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1. Introduction

The theory of cheracteristics will be presented generally for
quasilinear differential equations of the second order in +two variables.
This is necessary because of the manifold requirements to be demanded
from the theory of characterlstics.

The function X of the two independent varlables x, y is assumed
as satisfying the quasilinear differential equation

AX o + Bxxy + cxyy +D=0 (1)

Thig differential equation ls called quasilinear since the highest
derivatives, namely those of the second order, occur only linearly. The
coefficlents A, B, C, D are functions of x, y, X, X4, X The
differential equations of gas flows set up In chapter I al{ belong +to

*"Cherakteristikentheorie.” Technische Hochschule Dresden,
Archiv Nr. 44/2, Chapter II. T
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this type. It will occasionally be useful to interpret the desired
integral X(x, y) of the differential equation (1) geometrically as
integral surface in the x, y, X - space.

The characterlstics are to be Introduced In three ways:

Flret, as loci of the possible appearance of small disturbances.
For gas flows this Interpretation is obvious: the characteristic base
curves here are nothing but the Mach waves obtained in the known
elementary menmmer by superposition of sound waves according to Buygens'
principle as fronts of a weak dlsturbance wave. Followlng it will be
defined of what type the disturbances or discontinulties are which are
propagated for instance from the boundary of the reglon into the
interior along the characteristics.

The second Interpretatlion of the characteristlcs wlll start from
the fundamental fact that the characterlstics are the sole curves
from which in general the Integral surface X(x, ¥) can be constructed.

The third introduction of the characteristics 1s the one used most
frequently in mathemstical representations. It shows In what sense the N
contimation of an integral surface beyond a characteristic may become
Indefinite. This definition of characteristics 1s unnecessary for our
purposes. It is mentioned merely in order to ensure comnectlon with »
the customary mathematlical literature; however, omlssion of this section
is not detrimental to the understanding of the rest.

The purpose of thls chapter is attalned wilith the development of

two general approximation methods for the solution of the characteristic
differential equation system.

2. Preliminsry Statements
The characteristics lie on the integral swrface X(x, y). Thelir
projections on the x-y plane, or, In other words, thelr base

proJections, are designated as 'characteristic base curves'. Let these
characteristic base curves have the equation :

n(x,y) = Constant (2)

For reagons of a simpler manner of expression, the characteristic base
curve _ _

n(x,y) =0 (23)
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will be considered (fig. 1.) The characteristic family of curves (2) may
be intersected by another femlly of curves.

¢(x,y) = Constant (3)

No further data are given concerning this second family of curves; for
hyperbolic differentlal squations where two families of characteristics
appear, the second family of characteristic base curves will be

selected as & - family. This is mentioned only incidentally; for the
imnediately following considerations only 1 = Constant are assumed as
characteristic base curves which are intersected by the

curves £ = Constant. Thus one has as coordinate along a characteristic
curve, &, as transverse coordinate, 1. The derivative of &

function f(x, y) with respect to & along a characteristic base

curve (as which 71 = O will be selected below) will be called "interior
derivative"”; to attain 1t, nothing but the course of the function within
the considered £ - reglonon n = O 1s needed. Derivatives with
respect to n require knowledge of the behavior of the function to be
derived outside of the characteristic curve; they will be called
"exterlor derivatives". It is obvious that the conceptions of interior
and exterlor derivatives are very closely connected with the conceptions
of tangential and normel derivatives.

After these preliminary statements the announced definitions of
characteristics are set up.

3. Characteristics as Loci of Discontinuities
of the Second Order

The integral function X and its first derivatives are to remain
continuous when the characteristic mn = 0 1ig transversed. Disconti-
nuities in the second derivatives - the highest ones occurring in the
differential equation (1) - are to be permissible but with the
restriction that at least the interior or tangential derivatives still
remain continuous. The permltted discontinuities concern at most the
exterior derivatives of the derivatives of the first order.

These properties are best formulated in the E, n - coordinate

system. Obviously this is permissible since the geometrical ——e

Interpretations of the conceptions used for definition of charscteristics
are Independent of any coordinate system. X 18 the heilght of the
Integral surface above the base plane, the first derivatives of X
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with respect to any two coordinates defline the positionl of the surface
elements. Interior and exterior derlvatives of the first derivatlves
of X, therefore, measure the varliation of the position of the surface
elements along and across the curve 1 = O.

According to the definition given above X, X, Xﬂ are, ‘therefore,

to remaln continuous when n = O 18 crossed, furthermore the interlor

derivatives of X, and X;, thus Xgg and _qu. The single permitted
discontinuity of the second order may, therefore, appear only in er.
The dlscontinulty the quantity Xﬂﬂ undergoes in passing from negatilve

to positive will be designated by E(nn]. -

In order to set up the equation of n =0 in the x, ¥y coordinates
one has to go back to the original coordinsates.

Xx = an"]xg + qugﬂxgx + nggxe + Xpixx + ngxx:
Xxy = Xnqnixlly + Xnelngly + nybe) + Xgelbely + Xongy + Xgbey, (W)

_ 2, . o
Xgy = Xmaly” + Xgefgby + Xeeby™ + Xqyy + Xbyy-

Consequently the discontlnuitles in Xyy, Xxy, Xyy will be

- o
] = [rom] s

_ o
*yy| = [erJ Ty~

lThe position of the sirface elements is defined by the direction
of their normels, the direction-cosines of which in the x-y-X system
are the proportlon Xz : Xy : -1.
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If one now sets up the differential equation (1) for absolutely small
positive and negative 1n for the same £ and forms the difference,
one obtains

AE(E] + B[X.xy:l + C[XW] =0, (6)

or according to (5)
.A'q__lc_2 + Brgny + C'rly2 = 0. (7

This equation will be designated as "characteristic condition".

If one expresses the characteristic base curve 7 = 0 1n the
parameter form x = x(E); y = y(&), one may write, since the slope
J ul
is ;é = - ;Z} for the characteristic condition (7) also:
£ X

Aj® - Bjx + Cx2 = 0, (8)

where the differentiations with respect to the parameter are denoted by
dots above them,.

From thils quadratic relation one may for hyperbollc differential
equations where

BZ - LAC >0 (9)

set up the differential eguations for two characteristic familles of
base curves.

Whereas the occurrence of discontinuities of the second order is
restricted by the characteristic condition, the differential equation (1)
does not offer a condition for the exlstence of dlscontinultiss of the
first order. One can see this readily if one assumes on each side of
a space curve, selected as carrier of the Initlal condlitlions, two
different positions of the surface elements prescribed for the Integral
surfaces. Discontinulties of the flrst order appear 1n gas dynemics
as compression shocks. :
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4. Characteristic Strips as Elements
of the Integral Surface

For the second interpretation of the characteristics one at first
orders with regard to a curve 1 = 0 on & surface X +the positions
of the surface elements. One then speaks of a sirlp of the first
order . The surface X 1s not a priori assumed to be an integral
surface.” The position of the surface elements is sultably determined
by the derivatives of X with respect to the coordinates ¢ and 1;
thus X§ = Py Xﬂ = 4. The strip o 1s determined in parametric

representation, thus by x(&), y(&), Xx(&), pl(g), ql(g).
The problem arises whether 1t is possible to express the

quasilinear differential expression on the left side of -the differential
equation (1):

X X :
AX  + BX, + OX, o +D ~ (10)

merely by the five strip quantities x(g), ¥(e), x(g), (&), ql(g)

end thelr derivatives with respect to £. One then says that the
differential expression (10) lies in the strip a or that it is an

"interior differential expression” of the strip a.

Obviously one may then hope to satlsfy the differential equation (1)
along such & strip without leaving it in a transverse directlon, and
to bulld up the desired integral surface from such strips.

According to presupposition, the coefficlents A, B, C, D depend
only on X, ¥, X, Pys 9 which are given directly on the strip. Thus

it remains only to be determined when Xox xy’ can be expressed

merely by the five strip quantlties and their intsrior derivatives.
According to the formulas (4), Introducing as far as possible the strip
guantities, one obtalns:

Xgx = qlnﬂx? + 20 xby t Iﬁggx? ANy * Prfy
Xeg = Uniglly + q]_g(“xﬁy ¥ ghy) FPLbxty * Uy t Pityy (11)

2 2
‘)%'Y = q.lnny + qugﬂyﬁy + Plgg'y + q.lnyy + Plgyy
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One gees immedistely that the sole term which camnot be formed by
interior differemtiation in o (that is with respect to §) always

stands first on the right slde of these expresslons (11). Thus one
obtains as sole differential contribution of (10)

2 2
(A + Brgng + Cny%)

In order to have the differentisl expression (10) lie completely
in % 5 it is necessary and sufficient that

2 2
A B =0
Tlx * 'ﬂxﬂy * C'qy

This 1s again the characteristic relation (7). Thus none but the
characteristlic strips can be concerned in the buillding up of an Integral
surface from strips. Of course, it remains stlll to be shown that the
building up from the characteristlic strips l1s actually possibls.

5. Indefinite Continuation of an Integral
Surface Beyond & Characteristic Strip

In order to obtain the third customary definition of characteristics
one starts from a strlp of the first order on the integral surface X.
Let the strip be determined as functlon of the parameter & by the five
quantities x, y, X, Xy = p, x_¥ = q. Due to the meaning of p ami ¢
there exlsts between the flve strip quantities x, y, X, p, and q the
relation:

dx _oXdx  oXdy _édx dy
G " Oxat *oyat T Pap T Ya

or, if one again denotes the differentiatlions wilth respect to the
parameter by dots above them:

X =pk +ay (12)

This is the so-called "strip relation of the first order".

Let the derivatlives of the second order which are not gliven be

denoted by r = Xzx, 8 =Xgy, t =Xy y. The question arises whether
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it is always possible to determine uniguely with the aid of- the
differential equation (1) on the strip of the first order the
derivatives of the second order r, s, and +t ~and furthermore the
derivatives of higher order so that a contlnuation of the integral ¥
by a Taylor series appears pessible. A well-known theorem of SonJja
KowalewskeJa deals with this analytlcal continvation of an integral.

For the determination of r, s, t from the five strip

quantities x, y, X, p, 4 ‘the differential equation (1), for one,
is at disposal, now wriltten as follows:

Ar +Bs + Ct = -D (13)

From the meaning of r, s, t one obtains the strlp relations of the
gecond order: '

dp _9pdx  Qpdy _ dx
S e tarcTatous
for which one writes briefly:
Xr + y8 = P . _ (1k)

Correspondingly, one obtains as further strip relation:

xs +yt =q (15)

From the three llnear equatlons

Ar + Bs + Ct = -D (13)
X8 + 36 =4 (15)
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r, 8, t may be determined uniquely, if the fo¢lowing determinant
:Ls not Z6ro:

= A2 - Biy + Cx°

O M
Mrved- o
-0 Q

It 1s interesting to note that furthermore, 1n order to make the higher
derivatives uniquely determinable, non-va.nishing of the same d.etermina.n‘b
is necessary and sufficient®.

If the determinant vanishes which thus coincides with the
characteristic condition derived before (8), r, s, t are no longer
uniquely determinable, but - if at all - only with exclusion of additive
golutlions of the homogeneous equation system pertaining to (13), (14),
(15). This new criterion of the characteristic condition is, of course,
very closely connected with the properity of the cha.rac'beris'bics (used
in section 3) of being geometrical locus for the discontinuities of the
second order of the integral surface.

If solutions are to exlst at all when the determinant of the equation
system (13), (14), (15) vanishes, edditional conditions must exist
between the coefficients of the left and right sides. Since the rank of
the matrix

A B C -D
xy O p
0 x 3y a

2In order to find for instance ry, 84, ty, one may, by
differentiation of (13) with respect to x, set up the equation

Arx+Bsx+C-bx=-[Axr+Bxs+Cxt+Dx]

ag well as the two strip relations of the third order —
xry + yex = T,

X8y + ytx

8.

For r, s, t assumed as already determined the condition mentioned

results for the unique determimation of r ., s, Ty -
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mugt be smaller than 3, it 1s necessery that the following determinant
be zero:

A C -D
x 0 Dp|=Apy +Cax +Dxy = O (16)
0 F a

According to a determinant theorem found by Kronecker3 this condition is
sufficlient. This will not be discussed in more detall since another
derivation will be glven directly for this second equation (16) of the
characteristic strip which is added to the characteristic condition (8).
As third eguation for the characteristic strip one has the strip relation
of the first order (12) already mentioned:

- pi + 0

6. The Characteristic Differential
Fquation System

The characteristic condition . .
Ay® - Biy + Cx2 = 0 (8)

introduced 1n three different ways ylelds the differential equation for
the characteristic base curves. In order to prepare, according to the
deliberations in section h for the bullding up of the integral surface
from strips of the first order on the integral surface x(x, y), one

has, furthermore, to set up differemtial equations for ithe height and
the position of the integral-surface selements which one now visualizes
as described by X = x(&), Xy =p(E), Xy = a(£). Due to the meaning

of p and q as derivatives of ¥ with respect to x and y, the
relation

PJIQ‘

X X &y
T x 55

p1a

3See for instance M. BScher: Einfihrung in dle h&here Alegbra,
(Introduction into the higher algebra), chapter V, 19, first theoren.

o
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must be valid, thus, again denoting differentiations with respect to the
varameter by dots above them,

X = pE +qF (17)
This is the so-called "strip relation of the first order".
The given differential equation (1) results after multiplication
by Xy and the designations T = Xgy, 8 =Xgys T = Xog

Arxy + Bexy + Ctkxy + Dxy - O (18)

According to;the meaning of p, q, r, 8, t one obtains the strip
relation of the second order:

rx + sy,

g
]

(19)

8X + ty.

Qa
It

If one 1nserts the expression for rx and +ty from these equations
into (18), ome obtains:

(Bsky - Asy® - Csx®) + Ajy + Odk + Dij = O (20)

The bracket vanishes according to the characteristic condition (8).
Thus one obtains as second characteristic differential equation

Apy + Cix + Dxy = O (21)

Finally, the third characteristic differential equation 1s glven by the
strip relation of the first order (17):

X = pk + qF (17)
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One therefore has a characteristic differential eqwation system altogether
for the five strip quantities x(t), y(e), x(&), »p(e), q(e):

Ay - Biy + Cx2 = 0, - - (22a)
Apy + Cdx + Dxy = O, ~ ' - (22b)
X = px + qy. y (22¢)
According to presupposition the differential equation (1) is
hyperbolic, thus
B2 - 4AC > 0, (9)

80 that the first cheracteristic condition (8) has two different real
roots for y:

yo=2'%, ¥ ="k, (23)

One notes for later that A" = The paremeter of the characteristice

of the first family 1s called £, as before, the one on the second
family is called n. For 17 = Constant one than obtains just the
characteristics of the first family, for £ = Constent those of the
second femily (see fig. 1). If one substlitutes for Instance F = A'%
into the second characteristic differential equation (21), one obtalns

PJO

x(DA'k + AA'D + C4) = O,
or
AN'P +C4 +Dy = 0. - (2k)

The third equation (17) or (22¢), respectively, of the characteristic
differential equation system mey remain unchenged.
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Thus one obtaing for the flrst family of characteristics the three
differential equations

Yg -?‘lxg = o’ (258')
A\'pg + Cgg + Dy = O, (25b)
Xg - pXg -4y = 0. (25¢)

For the second family of characteristics one obtalns, correspondingly:

Ta < ME = 0, (260)
Ax"pn + Caq + IDyTl = 0, (26b)
XT] - PXq - 4y = 0. (26c)

If one Interprets the differential equations (25) and (26),
respectively, as ordinary differential equations for x(&), y(&),
x(¢), »(&), a(g) and x(n), 3(n), x(n), pln), aln), respectively,
one has two indeterminate systems so that from this standpolnt one '
cannot arrive at an integration theory of the partial differential
equation (1).

However, if one regards the characteristics as Gauss parameter
curves on the integral sirface, so that the latter is described
vy X(&,n), =x(¢,n), y(&,n) one may now interpret the six differential
equations (25), (265 as partial differential equation system for the

five quantities x(¢,n), y(&,n), x(&,n), p(t,n), alg,n) which
seems overdetermined. -

It i1s also of Importance for the practical caslculatlon that
the last equation (26c) of the differential equation system is
automatically fulfllled when the first five are satlefied. It is,
therefore, not a case of overdeterminatlon.

In order to prove this important fact, one multiplies (25b)
by Ty (26b) by yg and subtracts:

A(r'peyy - M'Pye) + Clagyq - anye) = O
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One divides this equation by A'A" = %1

J
n o, 3t _ ;
Pg 3w " Py vt 4Ty " G = O

Hence ome obtains, using (25a) and (26a):

PXy " Pp¥ * Ty - An¥, = O
or

PyXg + QpFe = DgXy + QeTq- (27)

If one now differentiates (25c) with respect-to 3

Xen = Pp¥e " UTE” PRy - Wen =0

and substitutes the relation (27) found above:

Xgn = PgXy T QeTn ~ PXgn T Wy = 0,

one recognizes that
Xy T PEn T 97y

is a function of 1% solely which will be called h(n). If the strip
relation (26c) is satisfied on a boundary curve cut from the

curves 1 = Constant (see fig. 2) that is, the first famlly of
characterigtics, h(n) vanishes; consequently, the strip relation

(26c) 1s satisfied also in the entire interiork. The condition used
Just now, that the strip relations are satisfied at the boundaries of the
reglon, must, of course, be duly teken into account in prescribing
initial or boundary conditlons.

uIn this conclusion it is assumed that characteristics of the firet
family which are in the interior of the region somewhere meet the boundary.
Characteristics the entire course of which lles in the Interior of a
reglon would represent a rare exception which may be disregarded.
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The existence of the solutions of the differential equation
system (25), (26) was first established for a pure initial-value
problem of (1) by K. Friedrichs and H. Lewy, for the mixed problems
with Initiel and boundary conditions which are of particular importance
for us by F. Frankl and R. Aleksejeva. These exlstence theorems are
not so interesting at the moment since we may refer to the physical
evidence of the possibility of solution. ILater on, 1t is true, we shall
have to deal with the restricting presuppositions made by F. Frankl
and R. Aleksejeva for their exlstence proof, since they seem to be
connected wlth certaln occcurrences of physical interest.

T. Construction of an Approximate Solution of the Characteristic
Differential Egquatlion System According to the Lattice
Point and Fleld Method

One assumes the slx characteristic differential equations of the
form (25), (26) written in differentials:

dy - A'dx = O, - (28a)
AL'd.p+Cd.q_+Ddy=b, (28b)
dX - pdx - qdy = 0; (28¢)
dy - A"ax = 0, (29e)
A\"dp + Cdg + Ddy = O, (29v)
dx - pdx - gdy = O. (29¢)

The three equatlons (28) refer to the first family of characteristics
(slope of the base curves A'), the three equations (29) to the second
family of characteristics (slope of the base curves A"). One of the
two equations (28c) or (29¢) may be omitted according to the expositions
of the last paragraph.

This presentation of the characteristic differential equations
Immediately suggests an approximation method which essentlally consists
in the replacement of the differentials by finite differences.

One visualizes the x, y - region covered by a net of the two
families of characteristic base curves. In figure 3 the characteristic
bage curves of the first family with the slope A' are drawn in solid
lines, those of the second femily with the slope A" in dashed ones.
The points of intersection form a point lattice. According o the first
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method, the "lattice point method", the position of these lattice
points and the values of X, p, 4 at the lattice points are to be
determined approximately.

A rule for continuatlion 1s given by assuming that the procedure
is performed to include the lattlice points 1, 2, whereas the
continuation is to take place toward the lattice point 3. The indices
are apportioned accordlng to the numbers of the lattice points. By
replacing, as announced, the differentials in (28a) and (29a) by
differences, one obtains for the approximate determinmation of x, y,
that is the position of the lattice point 3, the two equations

r'(x3 - x), (30a)

7\:2"(1:3 - xe)- ) (3Ob)

J3 - J1

y3 - ¥2

The approximate values of P3, 43 &t the lattice poiht;BjdrB;ﬂby

approximation of the differential eguations (28b), (29b), determined
correspondingly from the following two equations: '

Ay Y(p3 - pp) + Cilag - a1) + Daly3 - ¥y1) =0, (31a)

0. (31p)

A2X2"(P3 - P2) + CQ(Q3 - o) + D2(y3 = y2)

Finally one may determine Xl according to (28¢c) or (290) approximately
from

I
(o]

X3 =% - plxz - x) - q(yg3 - 71) =0, (32a)

or from

1]
O

'X_3 - XE - pe(x3 - JC2) - qe(y3 = YQ) (32b)

The second method, the 'field method", offers certain advantages as
to the representeation of the results while the expenditure of calculation
18 the same as In the lattice point method. In the field method one
starts from the concept that the characteristic base curves divide the
X,y - reglon into flelds. For every one of these flelds an approximate
value for each p eand q 1is to be determined. The dlstribution of X
will then be represented by lines of equally large X (conbtour lines of
the integral surface). According to this interpretation, a galculation
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scheme is formed by the characteristic base curves; in each compartment or
field two figures, namely the approximate values of p and g, are written.

The rule for continuation for the £ield method 1s developed from
that for the lattice point method. One assumes the fleld method to
have proceeded so far that the desired approximation values in the
fields I and IT (fig. 4) are already known whereas they are just
about to be determined for the adjolning field ITTI. Correspondingly,
the coordinated lattice point method is assumed to have proceeded to
include the points 1, 2, 3, whereas it 1s Just about to be applied to
the lattice points 4 and 5. The data about the approximation values
obtained from the cheracteristic differentiasl equations (28b), (29b)
are of foremost Importance; they read, in appropriate sequence:

Aphg "(py - 1) + Cy(ay - 1) + D3y - 51) =0, (33=)
Aphp'(p5 - o) + Cplas - ap) + Dalys - 7o) = 05 (33Db)
A "(py - po) + Colay - ap) + Dalyy - 72) = 0, (34a) _
A3"(p5 - p3) + C3(a5 - a3) + D3(y5 - ¥3) = 0. (3Lb)

By addition of the two equations (33a) and (33b) which have been divided
by two there follows after appropriate rearrangement

5
A1+A.2A,l'+k,2' PLL+P5-P1+P2 +C1+C2<q_)++q_5-q_l+q'2)
2 2 2 2 2 2 2
+Dl+D2 y)_l_+y5_yl+y2>
2 2 2
S W S-S £ St 5> R s S - .
2 2 2 2
L 5(35)
A +Ao M’ =M /Py = P5 P1 - D
T2 2 2 2
Ag-Alka'-M'<P1+Pe_m+_Ps L8201 éu-qs_%-%)
T2 2 2 2 2 2 2
+D2-D7<yb,-m_y5-y2)
2 2 2 /°
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If - in the semse of the approximation used - one now neglects terms
that are of second or higher order in the differences, the entire right
side of (35) 1s eliminated and one obtains

j
Ay + Ap Ayt +hp! (_p)_l_+_’p5_pl+p2) +Cl+cl(‘1h+q5_‘ll+g-a

2 2 2 2 ) 2 2 2/(6)
3
+D1+D2(y}++y5_3_r;+y2)=o' >
2 2 2
A

Now one ldentifies certain mean valuss of the desired quantities in the
lattice polnts with the corresponding quantitiss in the fields to the
boundary of which the respective lattice points pertain, nemely>

E]___;_x__g = X7, ﬂ_;i = X171, E%Ei = XITT; ]

y1 ;r 2 -y, ,YE_BLZ I3 = yr1, &;—yi = yII15

.XL;_X?_ = X7, ig.%is. = X171, E—;—ﬁ = XIII". > (37)
ﬂgg=1§1, 32-;3=PII:.PL;—I')2=PIII5

Ll ; 2. g, i—;—qi = ar7, %—;—qz = 4rr1-

e
Aq +.LL‘2 x_-,_' +>\.2' Cy +Cy :D3_+D2
2’ 2 ’ 2 ’7 2

Finally is transformed according

SThe point with the coordinates xy, yr represents in a certain
sense the center of the field I, namely the bisecting point of the
dlagonal 1 ... 2. The definition of the field center has to be
selected for the reason that of the unknown field III only the one
diagonal 4 ... 5, with a course corresponding to that of 1 ... 2, is
already known.
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to ildentitles of the following type:

= A(XI: J1s XI, PI, q-I)

Ayt
2

. Alxqy, 79, XJ_, P1, 91) - Alxy, ¥, X1, P, a7)
2

+ A(xgy Yg, xe, P2’ q_2) - A(xI, IT» XI) PI, q.I)

2
for which one writes abbreviatedly:
A- + A - A A
1 + A At Ae T
5 = AT + —5 (38)

If one substitutes this expression and the corresponding ones into (36)
and again neglects terms which are of second or higher order in the
differences, one obtains as a formula of the fleld method:

Apvp'(przr - Pr) + Crlazrr - o) + Drlyprp - 7¢) = 0. (39)

The corresponding formula which can be derived from the equations (3La)
and (34b) reads:

Arpro"(prrz - Prr) + Crlarrr - axp) + Dpolyrrr - 7o) = 0 (0)

It must especially be noted that in (39) the progressing from field I
to fileld IIT takes place by crossing a characteristic base curve of the
second kind whereas in (39) the slope A' of the characteristic base
curve of the first kind appears. A corresponding statement may be made
regarding equation (40) which regulates the progressing from field II
to f£ield III by crossing & characteristic base curve of the first king.
For the rest, however, the equations are no more campllicated than for
the lattlce poin'b method. _
The closing of the new fleld III by characteristic base curves
connecting the lattice points 4 and 5 with point 6 would be caused
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according to the lattice polnt method by

Yg = Ty = My '(xg - x)

> (41)

J5 - ¥5 = d5"(xg - x5)

.
If one replaces in the fisld method xh'_"by XIII': 15" by XIII"=

~
Vg = ¥y = Mrrr'(xg - xy)
> (42)

|

Y6 = I5 = M1y (X6 - X5),

J

one has altered the eguations (41) only by quantities which are of
second order in the differences, so that the equations (42) can be used
asg further equations of the field method.

The contour lines of the integral surface, that 1s, the lines of
equally large X, are constructed slmply according to the relation

dy = pdx + qdy =0 (43)

a8 lines of the slope

T-.2 - (1)

starting from ean initial distributlion of X. In every field p and g
remain unchanged according to the fleld method =so that—one obtains an
approximation of the contour lines of the integral surface by series

of lines.

The equations (39}, (40), (42), and (h4) determine the field
method. They are no more cumbersome than the egquations of the latticse
point method.

So far the progressing had been represented only in the interior
of the region. How the two methods have to be altered for the
boundary will be indicated by an exmsmple.
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Let the lattice point method be performed including the points
1, 2, 3 and be Just &bout to be extended to the next lattice point 4
(point of intersection of a characteristic base curve of the second
kind with the heavily drawn boundary, figure 5). According to (29a)
one then obtains approximately -

Jy - y3 = X3"(X)+ - X3).

The second squatlon for determination of the coordinates x), y), of

the lattice point U4 1s yielded by the equation of the boumdary curve.
According to (29b) one obtains further approximately:

A3X3"(PL - P3) + C3(Q4 - Q3) + D3(Y4 - Y3) = 0.

The second equation for the determinatlion of Py, must be given by

the boundary condltion. X) may then be approximately determined,
according to (29¢), from

Xy - X3 - p3xy - x3) - azlyy - ¥3) = 0.

According to the field method one lays a characteristic base curve
of the second kind through the center of the fleld I (bisecting point
of the diagonal 1 ... 2) to the point of intersection with the boundary.
This point of intersection has been marked in figure 5 by the field
mumber II. Within the accuracy of the field method this characteristic
bage curve runs parallel to 2 ... 3. Then one obtains according to
(29b):

Ap "o - pp) + Cxlapy - ap) +Dlygg - 3) = 0.

The second relation necessary for determination of pyy, dry must

be ylelded by the bowmdery condition. The closing of the fleld IT
by a characteristic base curve of the second kind and the plotiting
of the curves of equal X - values takes place in the customary manner.

The methods descrlbed yileld only a first spproximation. For linear
problems Improved approximations are often obtailned by & refined approxi-
matlon of the differentials In the characterlstic differential equation
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system (28), (29) with the aid of higher differences. For nonlinear
problems such an attempt does not seem very promising. Iterative methods,
on the other hand, will probably lead, with tolerable expenditure of o
calculation, to improved approximations and finally also to an estimate .
of errors.

8. Literature

1. The development of the theory of characteristics given in
gections 1 to 6 is governed entirely by the needs of the practice and
thus deviates from the usual text book representations. However,
similar interpretations may be found represented particularly in the
book by R. Courant and D. Hilbert entitled '"Methoden der Mathematischen
Physik IT" (Methods of Mathematical Physics II), Berlin 1937. Hence,
for Instance the concepts of interior and exterior differentistion
have been taken over.

glven by K. Friedrichs and H. Lewy in Mathematische Anmalen, Bd. 99,
p. 200, 1928. Accounts of thls exlstence proof may be found, for
instance, in J. Hadamard's "Lecons sur le probléme de Cauchy," (Lessons
regarding the problem of Cauchy) p. 487, Paris 1932 and in Courant -
Hilbert l.c., p. 326. For the mixed problems occurring in the
applications in gas dynamics the existence proof has been given along
the same lines by F. Frankl and R. Aleksejeva in a report entitled
"I'wo boundary-value problems from the theory of ‘the hyperbolic partial
differential equations of the second order with application to gas
Tlows at supersonic velocity," (Russlan), Matematiceski Sbornik,

issue 1934, p. 483. '

3. The distinction between lattice point and field method has been
newly introduced here. A report on the lattice point method which was
developed particularly by I. Massau, Gent 190G to 1903 s 1s to be
found in the encyclopedia article by C. Runge &nd Dr. A. Willers ITC 2 on
numerical and graphic integration, p. 160. The field method hed so
far been developed only for a special case by L. Prandtl and A. Busemann,
"Ndherungsverfahren zur zeichnerischen Ermittelung von ebenen Strémmngen
mit ﬂ'berscha.llgeschwindigkeit, " Stodolafestschrift Zirich 1929
(Approximation method for graphic determination of two-dimensional flows
of supersonic veloclty, Stodola anniversary publication Zirich 1929).

An essentlal simplification in this special case is based on the fact
that the differential-equation coefficients A, B, C depend only on p

and ¢ vwhereas D altogether vanishes. For the general case treated

in this report there had to be found, in contrast, above all a significant
definition of the field center. i
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Appendix

Simplified Derivation of the Field Method

Whereas the field method was developed from the lattice point
method in sectlon T of chapter II, 1t 1s to be derived here directly
from the characteristic differential equations.

According to the basic concept of the field method the x, y -
region 1s divided into flelds In the manner of a calculation scheme
by a net of characteristic base curves; the approximate values of »p
and q are wrltten in these filelds. The method 1s assumed to have
proceeded to & point where the approximate values in the filelds I and IT
(Bee fig. 6) are already known whereas they are just about to be
determined for the adjoining field III. The desired rule for continwmition

will be obtained by means of an appropriate definition of the field
centers.

Since of the unknown field ITI 4 ... 5 is known as the sole diagomal,
the bisecting point of this diagonal i1s selected as field center. The
field centers of the flelds I and IT are then defined as bisecting
points of the correspondingly situated diagonals 1 ... 2 and 2 ... 3.

One assumes the field numbers I, IX, IIT written at these field centers.

The cormer points 1 ... 4 are, within the scope of our approximation,
connected by a straight line Since this 1line 1s closing the field I,
its slope 1s selected to equal that of & characteristic base curve
corresponding to the approximation values prevailing in the field I, thws:

T - ¥y =2p'(xy, - x4). (45a)

Similarly:

I5 = T = Mz'(x5 - x5). _ (451)

According to the definition of the field centers there is

jor M J1 * Jp L+ x 2+
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Adding (45a) and (45b) and dividing by 2, one obtains

?(h7)

Iy t¥s5 ¥ +¥o ] X5 = Xp
2 T2z M 5 tMITT3
X, + X, +x (At = 2 (x - x.)
_ *1'( (S W | 2) P = S - M1
2 2 2
Neglecting terms which are of the second order in the differences one
obtains according to (46) and (47):
- -— ’ -
Correspondingly, 1t can be shown that
yrrT - YrI = Mz (xIIT - *17)- (48b)

Therewlth 1t 1s proved that the lines comnecting the field centers in
first approximation ere characteristic base curves.

For the transition from I to IIT or II to III, respectively, 1t is
‘now permissible to set up the characteristic differential equation (28b)
or (29b), respectlively, with the differentials replaced by differences.
One obtains as rule for continuation for the determination of PIIT

and ¢ :
TTT

ﬁ

Aprg'(prrr - 1) + Cplagyr - a7) + Dylyrrr - ¥1) = O,

' S (49)
Ayprrr'(prrr - Prp) + Cprlagrr - arp) + Prrlyrrr - ¥1p) = O-

Fleld IIT is then approximately bounded by characteristic base cirves:

Mrr'(xe - 3y,

¥6 - Iy

y6 = y5 }"III“(xG = 15),
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if 6 is the index of the unknown cormer point of field ITIT. The
corresponding rule had been assumed before for fields I and II.

The constructlon of the contour lines (X = Constant) of the
integral surface has already been discussed on page 20 (equations (43)
and (44)), the modifications of the method beccming necessary at the
boundary on page 21. The representation of these facts is not affected

by the new viewpoint. N

Translation by Mary L. Mshler,
National Advisory Committee
for Aeronautics.
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