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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

EFFECTS OF THE SPANWISE, CHORDWISE, AND VERTICAL LOCATION
OF AN EXTERNAL STORE ON THE AERODYNAMIC CHARACTERISTICS
OF A 45° SWEPTBACK TAPERED WING OF ASPECT RATIO L
AT MACH NUMBERS OF 1.41, 1.62, AND 1.96

By Carl R. Jacobsen
SUMMARY

An investigation has been made in the Langley 9~ by 1l2-inch super-
sonic blowdown tunnel to determine the effects of external-store loca-
tion on the 1ift, drag, and pitching-moment characteristics of a
45° sweptback wing at Mach numbers of 1.41, 1.62, and 1.96. The span-
wise, chordwise, and verticel location of a Douglas Ailrcraft Company,
Inc., store of fineness ratio 8.58 was systematically varied over the
outer 60 percent of the wing semispan. A brief investigation of strut
sweep angle was also made. The test Reynolds number based on the wing

mean aerodynamic chord ranged from 1.3 X lO6 to 1.5 x 106.
INTRODUCTION

External stores have been used to advantage in carrying fuel and
ordnance on aircraft and a falrly large amount of information is available
concerning thelr serodynamic influence on wing characterlstics at subsonic
and transonic speeds (for example, see refs. 1 to 8). It 1s desirable to
know whether stores can still be used advantageously at supersonic speeds,
but little information is avallable since the few experimental investige-
tions to date (refs. 9 to 11) have been quite limited in scope. Conse-
quently, in order to obtain comprehensive experimental information at
supersonic speeds, an exploratory progrem has been initiated in the
Langley 9- by 12-inch supersonic blowdown tunnel to study the effects
of stores on the aerodynemic characteristics of several wing configura-
tions. The investigations of the effects of one size store on the aero-
dynamic characteristics of an unswept wing and a delta wing were reported
in references 12 and 13, respectively.
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This paper cohtains data obtained for the same external store on a
sweptback wing having an aspect ratio of 4, a taper ratio of 0.6, 45°
of sweepback at the gquarter-chord line, and 6-percent-thick airfoil
sections. The store had a finemess ratio of 8.58 and a Douglas Aircraft’
Company, Inc., store shape. The ratio of the store size to the wing
area was such thet for a wing area of 600 square feet the store would
have sufficilent.volume to contain about 40O gallons of fuel. The store
spenwlse, chordwise, and v&rtical location was systematically varied on
the outboard 60 percent of the wing semidpan at Mach numbers of 1.4l,
1.62, and 1.96 and at wing 1ift coefficients up to 0.70. A brief inves-
tigetion of strut sweep angle was also made. The Reynolds number of the
Investigation based on the wing mean aerodynamic chord ranged from

1.3 % 106 to 1.5 X 106. The data are presented without analysis to
expedite publication.

COEFFICIENTS AND SYMBOLS

CL © 1ift coefficient, Lift/qS
Cp drag coefficilent; Drag/qS
Cm pitching-moment coefficient, Pitching moment about 0.25¢
gSc
acp
— rate of change of pitching-moment coefficient with 1ift
aCr, coefficient _
ACyy increment in wing pitching-moment. coefficient caused by addition
of--external store
ACp increment in drag coefficient due to addition of external store
q free-stream dynsmic pressure
S semispan wing area, 10.8 sq in.
c wing chord
< " meen aerodynamic chord
b wing span, twice distance from wing root chord to wing tip
a store diameter
1 store length
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X chordwise distance from line perpendicular to ¢ at quarter-
chord station to store 0.41 point

¥ spanwilise distance from wing root chord to store center line

z vertical distdBee~rrom point of maximum thickness on wing
lower surface to store center line -

a angle of attack

Lo ‘increment in wing angle of attack due to addition of external
store

R Reynolds number based on ¢

MODELS

The principel dimensions of the sweptback semispan wing, which had
en aspect ratio of 4 and a taper ratio of 0.6, are contained in figure 1.
The sections parallel to the sir stream were NACA 65A006 airfoil sections.
The blunt streamwise wing tip was not faired. The solid wing was fabri-
cated from SAE 4130 heat-treated steel. '

External stores having a Douglas Alrcrafi Company, Inc., (DAC) store
shape of fineness ratio 8.58 were tested at 40, 60, 80, and 107 percent
of the wing semispan (fig. 2). The store hO-percent-length point was
located on, 0.416¢ behind, and 0.833C behind the guarter-chord station
of the mean serodynamic chord. The verticael locations of the stores were
varied from 0.5 to 1.0 store diameters below the lower surface of the
wing. The center lines of all stores were within 1° of being parsllel
to the body axis. Xach store was molded of plastic and was designed to
have a gross volume of 41k gallons for a wing area of 600 square feet.

Swept and unswept struts which were pinned and sweated to the wing
lower surface were used to attach the stores to the wing at various
vertical store locations. The brass struts hed NACA 65A sirfoil sections.
The swept strut which was T percent thick and the unswept strut which was
10 percent thick had chords equal to 0.665c¢c and O.L70C, respectively.

The locetions at which the various struts were used are fully described
in figure 2. The leading edge of the struts colncided with the wing

leading edge for all but the inboard rear store location (4X— = 0.40,

b/2
£ - o.h16) in which case the nose of the store was behind the wing leading
C

edge. In an attempt to approximate the condition that existed at the wing
leading edge for the other store locations, a thin brass sheet was used to
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fair in the space between a line extending from the wing leading edge to
the store nose and the strut leading edge. In order to obtain the effects
oft strut sweep angle, a swept strut was used to position the store at:

z=1.0 E¥§ =0.80, %= o.hls) to obtain dats comparasble to that

obtained with an unswept strut at the sgme position. It might be noted
that, although these two struts had different chords, they did have the
same maximum thickness. Figure 3 contains a photograph of a typical
wilng-body-store combination.

TUNNEL

The Langley 9- by 12-inch supersonic blowdbwn tunnel in which the
present tests were made uses the compressed air of the Langley 19-foot
pressure tunnel. The alr enters at an absolute pressure of about

2% atmospheres and is conditioned to insure condensation-free flow by’

being passed through & silicsa gel dryer and then through banks of finned
electrical heaters. The criterions for the amount of drying and heating
required were obtained from reference 14, Extensive calibration measure-
ments had been made previocusly with no model in the test section and a
summary of these measurementis is contained in reference 15. A brief
summary of these results is also contained in the following table along
with the average dynamic pressures and Reynolds numbers for the present
investigation:

s

Average Mach number

Varisbles 1.41 1.62 1.96
Maximum deviation in Mach number t0.02 £0.01 10,02
Maximum deviation of ratio of static

to stegnation pressure, percent +2.0 3.3 2.2
Maximum devistion in stream angle,

deg $0.25 +0.20 *0.20
Average dynamic pressure for these

tests, 1b/sq in. 11.9 11.h 10.6
Aversge Reynolds mumber, R 1.5 x 106 | 1.4 x 106 1.3 x 106

The test Reynolds number decreased about 4 percent during the course of
each run because of the decreasing pressure of the inlet air.
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TEST TECHENIQUE

The semispan-wing model used in this Ilnvestigstion was cantilevered
from a strain-gage balance which mounts flush with the tunnel wall and
rotates with the model through the angle-of-attack range. A test body
was attached to the wing and loads were measured on the wing-body com-
bination. The test body consisted of & half-body-of-revolution and a
0.25-inch shim which was used to raise the half-body-of-revolution off
the tunnel wall and thus minimize the effects of the tunnel-wall boundary
layer on the flow over its surface (ref. 16). A gap of about 0.010 inch
was maintained between the test body and the tunnel wall (see fig. 1)
under & no-load condition. The investigation was made gt Mach numbers
of 1.41, 1.62, and 1.96 and at wing 1lift coefficients up to 0.70. There
was some indication that at a Mach mumber of 1.41 the data of the present
investigation might have been influenced by the reflection of the model
bow wave from the tunnel wall at an angle of attack of 12°

ACCURACY OF DATA

From a general consideration of the balance calibration accuracy
and the repeatability of data, the accuracy of the force and moment
measurements, in terms of coefficients, are believed to be about as
follows:

CE, = « = & & & o o o s e e e e e e et e e e e e e e e .. T0.005

CD & & & o & s s e e e e e e et e e e e e e e e e e e e ... *0.001
3

Cip = = = = & v e e e e e e e e e et e e e e e e e ... F0.002

For 1ift coefficients above 0.60, errors in drag coefficilent in excess

of #0.001 could well exist. The angle-of-attack measurements are believed
to be accurate within *0.05°, based upon the limitations of the mechanical
angle-of-attack system and the callibration charts from which the actual
values were obtained. :

RESULTS

Lift, pitching-moment, and drag data are presented herein without
analysis for the body aslone, for the wing-body combination, and for the
wing-body-store combinations. Figure U4 presents the variations of lift,
pitching-moment, and drag coefficient with angle of attack at Mach numbers
of 1.41, 1.62, and 1.96 for the body alone. Figures 5 to 10 present the
variations of pitching-moment coefficlent and drag coefficient with 1lift
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coefficlent and 1ift coefficient with angle of attack for the wing-body-
store combinations at the same three Mach numbers. Because these force
and moment date include loads on a somewhat arbitrary test body, the
data are not directly applicable to configuratdions including more con- I
ventional body asrrangements. It is believed, however, that trends indi-
cated by the data would not be qualitatively affected by use of a dif-
ggrent body arrangement. From the data of figures 5 to 10 values of

EEE end increments of piltching-moment coefficient and angle of attack’

L o ' B T
at zero lift due to the addition of the store have been obtalned and are
presented iIn figure 11. It might be pointed out that positive increments
in pitching-moment coefficlent at zero 1lift caused by the store as shown
in figure 11. were also obtained in the investigations of references 11,
12, and 13. The variations of the lift-drag ratios of the wing-body-
store combinations with 1lift coefficilent for the various store locations
have also been obtained and are presented in figure 12 along with the
drag increments caused by the addition of the store. - -

Generally, the data of figure 12 showed that outboard spanwise
movement and forward chordwise movement of the store decreased the store -
drag increment. There was one exception, however, in that forward chord-
wise movement of-the store at the L4LO-percent spanwise station (from a
position where the store nose was behind the wing leading edge to one
where it was shead of the wing leading edge) resulted in a drag increase.
The store drag increment for the corndition where the store nose was behind
the wing leading edge was equal to or slightly greater than the lowest
drag increment caused by the store positioned anywhere else on the wing.
These trends were about the same &as those indicated by the data obtained
for the delta wing of reference 13, and the variations of drag with store
spanwise location were also about the same as those indicated by the data
obtained for the unswept wing of reference 12 {store chordwise location
was not one of the variables considered in the investigation of ref. 12).

Langley Aeronauticel Laboratory,
Rational Advisory Committee for Aeronautics,
Langley Field, Va.
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Figure 3.~ Photograph of DAC store mounted on swept strut attached to
sweptback wing.
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Mgure 9.- Aerodynamic cheracteristlics of the semispan model with
DAC store at varlous spanwise and chordwise locations. M = 1.96;

Rz 1.3 x 105 2 = 0 end 0.5.
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Flgure 10.- Aerodynamic characteristics of the semispan model with
DAC store at various spenwise and chordwise locations mounted on

an unswept or swept strut. M = 1.96; R~ 1.3 X 106; g = 1.0.
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Figure 12.- Variatione of store incremental drag coefficient and 1ift-
drag ratio with 1lift coefficient for various spsmwise, chordwise,
and verticsl locations of the DAC store on the semispan model.
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(b) Z=1.0; M= Ll R % L5 X 100,

Figure 12,- Continued.
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Figure 12.~ Continued.
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