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MACH NUMBERS OF 1.60, 1.80, AND 2.00%

By H. Norman Silvers, Roger H. Fournier, and
Jane S. Wills

SUMMARY

An investigation has been masde in the Langley Unitary Plan wind
tunnel at Mach numbers of 1.60, 1.80, and 2.00 to determine the aero-
dynamic characteristics of a 0.03-scale model of the Avro CF-105 airplane.
The investigation included the determination of the static longitudinal
and lateral stability, the control and the hinge-moment characteristics
of the elevator, rudder, and aileron, as well as the vertical-tail-load
characteristics.

Although the data are presented without analysis, a limited inspec-
tion of the longitudinal control results indicates a loss in maximum
lift-drag ratio due to trimming of about 1.8 because of the large static
margin. A reduction in static margin would be expected to improve the
trim 1lift-drag ratio but would also reduce the directional stability.
With the existing static margin, the configuration is directionally
unstable at angles of attack above about 6° or 8°.

INTRODUCTION

At the request of the United States Air Force, an investigation of
the aerodynamic characteristics of a 0.03-scale model of the Avro CF-105
airplane has been made in the lLangley Unitary Plan wind tunnel.

*Title, Confidential.
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The airplane is a twin-jet-propelled tailless fighter design
having a cambered 61.4° delta wing with a thickness ratio of 3.5 per~
cent. The inner wing leading edge is drooped 8°, and the outer wing
leading edge is extended 10 percent of the wing chord and drooped 40,

A leading-edge notch is located between the inboard and outboard
leading-edge sections. Inlets are located on the sides of the fuselage
forward of the wing leading edge. A swept vertical tail is used to
provide directional stability. ILongitudinal, lateral, and directional
control are provided by conventional flap-type surfaces.

An investigation of this model has been made at a Mach number
of 1.41 in the Langley 4- by 4-foot supersonic pressure tunnel and the
results are presented in reference 1. The purpose of the present paper
is to present the results of an investigation of the 0.03-scale model
of the Avro CF-105 at Mach numbers of 1.60, 1.80, and 2.00 in the Langley
Unitary Plan wind tunnel. In addition to six-component force and moment
results for the model, three-component force and moment results were
obtained on the vertical tail. ZXlevator, rudder, and aileron hinge
moments were also measured. Total pressures were measured at two span~-
wise stations on the vertical taill near the tip.

The results of this investigation are presented without analysis.
COEFFICIENTS AND SYMBOLS

The systems of axes used are shown in figure 1. All data are
referred to the body axis system except for the 1lift and drag coeffi-
cients which are presented about the stability axis system. Moment
coefficients are referred to a point in the wing chord plane which is
located at the 28-percent chord of the wing mean serodynamic chord.

By panel bending moment, in-lb

b span, in.

0t

mean aerodynamic chord, in.

oL, 1ift coefficient, Lt
qS
. Drag
Ch drag coefficient,
gSs
Cp.1 internal drag coefficient, Internal drag
’ .

QS
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C base drag coefficient, Base drag
D,b 3
My
Cm pitching-moment coefficient, ==
qSe
My
Cy rolling-moment coefficient, -
qSb
BCZ
CZ aileron-control effectiveness parameter, Y
Bg Bg
My
Cn yawing-moment coefficient, =
qSb
aCn

Cn rudder-control effectiveness parameter,

3. 3%,

C gside~force coefficient, X

Y s
He
Ch. e elevator hinge-moment coefficient, -
’ 45eCe
By
Ch T rudder hinge-moment coefficient, g
’ aSyCp.
Hy,
Ch.a aileron hinge-moment coefficient, -
? aSCy
Py = P,
Cp pressure coefficient, -
Cb v root-bending-moment coefficient of vertical tail about
? vertical-tail root chord (0.96 in. above fuselage refer-
ence line),
a8,by,

Cn,v yawing-moment coefficient of vertical tail about a vertical
axis through the leading-edge point of the vertical-tail
root chord, nY

aSCy,
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CY v side-force coefficient of vertical tail, based on wing area,
7 Yv
qS
aCm
C pitching-moment-curve slope (CL = 0), o
ey, aCy,
oC
L
C lift-curve slope (a = 0° e
Ly ( b =
. . . (o] 501
C effective-dihedral parameter (B =0 ), o
s 3p
(o] aCn
Cag directional-stability parameter (B = O ), 5
c side-force parameter (B = OO) égl
T g
H hinge moment, in-1b
M free~stream Mach number
My moment about X-axis, in-lb
MY moment about Y-axis, in-1b
My, moment about Z-axis, in-lb
ny panel yawing moment, in-lb
P, local total pressure
P free-~stream total pressure
o0
q free-stream dynamic pressure, lb/sq ft
S wing area including body intercept, sq ft
Y force along Y-axis, 1b
Y, panel side force, 1b
a angle of'Attack referred to body reference line, deg
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B angle of sideslip referred to model plane of symmetry, deg
B¢ elevator deflection perpendicular to hinge line, deg
Op rudder deflection perpendicular to hinge line, deg
Bg, aileron deflection perpendicular to hinge line, deg
B¢ deflection of wing nose flap, deg
Subscripts:
a aileron
e elevator
0 denotes value of parameter at zero lift coefficient
r rudder
\4 vertical-tail panel
APPARATUS
Wind Tunnel

The tests were conducted in the low Mach number test section of the
Langley Unitary Plan wind tunnel, which is a variable pressure; return-
flow type of tunnel. The test section is 4 feet square and approximately
7 feet in length. The nozzle leading to the test section i1s of the
asymnetric sliding-block type, which permits a continuous variation of
Mach number from spproximately 1.56 to 2.80.

Support System

Forces and moments for the model were measured by means of a six-
component internal strain-gage balance. This balance was attached by
means of a sting to the tunnel central support system. Included in the
model support system was a remotely operated adjustable angle coupling
that permitted tests to be made at variable angles of attack concurrently
with variations in angle of sideslip.
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Model

Details of the model are shown in figure 2, and its geometric charac-
teristics are given in table I. Photographs of the model are presented
in figure 3.

The model had a modified delta wing with a leading-edge sweep
of 61.4°, and aspect ratio of 2.04, a taper ratio of 0.089, and was com~
posed of 3.5-~percent-thick cambered airfolil sections. The outer wing
leading edge was extended 10 percent of the chord and drooped 10 The
inner wing leading edge was drooped 8°. A leading-edge notch was located
between the inner and outer portion of the wing leading-edge sections
at about the midsemispan point.

The fuselage of the model had a conical nose with an included angle
of 30°. The external lines of the model fuselage were altered slightly
from those of the airplane in that a portion of the afterbody on the
underside of the fuselage was enlarged to accommodate the sting support.

The model was equipped with inlets on the fuselage sides that were
ducted to a single exit around the sting at the base of the model. TFor
most of the investigation, the inlets were open to permit air flow through
the model. In addition, for one test, faired plugs (see fig. 2(a)) were
used to close the inlets so that some results might be obtained w1thout
flow through the ducts. The model was equipped with a rudder, two eleva-
tors, and a single aileron on the right wing. These controls were manu-
ally adjustable and were equipped with strain-gage beams. The vertical
tail was equipped with a three-component strain-gage balance designed to
to measure the side force on the tail, the root bending moment of the
tail, and the tail yawing moment.

TESTS

Tests were made through an angle-of-attack range from approximately
49 to 18° at about -4°, 0°, and 4° angles of sideslip. To obtain the
lateral stability parameters throughout the angle-of-attack range, the
incremental differences were taken between the lateral coefficient
results obtained at sideslip angles of -4° and 4° and divided by the
increment in the angle of sideslip. At nominal angles of attack of 1. 5 5
6°, 10°, and 17°, tests were made from angles of sideslip of -40 o0 180
to illustrate the linearity of the lateral characteristics with change
in sideslip angle.

Tests were made over an angle-of- attack range from approximately -4©
to 18° with various deflections of each control surface (elevator, rudder,
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and aileron) to determine control effectiveness. The right aileron only
was deflected for the aileron effectiveness runs.

The test conditions are listed in the following table:

Mach Stagnation Dynamic Reynolds
pressure, pressure,
number . number
psia psf
1.60 11.7 710 2.80 x 109
1.80 11.7 665 2.65
2.00 11.7 602 2.4k

Tests were conducted at a stagnation temperature of 1250 F. Reynolds
number is based on the mean aserodynamic chord of the wing.

CORRECTIONS AND ACCURACY

No corrections have been applied to the data for stream angularity
or buoyancy. The longitudinal pressure gradients are small and produce
negligible effects on the model. Preliminary indications from the tun-
nel calibration are that some flow angularity exists. The flow angular-
ity is in a direction to increase the angles of attack presented and is
of the order of 0.3°, 0.5°, and 0.7° at the test Mach numbers of 1.60,
1.80, and 2.00, respectively. The changes in the model angles of attack
resulting from flow angularity will have an effect on the drag coeffi-
cients presented. The effects are of most significance at the smaller
angles of attack when the drag coefficients based on corrected angles
will be larger for positive angles and smaller for negative angles.

This change in the model drag coefficients is not included in the quoted
accuracy of drag in the listing of accuracy that follows.

The maximum deviation of local Mach number in the portion of the
tunnel occupied by the model was *0.015 from the average values listed
in the preceding section.

The angles of attack and sideslip have been corrected for the deflec-
tion of the support system under load. The angles of the control sur-~
faces (elevator, rudder, and aileron) have not been corrected for deflec-
tion under load. The control-surface angles presented are the static
values measured during pretest calibration.
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The internal drag coefficients were determined for the model with
undeflected controls by use of a ring choke at the exit of the duct.
The pressure differential between the measured total pressure ahead of
the normal shock at the choke and free-stream total pressure was used
to calculate the internal drag coefficient. The pressures on the
annulus of the base of the fuselage were measured with the inlet open
and with the inlet faired. With the inlet faired, the annulus area
is equal to the total base area. The pressures in the chamber housing
the strain-gage balance were also measured for both the open and faired
conditions of the inlet. However, it was found that the chamber was
not pressure sealed from the ducts, so that with the inlets open an
unreliable value of chamber pressure was measured. Hence, no chamber
drag coefficients are presented for the model with the inlets open.

The measured chamber pressures have been combined with the measured
base pressures for the model with the faired inlets and are included

in the base drag coefficients presented for the model with faired
inlets. The values of base drag coefficients presented refer the meas-
ured pressures to the level of free-stream static pressure at the base
of the model. The model drag coefficients presented are not corrected
for either the internal drag or the base drag. A correction of the
drag coefficients can be made for the faired inlet model by a subtrac-
tion of the base drag coefficients from the presented model drag coeffi-
cients. It is not possible, however, to obtain net external drag
coefficients for the open-inlet model because the chamber pressure drag
could not be evaluated.

The estimated accuracy of the individual measured coefficients of
forces and moments and angles is within the following limits:

CI, « =+ « & & o o + o o s o = & s & s s o o 4 s = s o « = s . o *0.008
CD = ¢ ¢ o« o s o o o s e« o 4 o s s 4 e s s e o w w w s s . +0,0013
S 1s ¢ [05]
Gl v e v e e e e e e e e e e e e e e e e e e e s s . . . . 10,0008
CH o e o & o v e o s e e e e s e e e s s e e e s e s s . . . F0,0008
CY ¢ & o o v o & v e s s o o s e e e e s e e s e e e e . . . *0.0038
T T o Loy ¢
Ch,r = = = v = ¢ s e o s s e o e s e w v e o w e s e w s . . *0.0026

Chya » = * » = o = o o o s ¢ o s s o o o v o v e oo . . 10,0066
Ch,y + « + ¢ = o o v o vt o s o o o« o o s s s oo s s . . 10,0013
Cha,v @ = ¢+ v o o o m s e e e e s e e s e e s w e . s w .. . 10.0016
CY,v « ¢ o = = o o o« o s s s o o o s a e e 4 s o s . e .« o *0.0010

Wy ABE v & v ¢« o 4« s s % 4 4 e s s s e s s e s s e e e e e +0.1
B, dE8 « ¢ 5 o 4+ 5 4 s 5 s s e o s s e o e e e e s s e e +0.1
O, deg . e e s e e e e o e e s s e s s s e e s s +0.3
o L=~ S e e e s a s e e e s e *0.3
Bas, deg . o .+« 4 . . e s . e s s s e s s e ae s e s e s +0.4
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It should be remembered that flow angularity exists in the test
section. The results presented are not corrected for this condition.
The accuracy values quoted for angle of attack represent the positioning
accuracy of the model in the test section and do not include test-section
flow angularity.

RESULTS

The results of this investigation are presented in the following
figures:

Figure

Base and internal drag coefficients, inlets open . . . . . . . =« 4
Base drag coefficients, inlets faired . . . . e 5
Schlieren photographs of 0.03~scale model of Avro CFulO5

airplane tested in Unitary Plan wind tunnel . . . . . . . . . 6
Effect of elevator deflection on longitudinal aerodynamic

characteristics of test model; 8, =8, =0° . . . . ... .. 7
Effect of deflection of outboard wing-leading-edge flap on

longitudinal aerodynamic characteristics of test model;

Be =8y =85 =0° . . . . s e s e 4w s s e e s e e s w 8
Effect of aileron deflection on longitudlnal aerodynamic

characteristics of test model; 8¢ = -9.8° and &, =0° . . . . 9
Effect of inlet fairing on longitudinal aerodynamic

characteristics of test model; B¢ = 8, = By e o s e e o s 10
Variation of lateral stability characteristlcs of test

model with angle of sideslip; 8o =83 =0° . . . . . . . . . . 11
Variation of lateral stablllty characteristics of test model

with angle of attack; 8¢ =8, =0° ... ... ... .. 12
Variation of lateral stability characteristics of test

model, vertical tail off, with angle of attack;

Be = 6 =00 . . . . . . e e e s e e s o e 13
Effect of rudder deflectlon on lateral aerodynamic

characterisites of test model; 8g =85 =0° . . . . . . . . . 14
Effect of aileron and elevator deflection on lateral

aerodynamic characteristics of test model; 8, = ... .. 15
Variation of elevator hinge-moment coefficient with angle

of attack . . . . . e e e e e e e 16
Variation of elevator hlnge—moment coefflcient w1th 11ft

coefficient . . . . o e e s e e s e s s 2 s e e s 17
Variation of rudder hlngewmoment coefflclent with angle

of attack . . . . e e e e e e e e e e e e e e s s 18
Variation of aileron hlngemmoment coeff1c1ent with angle of

attack . . ¢ o ¢ o o 4 b e s 4 e s e m s s e s s s a8 e s s o 19
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Figure

Variation of pressure coefficient with angle of attack

for probes at tip of vertical tail . . . . e e e e e e 20
Variation of vertical tail loads of test model wlth

-angle of attack; B = dp = By e s e s s e s e o s e a e e 21
Variation of aerodynamic characteristics of vertical-~

tail loads with angle of sideslip. . . . . e e s e e s e 22
Effect of rudder deflection on aerodynamic characteristics

of vertical-tail loads . . . . . e e a s s 23
Summary of longitudinal stability characterlstics of test

model . . . . . . . s e e o o . e e e e e 2k
Summary of longitudinal control effectiveness of test

model . . 4 « . 4 6 s e s 4 o & s o o 8 6 = s a e e s s s« o 25
Summary of aileron control characteristics of test model . . . . 26
Summary of rudder control characteristics of test model . . . . 27
Summary of lateral stability parameters with variation

of angle of attack of test model . . . . . . e e e s s 28
Summary of lateral stability parameters with varlatlon

of Mach number of test model . . . . « o ¢ s » « ¢ o« = s ¢ o 29

CONCLUDING REMARKS

Although the drag coefficients of the model are not corrected for
either internal and base pressure effects or angularity of the airstream,
a valid indication of the increment in drag due to trimming the model
can be obtained from the results. In terms of the maximum lift-drag
ratio, it is estimated that trimming the model reduces the maximum 1ift-
drag ratio about 1.8 from that for the untrimmed model with undeflected
controls. This 1s in part due to the large static margin employed.

A reduced static margin would of course reduce the loss in lift-
drag ratio due to trimming, but it would also reduce the directional
stability of the configuration. With the existing static margin, the
model becomes directionally unstable at angles of attack greater than 6°
or 8° which is well within the operational angle-of-attack range of this
configuration at supersonic speeds.

Tangley Aeronautical Taboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 15, 1958.
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Wing:

Area, sq ft . . . s s a s e o s
Span (prOJected), ine . 0 o0 .
Mean geometric chord, in. .
Sweep of quarter-chord line, deg .
Sweep of leading edge deg

Aspect ratio . . . e v s s o
Taper ratio . . . . « « & « s & o
Dihedral, deg e o e e s e o w s
Incidence, deg . . ¢ &« & « o o =
Thickness ratio, percent . . . .

Vertical tail (theoretical, with root
above fuselage reference line):
Area, sgft . . . .« o ¢« o s o o o
Span, in. o« o oo e e o e
Mean geometric chord, in. « o o s
Sweep of leading edge, deg . . . .
Aspect ratio (panel) . . . . . . .
Taper ratio . . « - « « = &+ .

Elevator:
Area, sgft . . . . . . o .
Span, 1in. o e s e s & s s
Mean geometric chord, in.

Rudder:
Area, sq ft . . . . . . & . .
Span, in. . . . .

Mean geometric chord in. s e e e

Aileron:
Area, sq¢q ft . . . . . . . . . .
Span, in. o s e & o s s s s & s e

Mean geometric chord, in. « o s e

TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Ll @ e 8 °

1.1025
18.000
10.878
55
61.4
2.04
0.089

3.5

0.143
4.635
L.872
59.3
1.04
0.298

0.048
3.665
1.89

0.0343
3,615
1.h22

0,030

3.605
1.261
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Relative wind

Relative wind

Relative wind

(a) Body axes.

Figure 1.~ Axis systems. Arrows indicate positive directions.
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Relative wind

Relofive wind '
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(b) Stability axes.

Figure 1.- Concluded.
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Figure 2.- Details of model.

(a) Three-view drawing of model.

A1l dimensions in inches unless otherwise noted.
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(b) Details of wing.

Figure 2.- Continued.
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(c) Details of vertical tail.

Figure 2.- Concluded.
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(a) Side view.

Figure 3.~ Photographs of a 0.03-scale model of the Avro

1-95126

CF-105 airplane.
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(p) Top view.

Figure 3.- Continued.
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Figure %.~ Concluded.
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Figure U.- Variation of .base drag coefficient and internal drag coeffi-
cient with angle of attack with the inlets open.
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e=12.7°

a=84°

58-2515
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Figure 6.
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Concluded.



NACA RM SI58G28 CONEESENDiakiy 27

12

al
deg

(a) M = 1.60.

Figure T.- Effect of elevator deflection on the longitudinal aerodynamic
characteristics of the test model; &, = B, = 0°.
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Figure 8.~ Effect of deflection of outboard wing-leading-edge flap on the

longitudinal aerodynamic characteristics of the test model;
5e=6r=88_=0°.

CONTEDT i



NACA RM SI58G28 CONSRRREien 31

04 17 T
N =
3 b - -
0 = =t bt B -
2 ~ - —t—t- 6f 2]
) - f
Cn ERESNEEAL A - L4t O Drooped
04+ T * ST F O Undrooped

—r A

= p 2 ¢ 3 4 5 6 T

(b) M = 1.80.

Figure 8.- Continued.
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Figure 9.- Effect of aileron deflection on the longitudinal aerodynemic
characteristics of the test model; &, = -9.8° and 8, = 0°.
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dynamic characteristics of test model; &, = 0°.
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Figure 16.- Variation of elevator hinge-moment coefficient with angle of
attack.
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Figure 18.- Variation of rudder hinge-moment coefficient with angle of attack.
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Figure 19.~ Variation of aileron hinge-moment coefficient with angle of

attack.
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(a) M = 1.60.

Figure 23.- Effect of rudder deflection on aerodynamic characteristics
of vertical-tail loads.
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Figure 25.- Summary of longitudinal control effectiveness of test model.
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TONGITUDINAL AND LATERAL STABILITY AND CONTROL

CHARACTERISTICS AND VERTICAL-TATL-LOAD MEASUREMENTS FOR

A 0.05~SCALE MODEL OF THE AVRO CF-105 AIRPLANE AT

MACH NUMBERS OF 1.60, 1.80, AND 2.00%

By H. Norman Silvers, Roger H. Fournier, and .

Jane S. Wills

ABSTRACT

The model had a 3.5-percent-thick modified delta wing with a
leading-edge sweep of 61.4°, an aspect ratio of 2.04, and a taper ratio
of 0.089. Results were obtained through an angle-of-attack range from
approximately -4° to 18° and through an angle-of-sideslip range from
approximately -4° to 18° at several angles of attack. In addition to
six~component force and moment results on the complete model and vertical-
tail loads, hinge moments were measured for the elevator, rudder, and

aileron.
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