence of an infinite acceleration at the corresponding point
of the flow plane. He does not, however, observe the fact previously
pointed out that the presence of an infinite acceleration at any
point of the supersonic flow indicates the presence in it of an
infinite curvature of the streamline, and associates the infinite
acceleration, in this particular case, with the impossibility of a
continuous flow in the generalcase. This lack of observation is
indicated by the fact that with the aid of the previously mentioned
condition of the tangency in the plane of the hodograph, K&m&n
seeks an infinite acceleration on the contour of the NACA-4412
profile, which has no infinite curvatures, making use of the exper-
imental distributfo~ o? the velocity on the contour. In the plane
of the hodograph, Karnmn obtains the point of tangency of the
transform of the contour with the epicycloid but corresponding to
this point of the contour of the profile, infinite acceleration
does not occur as should be the case. No satisfactory explanation
of this fact contradicting his results is given.

.)

.
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This noncorrespondence is explained by the fact that the tan-
gency in the plane of the hodogrtiphcan occur simultaneously with
the condition ~/a@ =m at the point considered on the flow plane.
An example of this is the Meyer flow, that is, the flow about a
certain contour for which the entire contour coincides in the plane
of the hodograph with the epicycloid but nevertheless, at the points
of this contour, the acceleration is finite if the curvature is
finite.

Moreover, under the conditions of the problem of the flow with
local supersonic region, the tangency in the plane of the hodograph
of the transform of the contour with the epicycloid is equivalent
to condition (2.26) at the point of the contour corresponding to
the point of tangency, because at this point of the contour the
acceleration is finite if the curvature of the contour is finite.

In recent times, investigations have appeared on exact solu-
tions of the problem of flow with local supersonic regions where
the equations of S. A. Chaplygiri,in the plane of the hodograph,
are used. Notwithstanding the fact that in these papers examples
are given of the existence of potential flows with local supersonic
region, the value of these investigations is limited by the fact

. that with change in the Mach number of the oncoming flow there
occurs simultaneously a deformation of the contour of the body.
Due to this fact, points with infinite acceleration appear within

●
the supersonic region, which on the basis of the theorem proved in
section II, part 2 indicates an infinite curvature of the contour
at these points.

From the foregoing considerations, it is evident that it is a
mistake to associate the occurrence of such a limiting line of the
contour with the impossibility of a potential flow with local
supersonic region about a fixed profile.

The investigation of the principal properties of a flow with
local supersonic region must, in the opinion of the author, be
carried out directly in the flow plane.

ti
In the work described herein, all results were obtained

directly from investigations in the flow plane.

.

Translatedby S. Reiss
National Advisory Committee
for Aeronautics

.
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