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Phenomene (Kaiser-Wilhelm-Institut fir StrSmqusforschung im
Auftrage der Aerodynamische Versuchsenstalt GSttingen, Institut
fir instationdre Vorginge).

I. INTRODUCTION

The present treatise deals with the plane problem of the vibreting
airfoil in supersonic flow within the scope of a linearized theory.
The method is based on the application of results pertaining to the
field of moving sound sources! and, in addition, on the introduction
of the accelerstion potential for the movement of the alr particles.
In view of the latter the method can be regarded as a direct oxtenmsion
of Prandtl's 'General Considsrations on the Flow of Compressible
Fluids'® to the unsteady problem of the vidrating wing; the following
makes uge of all fundemental ideas of this theory. This extension
leads to an integro-differential equation for the strength of the
doublet distribution which represents the vibrating airfoil; this
equation which ie characteristic of the mathematical development of
the theory, 1s solved by means of & Laplace transformstion. The use
of improper functions (first and second derivatives of discontinuous
functions) which has become familiar in the modern guentum theory, may
appear to be an innovetlion, but the fundamentel idea which is expressed
in this formel approach is nothing but the interpretation known from
the theory of characteristics of hyperbolic differential equations,
namely that disturbances and therefore alsc discontinuities in the
hyperbolic case are propagated along reel characteristics, in the
present case notably on the boundary plenes of the Mach wedgs.
Altogether the author Pelieves to have found here a procedure which
leads very simply and directly to a solution in the case of the
vibrating airfoil moved in tranelation at supersonic speed; it can
probably be profitebly applied to similar problems as well. L

Dr. L. Schwarz has solved the present problem in another way; I
am particularly indebted to him for several critical observations
which benefited my work. Apert from differences in the notation
there is complete agreement between Schwarz' and my results so that
their correctness ought to be fairly certain. I should like to mention
that the theory has been carried through only to where it merges into
the general final formulas of Schwarz. All further statements would
be identical with Schwarz' statements and could not offer anything new.

'H. Hénl, Ann.d.Phys. (now being printed) [1].
2L. Prandtl, Lufo 13 (1936) p. 313 (2 ™ &5.



NACA ™ 1238 3
II. STATEMENT OF THE PROBLEM

<]
As first noted by Lenchester and carried further by L. Prandtl,
the introduction of an acceleration potentiel Y <from which the
—

acceleration vector b

T, (g v (1)

(v is used for Germen script wj

of t%e air particles (w velocity vector) is derived according

to = grad 1, proves to be especially useful for the treatment
of the wing in a compressible medium. V¥ then results according to
Euler's hydrodynamic equations for frictionless liquids, apsrt from
an arbitrary constant, as identical with the negative pressure
function, thus

\!!+f-§‘§=00nstant (2)

The fundemental idea in applying the acceleratlon potential to the
wing theory in the shape given to it by Prandtl is the following:

If the perturbation veloclties are linearized, 1, on the one hend,
satisfies the well known equation of wave propagation

A
7

&Y =g =0 (3)

(c sonic velocity); on the other hand, however, Y experiences
according to (1) a discontinuous change in penetrating the 1lifting
surface on which there appears a pressure Jump betwecn the lower and
upper surfaces. These conditions suggest the use, Iin determining 4,
of enalogies from electrostatics (for the steady-flow problem) or
electrodynamics (for the unsteady=-flow problem).

Wo will limit ourselves to the two-dimensional problem of the
infinitely long wing and suppose that the lifting surfece is a sirip
of width 1, located in the x,z-plene, parallsl tc the z-exis.

Furthermore, it will be useful to employ & system of coordinates
which- is attached to the ailrfoll so that the wing in reference to

—z
L. Prandtl, elsevhere.
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thie coordinate system executes small vibrations but has no tresns-
lation; if one assumes that the wing in the original coordinate
systen (medium at rest) moves along the negative x-axis with

the velocity U, the wing in the new coordinate system (without
trenslation) is in a flow of the same velocity in the positive x-exis,
end equation (3) must be replaced by

1(3. .23V . _ .

In thig equation, 3/dt 1s to be left out in the case of steedy

flow. For the problems of unsteady flow we will limit ourselves

to the case of the harmonically vibrating (infinitely thin) wing
and accordingly meke the substitution

¥ o= p(x,y) o 2* ' (4)

The wave equation (3') changes into

2 2 "
(h@-l)%ﬁ-—g—ﬁ-(ﬁ»fﬁm .é.i.)qn.o (5)
with
k=2, Ma3 (58)

(k aquantity propagated,M Mach number)

We now assume that ®(x,y) is a solution of the wave equation (5) -
we call it an elementary solution - which corresponds to a sonic pmaint
gource located at x =y = 0.*

‘H . Hnl, elsevhere.
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Then obviously the 'source potential”

%=V [ o(x -5y £(2) az

Jo

with en erbitrary source distribution U f£(x) elong the wing
chord 0 £ x €1 anyvhere outside of the lifting surface will
satisfy the equation (5) end the seme is velid for

o-Fa .y f‘ bylx - 27) £(2) & (6)
40

(The fector U 1is added to avoid unnecessary factors in the

following formulas). The letter expression obviously represents

apart from the time factor e-lwt  +the retarded potentiasl of e
doublet distribution; £(E&) 1ie novw a measure for the strength of the
doublet distribution and is, therefore, proportional to the Jump

in ¢ vhile penstreting the surface. If we substitute (6) into (&), V
will meet all requiremsnts which are to be demanded of the
acceleration potential and can therefore be identified with it.
However, it must be stressed that ¥ and ¢ will be uniquely
determined for the whole spece only when the source and vortex
distribution is %gven everywhere and in addition a boundary condition
or ray condition ® at infinity is prescribed for ¢. In fact, a
vortex weke in general adjoine the trailing edge of the wing which
also will contribute to the acceleration potential. The, conditions
for the case of supersonic flow are rendered especially simple by

the fact that each source or vortex elemsnt takes effect downsiream
only end that therefore theailr forces on the wing ars sglely
determined ty the doublet distribution replacing the pressure Jump.
Concerning the boumdery condition at infinity we shall have to require
that ¢ and therefors the perturbation velocity components u and v
diseppear outside of the Mach wedge which starts et the leading edge
of the wing (therefore, especially for x<0O) but in the infinite
inner region of the Mach wedge satisfy & ray condition; these
requirements are automaticaelly met by our eguation (6) according to
the definition of the elementary solution.

Therefore, our task will be to find conditions which uniquely
determine the source distribution f£(z) in (6). One such condition

- 5Gompare A. Sommerfeld, Jahresber. d. DMV 21, pp 30§-353
(1913) [‘fx
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results from the fact that the downwash distribution
w(x, t) = v,(x) e 1% on the ving is given. Therefore, we further

need at first relations between the acceleration potential ¥ sand
the perturbation velocities w, v (u horizontal, v perpendicular)
which permit the expression of the latter by V within the scope

of the linearized theory® Thus we obtain corresponding to owr
asswn?tion ebout the establislment of the coordinete system eccording

to (1) spert from terms of the second order in the pertwrbation
velocltles
-'B) = -a-"! +[E i (7)
ot ox

and, therefore, by substituting D = grad V, y = gred ‘&

v/=_§‘£+u§+x(t) 1)

vhere X (t) setends for an arbitrary function of time. Since we

will sssume, however, that no change shall teke place at infinity,

we can immediately epecialize X (t) = C. If we asswme V (x,¥; t)

as given there follows now for the velocity potential? o

T ' X =-x' C
i 3 ‘t- ' - D 8
Y U(/‘w‘*(xﬁ: G )dx +SE+D @&

with D as a further (insignificant) integration constsant. In this
equation the integrel appearing in the first tewm

.o

"v"=% f:wé:',y;t - E-t-}-—x.) ax ' ) (8')‘

€ Compare H.G. Kisener, Imfo 17, p. 370, Abschn.k 5t

7An srbitrery function f£(t ~x/U) to be added in (8) according
to (7') 18 reduced to a constant since othorwise the vave eguation
fozi (:nalogous to (3) and (5), respectively) would not be
satialled.

{ll
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corresponds to the potential of the perturbetion velocities, the
part containing x 1linearily corresponds to & superposed igturbed
flow in the x-direction; therefore one has to equate C = U-.

From (8') follows

v a-—a-—\'-‘-’a-l-— rx -@ (x',y; t 'Et;x|>61' (9)

as well as & further integral for u not needed at present.

If ve meke use of (4) for harmonic vibrations we obtain far
the x-axis:

it -iwt x . (3] !
v o= vo(x) e Wb imes 'e"‘ﬁ—" r Py (x%,7) ST =) g (10)

or
X

e-i%'z“ vo(x) = Limes% f Py (x',¥) e-i%x' ax'
[t

¥F—o0 [+ -]
and finally by differentiation with respect to x:

-8
8 2

- o
e gz vo(x)] = Limes & Q. (x,5) (11)
A . [+ A

y—0

We now have to substitute (6) on the right side of (1l1). Teking the
fact into consideration that only those sources contribute to the
downwesh at the point x of the wing in supersonic flow which lie
upstreem with respect to x, for which therefore g 2 X, we can
-replece the fixed upper limit of the integral (6) by the verieble x;
a8 the lower limit we will select -, establishing f£(£) =0

for £< 0, so that £(& for & = 0 will,in general,be discontinuous.
In the limit y-—>0 the right side of (113 must approach the same
1imit value for both signs of n = |y} Thus we obtain from (6)

and (11), taking (5e) elso into consideratior,

x av, k
Li f:’ S, t t = - - 1= 12
qu f-m yy(® =5, ) £(8) & = i Yo (12)
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The right side of (12) is a given function of Xx; however,
it must be taken into considerstion that now v,(x) also at the
paint x =0 18 to be regarded as discontinuous (vo(x) =0

for x < 0), so that ?.‘_%J_(c_"l. at x =0 hes to be represented by an

improper function (&-function). Correspondingly, in the deriva-
tive ﬁby also singularities of higher order appear in the integrand.
By the integral equation (12) with a given kernel & ¥y and given

right side the distribution function f£(x)} is uniquely determined.

The calculetion of the pressure Jump on the wing which 1s the
real goal of this peper, results efter solution of the equation (12)
immediately from (2). First, the change of the pressure function
corresponding to the infinitesimal pressure change Ap will be

)
A — =} - - SN
J p poAP Po

with L standing for the average density of the medium, and

therefore, according to (2) the pressure jJump = Dbetween lower and

uppe€ side of the wing (the indicee + and - refer to upper and lower
side):

ot
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n=Op -Ap = po(lll_‘, =¥} (13)8

a

» Bquation (13) for the pressure Jump = 1s essentially
identical with Bernoulli's reletion between pressure and velccity;
this reletion is represented within the scope of the linearized

theory for the case of unstesdy flow by the equation

&, ¥, A
5 + U ol + 5t Constant ()

or, using the notation of u =—§i, by
qx

. ] W\ L/
2, = Uluy - u) +<..&->+ (_a?). (8)

The calculation of the horizontsl component u yields according to (8)
at first

~ >'d
o 1 . 1 T T & ,
U o= — _—IT\p(x,y,t) —U—2 f %(x,y,t -U_--) dx
=0

ox
if Ul s
=ﬁ'[_ﬂ!(x»y;t) - ?_\;!i(_;g;ggjl] ()

therefore, according to (B) in agreement with (13)

__’1 = -

The explicit calculation of u and _:.‘f.. from ¥ according to (B)
t

proves therefore to be a detour here.
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Thus the soluticn of our problem is traced vack to the sclution
of the integral equation (12) for the'distribution function f£(x)
from which n can be calculated according to (&), (6), and (13).
Since singularities which originate in discontinuities of v,(x)
and O(x, y) eappear on the right as well es on the left side
of (12), the soluticn of (12) shall be preceded in the following
gection by & discussion of the properties of the b&-function.

III. TBE METHOD OF THE 8-FUNCTION

By the function ®(x) - s8lso written 3(x-0) — we tmderstand
an improper function, which, with the exception of the points x =0
becomes infinite in such a way that _

)
I 7 a(x) ax = 1 (14)
,Axl
becomes valid if the interval X, -+ - X, contains the point x =0

as an inner point. In order to attach a stricter mathematical msaning
to the erithmeticel operations making use of &, it 1is necessary to
consider ©5(x) as limit of & sequence of continuous functions. We
egsume therefore at first continuous positive funcitions @b(x) which

have a stesp maximum at the point x = 0 and are also subJjected
to the conditlion .

Qp(x) dx = 1 (k')
uxy . —

Let mb(x) be & function of & parameter p in such & way thaet @b(x)

everywhere, wlth the exception of the point x = O, approaches zero

as p approaches & fixed limiting value, for instence p = 0. The
“limit function” B8&(x) thus characterized mey be denoted as 'prong
function.” All mathematicel expressiocns containing the S-functions

in e symbolic way must, therefore, be considered es limiting processes
in which at first G(xs is replaced by the segqueénce of functions wb(x)

end finally the limit p-—0 1s teken.

»
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After this comment there results immediately the property of
the S-function which is most important for its application, the
integral reletion .

2

5(x - a) F(x) dx = F(a) (15)
vy

for %y <e(g X5, in cess ¥F(x) at the point x = & is continuous.
In sddition, we will consider the sequence of the deriva~
tives q>I;(x) of the function Qp(x) defined above. We call the

limit function characterized by this sequence 5(1)(::) ; therefore,
we may equate symbolically:

d&(x)

51 (x) = (16)

Since we may transform mtegrals which contain in the integrand
the continuvous functions q; "(x}, by integration by parte into

integrals which contain qu(x) instead of <p '(x), thsre follows
from (15) also
X
8(1)(x ~e) F(x) dx = P(a) (1)
1

- where Xx; <a <X, for all functions F(x) which have a centinuous

derivative at the point X = a; use is made of the fact that the
functions p(:c) diseppeer in the limit p—s 0 at the limits of
the interval’

Finelly we mention that the sequence of functions @ p(x) way

elso be regerded as a sequence of the derivatives of function g,p(x)
vwhich approximstes the "step function"

0 for x< 0
8(x) = (18)
L 1 for x2 0
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in a continuous way. In this sense we may then substitute symboli&aliy;
in analogy to (11},

d:f‘) | (19)

B8(x) =

The application of the method of the 3-function to the present
problem is based on the fact that the slsmentary solution & (x, y)
of the wave eguation (5) is, for supersonic cenditions, quite genserally
& discontinuous function - namely zero outelde of the Mach wedge,
but ;5 inside of it and also on the boundary when approached from
the inside so that the first and second derivatives lex, y)

and ny(x, y) vhich appear under the integral acébrding to (6)

and (12) lead to the separation of improper function parts on the
boundaries of the Mach wedge. On the other hand, the performance

of the prescribed integrations according to (15) and (17) does not
present any difficulties as long as we may suppose the distribution
function f£(x) end its derivative f'(x) everywhere as gcontinuous.
This assumption is fulfilled for the extent of the wing 0« x < 1

with exception of 1ts leading and trailing edge as well &s in front

of and behind the wing, that is, for x <0 and x > 1, where f£(x) = 0.
The points x =0 and x =1 are exceptions. We will try to evade
this difficulty by sssuming at first that f£(x} is continuous also
near the points x =0 and X =t and will proceed only subseguently
to the limiting case of & discontinuous distribution function. This
procedure always leads to & uniquely determined result. The mathe-
matical measning is that one has to proceed first to the limit p - 0O
and only subsequently to the limiting case of a discontinuous
distribution function or downwash distribution on the wing (right side
of (12)) since the performence of the integrations (6) and (12) already
involves the spplication of the d-uymbol. BSuch a procedure that regards
the compression shock along the boundary of the Mach wedge which
corresponds to the elementary solution O(x, y) as infinitely sherp
(linearized theoryl) in contrast with the always incompletely realized
sharp limitation of the wing, 1s probebly fully Justified from the
physical point of view. '

IV. THE PLATE AT A GIVEN ANGLE OF ATTACK
IN SUFERSONIC FLOW (STEADY-FLOW PROBLEM)

We illustrate the method for calculation of the air forces. at
first by the steady flow - example of the plate at rest at an
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infini'l;esimal engle B. We shall obtain egain results alreedy
known.

In this example the downwash is constent at both sides of
the plete, (we equate v, = - b), but zero in front of end behind

the plate. Obviously B8 =-%— (apart from quantities of a higher

order) (See fig. 1.) If we now form the derivetive .:‘;°

for in (12), this quantity will become &t x =0 and x = 1,
respectively, -« and +<«, but in such e way that the function

, &8 provided

x | 0 forx <O

vo(x) = &L@. = (' b for0<<x <1l (20)

° ag Y
- 9% | 0 forx>1

at x =0 and x = 1 experiences a discontinuity by Ib. According

to (19) we, therefore, may substitute for the right side of (12) -
teking intc consideration that the second term of the right side
digappesars in the steady-flow case (w =0 or k =0, respectively) -

%;—O—z p8(x - 0) + b&{x ~ 1) (20 ")

On the other hand, let us consider the elementery solution 9 (x, y)
appearing in (12) and ite derivativea. By &(x, y) we understand

in the steady-flow case & discontinuous function which assumes inside
of the Mach wedge

1l
l—i] = tan a, x> 0; tan a = = (e1)
L} -l

with the apex x =y = 0 and at half the opening angle o & constant
velue (thet is, a value independent of X, y and with a certain
normalization dependent only on M), but disappears outside the

Mach wedge.® It does not mean a restriction of universal validity

900[:2 re Ackeret, 7s.f. Flugtechn. Motorluftsch. Bd. 16 (1925),
P.72 ol _
.1°Compare L. Prandtl, elsewhere. Equation (30).



14 S " NACA ™ 1238

for our problem if we equate the value of the function inside the
Mach wedge = 1. Introducing the step function (18) obviously
mekes

{( 8(x { cot a ¥) for x > 0
@(xjy) = ¢ ’ (22)
0 for x< 0 _

with the upper sign velid for y >0, the lower sign velid for y < O.
If we furthér take (19) and (16) into consideration, we obtain
for x >0 with the abbreviation gq = x 1 cot a y:

&y(x,y) = 3 cot @ @'(a) =  cot & 6(a) (232)

¢, &) = cofa §"(q) = cotta 8(1)(q) (23b)

If we now apply the integral relation (17) the integral on the left
side of (12) becomes, if we use again n = |y instead of J,

- O3 0O

x
f @yy(x - & in) £(g) 4L = cot? a fxa(l)(x - & -cot an) £(& 4

= cotq £'(x - cot an) (ak)

Therewlith we obtain from (12) with the help of (20') in the
limit n—»0 the differential equation

cotfa £(x) = - b8(x - 0) + bB(x - 1) (25)

iy

|

i
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from vhich we conclude thet f£(x) must be discontinuous at the
points x =0 and X = 1; and so, apart from a constant, the
function

2{x) = as(x - 0) - as(x - 1) (26)
is, sccording to (19), the solution of (25), if a 1is selected:

= _ﬂ’_g_ (26a)
cot o

The constent, which is as yet undetermined, is obtained from the <
fact thet £{x) must elwsys vanish ghead of the leading edge (x = 0)
and is, therefore, left out in (26). Of course; we likewise

put f£(x) = 0 }ehind the trailing edge (x > 1), & condition which
is then automatically fulfilled according to (27). However, there
is obviocusly only one integration constent at our disposition for
the transition from (25) to (26). The rezson for the possibility

of giving the solution of (25) in the form (24, is, according to (20),
that the downwash v, performs an equel and opposite Jump et x =0
end x =1 8o that, behind the tralling edge v, = 0. Therewith,
ve only confirm the correctness of our originel assumption. For
non—-plane lifting surfaces or for "the problem of unsteady flow the
above statements will, in generesl, be no longer velid; a vortex-weke
will then adjoin the trailing edge

We calculate the horizontal component wu of the perturbation
velocity. From (8') and (4) one obtains for the steady-flow case

¥ Y2
e g o=, 1)

and further, according to (6),

lx
as f Byx -z, ) £(D) az (27)

-Co
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1f we fix the integration limits as in (12). If we go back to (22)
and (23a) and use equation (15) for the transformation of the integral,

we obtaln, because of (26) and (26a),

1Q
u = gcot a j 8(x - & - cot an) £(&) 4

-00

= gcot af(x - cot an)

=2 —-—-—‘b—-—-[ - - - - | ]
t s(x -~ cot an) -~ 8(x -1 - ¢cot an)

and in the limit n—0:

u, = % co: a-:[s(x < 0) - s(x - 1)} (28)

If we compare (28) with (20) for which we can algo write

Ve = b [a(x ~0) ~8(x - 1_)] (20a) |
we find
Up = 7V, ten o (29)

(In ell formulas the upper sign always refers to the upper side, the
lower one to the lower side of the lifting surface.)

The pressure difference = on both sﬂes of the lifting surface

is now immediately obteined from (13), (27), and (29). There follows
with v, = -b: :

x = 2p Ub tan a (30)



NACA T™ 1238 17

and from this equation the lift
A =m =2pUbl tan « (30a)

In order to obtain the lift coefficient ¢, we have to divide

&

by —%902?,. If we replace b Dby the angle of attack B =—% ,
there followa from (30a)

c, = 4B tan a (31a)

The result for the drag coefficient ¢ will be, since the suction
force at the leading edge is eliminatex in supersonic flow,

c, = Bcg = hﬁe tan a (31p)

The formulas (31la) and (31b) are in agresment with the resulis of
Ackeret who for the first time calculated the air forces on the plate
at a given angle of attack in supersonic flow in 1925.

As a conclusion to this treatment we want to stress once more
that the veolocity and pressurc distribution of the plate at a given
angle of attack were traced back essentially to the digcontinuitieg
of the distribution function £(x). This fact is expressed clearly
in the connection between the formulas (26)and (28). Thus a discon-
tinuity eurface of the u-distribution as well as the v-distribution
spreads from the leading edge of the lifting surface which coincides
with the boundary planes of the Mach wedge and causes an expensior
wvave in the upper region y > O and & compression wave in the lower
region y <0 (fig. 2). The effect of this discontinuous chenge
in velocity is in our example sxectly cancelled by the second dlscon-
tinuity surface starting from the trailing edge x = 1 (compression
wave for y > 0, expansion wave for y ¢ O) so that the flow behind
the second Mach wedge which starts at the trailing edge is egain
wndisturbed. Since obviously the sphere of action of a discontinuily
surface of f£(x) 1n superscnic flow extends downstream only, there
follows that the problem of pressure distribution on the wing in
general is already uniquely determined without epy edditionel “flow-off
condition" (requirements for finitensss for the v-distridution
immedistely behind the trailing edge). The discontinuity of f(x)
at x = 1 involves in general the eppearance of vortices at the
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trailing edge which, however, need not be ascertained for the
investigation of the air forces on the wing-

V. BENDING OSCILLATIONS OF A PLANE WING AT ZERO ANGLE OF ATTACK
SETTING UP OF AN INTEGRO -DIFFERENTIAL EQUATION
The bending oscillations of a plane wing at zero angle of ettack
represent the simplest problem of unsteady flow. Let Yo be the

(infinitesimal) displacement of the mean camber line from its zero
position (x-axie); we then substitute

Yo = Ae-imt for 05xE7 (32)

Then the downwash in the same intervel becomes

. ) 3 )
w(x,t) = vo(x) e lwst =-._y_.o.- = ~-ighAe it

ot g
and, therefore,
‘%9_= ~3AB(X - 0) + ... (33)
By ... we refer to the contribution of the second disecontinuity

of v. at x =1 which, however, does not sxplicitly enter our
calcuiations since we can brsak off the wing et an arbiirary point
X = 1 without having to change the results for x < 1.

Our most important problem now is the transformation of the
integral on the left side of equation (12) and the transformation
of this equation into an integro-differential equation for f of
the ordinary type. The integral equation (12) has as in the problem
of steedy flow an essentially degenerate kernel since the slementary
solution @ on the limit of the Mach wedge becomes discontinuous by
itself; its derivatives, the?egore, are to be represented by the
improper functions & and 8(1). Therefore we meparate @y(x, ¥)

end ny(x, y) each into a degenerate part due to the discontinuity
of the function ¢ at the boundary of the Mach wedge eand into a

b

L)

BT
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reguler part due to. the enalytic behavior of @ in the inner region
of the Mach wedge. The elementary solution Q(x, ¥) of (5) for the
time-periodic case of & sonic point source can be taken from a
former investigation.* We normalize the function @ in such & way
that the Jump of ¥ 1in penetrating the Mech wedge has exactly tho
amount 1; the elementary solution then reads:

fei%m Jo(f'%’ \/%2 - 32) inside the

@ (x,y) = < Mach wedge (34)
10 cutside the
- Mach wedge
whare we further introduce for abbreviation
€=cot2a.=M2-l (35)
Teking the discontinuity of on the bovndery planes x-cat afy/=0
of the Mach wedge (for x > 0) into consideresticn, we obtein
‘I?y(x,y) = Ffe S(x '\/En) ei'cl'émc + o;,‘(x,y) (368)
1 - = :
9 (x,3) = ™ (x - n) Lo, 0¥ (x,7) (36v)

where & *(k, y) characterizes the part of % (x,y) which is, within
the Mach wedge, continuous (end anelytic); outside of the Mach wedge
the derivatives disappeer. With the inssrtion of (36b) into the

integral on the left side of (12), the first part of (36t) yields
by integration by parts

i1
H. BEbnl, elsevhere. Equation (LOY
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* &
€ f 8 (x - £ - vgn) o (XY £r2) ar

-]

.
- “r B(x - 2 - &n) %Eei%“(x'ﬁ’ £(2) ag J

= € {[- i %k £(8 + r'(g)] ei%k(x-g)}
&=x~VEn

and therefore in the limit n—0Q:
- 1IMkf(x) + ¢f'(x)

The integral equation (12) therefore assumes, on account of (33),
the form

- IMkf(x) + f '(x) +fk°§y(x - £,0) 1(g &

-0

>

{-mE(x-o)-iﬁk‘—] for x%0 (37)

10 for x L0

The right side of (37) shows thet f£(x) in any cese must be dis-
continuous at x = 0, so that £'(x) contains an improper function
8(x - 0) as & constituent part that with proper choice of &
multiplying constant will cancel out against the right side. This

is naturel since the function f(x) for x< 0 , that is, o
the wing, must vanish together with its derivative f'(x) (so that
(37) for x <O is solved by f£(x) = 0), and therefore will, in
generel, show unsteady behavior at the front boundary of the wing,

as already shown in the example of steady flow (IV). If we,therefore,
set up the equation

£(x) = asg(x - 0) + £y (x) (38)

vhere a represents & constant yet to be determined and the

f
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function #£,(x) defined for x 20 hes to satisfy the condition
that it changes continucusly into

£4(0) = 0 (38)
(37) becomes:
- iMke - 1MkF) (x) + e[ad(x - 0) + £5/(x)]

: aJ[“ o, (x - g,0)az+[ X (x-g,0 1) &
o]

= 1A fs(x -0) =1 {[ (39)

If we now put
a = -:-j'%ﬁ- (hO)

the &-function will be completely eliminated from (39) and we
ehall obtain for £,(x) o um thnngmm (Volterra)
: : ; %

otharwise , ' regular cha.ra.cter -

x
mrl(x) + er{(x) + £ °§y(x - & ,0) fl(é) dx

= a<1Mk - fo;y(g,o) dg) - 1% s (1)

1ts solution is uniquely determined by the boundary condition (38e).

The solution of the integro-differsntial equaticn (k1)
required a further determination of 1ts kermel. If we go back to
(34) we obtein by differentiation for the imner region of the
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Mech wedge: ' T I

@ ¥(x,0) =0 o (x,0) =J€£2 otbr 'ﬁ;iz;k") (42)
'l

where the eciuution

was made use of. If we introduce further the dimensionless variable
(reduced length)

kx
Z ="¢ (43)
insteed of x, we can elso write:

J
o;y(x,o) =—%—2 G(z) ; G(z) = eiMZ—lg(—-'L (k2e)

Equetion (41) then assumes the form

“1MF, (2) + PJ(z) + L‘ 6@ -¢) P (L) at

-a [m - 1L - j" a(t) a;} (4)
Q

The symbol ¥, rather than f1,wves selected in this equation in view
of the replacement by 2z of x. In the following section VI we are
going to solve the integro -differential equation (44) for the
boundary condition (38) by meens of a Laplace transformation;

the result reeds (for z = 0):

I~ )
Fi(z) =& | eiMZJo(z) - iﬁ jz emuJo(u) du -1 (45)

l

ot

o
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With this the distribution function £(x) also is determined. By
vriting F(z) = eH(z) instead of f£(z), we obtain from (38)

3

(' % =1

J'e. l[}mzd'o(z) - 1;,1 r eiMuJo(u) dn| for = 2 0
F(z) = aB(z) = Jo - (46)

LO for z< O

where the value (4O) hea to be substituted for a.
In sddition we shall prove that the pressure distributicn on
the wing for the general cese of unsteady flow also ls determined by

the distribution function £(x) or F(z), respectively, glone.
If, to this end, we go back to (4) and (63, we heve at first

X
Yx,y5t) = 7980 | po(x -2, wn) 2@) a2

-0

and from this equation according to (36a), because or the disappearence
of @*y(x,Y) in the limit |y|-—0, (compare (42))

nx

M
Y (x,405t) = 7€ o 2% Limes j B(x -~ g ~€n) ote(x-3 £(g) 42
n—0

ly
= ;\Ié'f(x) e"iaat D

By substituting (47) into (13) we thus obtain, egein replacing
T(x) by F(z), for the pressure Jump = on the wing

n = -2p, U F(z) o “lovt (48)

This formule is valid in genersl. From it we obtain for the special
cese of bending oscillations, according to (46) and (L0),

%= Epo U ;%eé‘ E(z) e lwt (49)
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by which the problem of the calculetion of the pressure distribution
on the wing 1s, for this special case, solved.

In discussing the equations (46), (47), end (49) one must not
overlook the fact that the veriable z contains the quantity ¢,
vhich decreases with M-——1 to zero, according to the equation

z = % » Therefore, the graphs for the F-, u-, and n-distributicn
as functions of the chordéd x in the limiting cese M-—>1 shrink more
and more toward x = Q.

VI. SOLUTION OF THE INTEGRO-DIFFERENTIAL EQUATION IN
THE CASE OF AN ARBITRARY DOWNWASH DISTRIBUTION
BY MEANS OF A LAPLACE TRANSFORMATION

Before we turn to the general problem named in the title we
shell first derive the solution for the epecial case of the bending
oscillations by meens of & Laplace transformation. The formalism
of the calculation can then be transferred without any difficulty of
the general case of an arbitrary time-periodic downwash distribution.

(a) Bending Oscillations as a Special Case

Our problem is the solution of the integro-differential
equaetion (k4) for the boundery condition Fl(o) = 0 by means of
& Leplace tronsformation.

If we denote the lLaplace tremsformamtion Lg [(F1(z)] vy
9(s), L_ [G(z)] by g(s), the equation which corresPonds to (4k)
is lineef in ¢(s) and beccmes, taking into consideration the
boundery condition F,(o) = 03®

] M - 1 - g(s)
= 8 -
8

[s - M+ g(s)-_} ?(e) = aIg: {m - i - fz &(¢) af
: Jo

(50)

1t 18 noteworthy that L, [F'(z)] = s@(s) = F,(0)

compare G. Doetech, Laplace transformation (J. Springer 1937),
p- 153.

'y
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13
Tho Laplace transform of Ji(z)/z is:

. :
I.8 _L__J ('.')_] = L .__Jli.z__). e %% 3z = \/?TE_ -8
z

and therefore, (compare (L2d))

o0

gs) = -'Zléﬂ M2 o782 4, o \/(s - i.M)2 +1 - (s - 1M) (51)

The solution of (50) for ¢(e) 1is, therefore,

(o) aiM-i%-g(s) as"\/(a'iM)2+l‘i'§' =)
8) = —— =
¥ {-m+g(s)t | 8 (s - iM)© + 1

As is well known, the inverse transformation ¢(s)— Fy(z) 1is given
by

£ye) =1t [o(e)] = ke § e o(e) 0o (53)

where the closed path of integration traversed in the positive mense
encloses, in a unique sheet (schlichten Blatt) of the complex
8-)lene, the singularities of the integrand located in the finite
part of the plane. If we finally introduce + =8 - iIM as a new
integretion verieble, F,(z) becomes, according to (52) end (53)

Mz L 2zt 1 1 1
F (z) =e -t s jbe , - - £ ak
1 2ni t+1t+m_iM('_b_+iM)\/:§+l

(54)

2. Doetsch, p. 313 and 403.
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One obtains the integral of the first term of the sum immediately
from the integral representation for the Bessel function I, s14

[}

1 etz
Jo(z) = Bl QQ§=T=§ at (55)

the integral of the second term of the swum can be e:aluated
immediately, according to the residus theorem; for the integral of
the third term of the sum one obtaine immediately because of

S| = P L0 LR
K [2"1 f (ETW dt] 2r1 QVT““‘“ o™ TT_(2)

t +'1
(55a)
the equation

iMe tz z
X e e 4t = J\ oM 5 (u) au + C (55b)
2ni f{t + M) Y22 4 1 o ©

wvhere (¢ =0 wsince the integral for 2z = 0 must venish according
to the residue theorem.

Hence (54) becomes (45), as had to be
demonstrated.

{b) Generel Case of the Downwash.Distribution on the

Hermonically Vibrating Wing

In this section we assume an arbitrary downwash distribution
of the form

oy oy ~iwt
v(x,t) = ato + U on = v (x) e 1w “ (56)

*%Courant and Hilbert, Methoden der mathematischen Physik I,
(verlag J. Springer), p. 390. :

1}
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with, however, the distinct requirement that the (infinitesimal)
displacement Yo of the mean camber line from its zero position

(x-a.xis) must everywhere be continuous and eapscially for x = 0
must change continuously into y, = 0. For x <0, we sssume
Jo = 0, and therefore vo(x) =0. It is eesy to allow for

discontinuities of %E_Q. by passing to the limlt of a sequence of
X
continuous functions y, (compare cese c).

For the general case of an arbitrary downwash distribution the
right side of the integrel equation need not be further specified;
elso, in the equations corresponding to (37) and (39). the same
general expression appears on the right side 2s in (12). If we

egein introduce the dimensionless variable 2z =-+X instesd of x

and denote vo(x) as a function of 2 by 7(z),€ we obtain

dvdix)_ ] 1;%“'0 =‘2k'dZ£Z) - 1§y(z)

The form of tho integro-differential eguetion for TF(z) = f(x)
which corresponds to (4k) becomes, therefore, for prsitive values
of z (efter again dividing by a factor k)

~iMF(z) + F'(z) + fz G(z - ) F(L) &t =%r(2) (57)
vo

with the abbreviation

r(z) = -‘%4‘-)- - 1 %(2) (57e)

Equation (57) hes to beo solved subject to the boundery condition
F(0) = 0, as can be inferred from the assumed continuity of y,
et x =0; for 2< 0, F(z) =0.

If we apply the Laplace transformation to (57) and denote
the Laplace tremsform of F(z) by y(s), we obtain

[s -~ iM + g(s)] y(s) = %La [r(z)]
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If we carry out the inverse transformation VY(s)-—F(z), we obtain,
taking (51) into consideration, according to definition

) i
F(z) =41, e iQ)E = I [x(zi{f (58)

If we now consider that, according to (53) and (55)

Lz-l[l/(s - iM)‘z' R 1} P S (59)

and furthermore, that the result of the inverse tranazformation of the
product of two functions (in s) is the convolution of the inversely
transformed factors (in z), thore immediately follows from (58)

and (59)
Pz

F(z) =-% j

o}

M8y o -g) x(e) at (60)

which represents the solution of equation (57). By inserting (60)
into (48} one then cbtains for the pressure Jump on the wing
(for 2z £0) -

1 Zz
=20, U = | K(z-f)r(t) af (61)

Ve

with the meaning of K(z) explained by (59)

(c) Transformation of the Resultes (60) and (61)

We at first confirm that the special formulas (k6) and (49) for
bending oscillations as a limiting case are contained in our general
results (60) and (61). Ve have to make allowance for y(z)} Jumping
near z = 0 practically discontinuously frem O +to the constant

ar(4)
< - in r(g))
_ at
equation (57a), makes & contribution only at the point {=0 and there

final value &a€= -iwA sgo that in (60) the term -
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can be represented by

() =2ed(l-0)
af
Thus we obtain according to (15)
Z z
‘E X(z -g)-ﬁz“—)-dg =aef K(z - §) 8(t - 0) 4 = a¢ K(z)
ag

(¢

F(z) therefore becomes, according to (57a) and (60), in egreement
with (k6) )

F(z) = aK(z) - u}.j. ‘[" Kz ~{)ad == [K(z) - ib-fi j\z K(u) cl.l

o o -

In order to recognize that the general case 2lsc cen be traced
back to the type of bending oscillations we perform sn integration
by perts on (60), introducing temporerily the fiumetion

K(z) = ‘j:z eiMuJo(u) du (for z 2 0) © (62)

Thus we f£ind

fz K(z = g 7(p) ot =Xz - £) #(D) l l Ko -0 S o

The part to be eveluated between the limits vanished, since y(0) = 0
end X(0) = 0. Therefore, (60) mey be transformed according to (572):

F(z) =-§-f [K(z - ) - &R -;)]%:Z@. at
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and from (46) and (62):

F(z) =-§—fz Bz -t ) d;;“ ag - (63)

Only the influence function H(z), which is characteristic Ffor the
bending oscillations, appears in (63) besides dy/d¢.  Thus the
pressure distribution appears composed of the integrated effect
of infinitesimal steps, the megnitude of which is proportional to
the derivative dy/dz.

For practicel needs it will, in general, be more useful to
eliminete the derivative dy/d; in (gg) by integration by parte

end to trace the pressure distribution back to an integrel with respect
to y(f). We find :

z ay Nz, -
K(z - ““&E ag = 7(z) + | K'(=g) #(y) 4t

0 o

gince ¥(0) =0 and K(0) = 1. If we take tho dorivative of K we
obtain from (59) and (60) after an easy transformetion for 2z Z O

) :
JORSRORE- /Z em(z.“[ﬁ Tolz = 8) = 9y (2 'U} 7 o (64)

In this formula there appears nothing but the downwash distribution
y(z) and a cheracteristic influence function.

The f£inal formulaes (60) to (64) ere in complete agreement with
the results of Mr. L. Schwarz'S, es one can easily confirm after an
edequate changs of the symbols. Therefore, further detailed statements
with respect to the application of our formulas to the calculation of
the air forces for vibrating lifting surfaces are cmmitted since these
calculations would be easentially identicel with those by Schwerz.

Translated by Mary L. Mshler
National Advisory Committee
for Aeronautics

* 5L . Schwarz, elsewhere.
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Figure 1.- Plate in supersonic flow,
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Figure 2.- Pressure distribution on a plate in supersonic flow. (p o normal
: pressure, m pressure drop.)
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