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TECHNICAL MEMORANDUM 1252

. SOME STUDIES ON THE FLOW OF A GAS IN THE REGIOK OF TRANSITION
THROUGH THE VELOCITY OF SOUND*

By I. A. Kiebel

The two-dimensional motion of an incompressible fluid about
e closed contour with a definite veloclity in magnitude and
direction at infinity is conslidered. If, without changing the
direction of the velocity at infinity, the megnitude is increased,
the configuration of the streamlines remains unchenged and only
the mumbering of the stream function changes. There exists only
one family of curves that can gerve as streamlines in the inocom~
- pressible flow about & given contour (at a given angle of attack);
for exemple, the contour of an airplene wing. The case is quite
g@ifferent with a compressible fluid. For the components vy and

vy of the velocity along the x- and y-axes for lncompressible

flow
Vx oV
;;:%ag
W
‘7\:1:»:53“E

{(ves is the magnitude of the velocity at infinity, ¢ the veloocity

potential, and V¥ the stream function) so that for V¥ there is
obtained a simple Laplace equation. For a compressible gas moving
edisbaticelly, there mst be obtained
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v 1s the magnitude of the velocity, &, the critical veloclty, end
k the ratio of specific heats. The equation obtained for the stream
funotion will now contain &s & parameter (v,/ax)?, so that to one

profile there will correspond an infinity of streamlines represent-
ing this profile for different values of the velocity at infinity.

The change In shepe of the streamlines is particulerly sharp
vhen in the flow plene (still having a subsonic velocity at infinity)
supersonic zones erise. A new specific difficulty now arises; namely,
that the flow of & compressible fluid hes two singularities as
compared wltvh the motion of an incompressible fluwid. In the first
place in the compressible fluid in contrast with the incompressible
fluid, infinitely large velocities are impossible (the maximmm

possible veloclty is a*/V(k+l)/(k-l) 3 in the second place in the
supersonic flow of & gas, the stream tubes, in contrast to what
holds for the incompressible fluild, expand with increasing velocity.
This last circumstance leads to the fact that in the supersonic

zone the streamlines will diverge and move away from the boundary,
whereas in the subsonic zone the streamlines will converge on
approaching the supersonic zone. It may be expected that for a
glven contour there will exist velocities at infinity for which
both these laws cannot be satisfied. The finiteness of the velocity
on the other hend leads to the fact that where the solution for

the incompressible flow gives infinity velocities (for example, in
the flow =bout an edge), the solution for the compressible flow
elther does not exlst or the existing strealines do not form a
sharp angle. Mathematically expressed, in the supersonic zone
points and entire lines may eppear on whioch the derivatives of the
velocltles become infinite. Such solutions of the equations of

gas dynamics, although existing formally, have no physical meaning
and cannot be realized. In these cases, the motion apparently so
readjusts ltself that a line of strong discontinuity arises and

the solution from the very beginning must be sought not in the form
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of continuous irrotatlional flow but in the form of a motion in
which there is a surface of discontimuity, the shape and position
of which are unknown initielly and after passing through which
the motion becomes rotational. Tests show that such Jjumps are,
a8 & rule, actually found on the wing in the supersonic zone (the
wing moves with subsonic veloocity).

A oomplete theory of the transition through the velocity of
sound has not, &s yelt, been developed. The problem of the transi=-
tion through the velocity of sound is one of the primary problems

of aerodynemics.

To N. E. Joukowsky belongs the credit for the known modification
of the method of Kirchhoff, where in the study of the motion of an
incompressible fluid there are used in place of the coordinates x
and y +the magnitudes €@ (the angle of inclination of the velocity)
end Z =1n v, /v as the independent variables.

Expressed in ‘these varilables, the equations for the stream
function VY and the veloclity potential ¢ (the motion is con-
sidered irrotational) the following form is essumed:

oY oV
¥ ="
oy _ oV
Z5®

80 that for the determination of v, the Laplace equation is
obtained

Fo A _,
%% ¥x?

-

In the case of a compressible fluld, a natural generalization
of the varieble Z 1is the function S of the velocity, employed
by S. A. Christianovich in his fundamental work (reference 1) in

the form
N1 - w2
S = - dv + constant
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where

a veloclity of sound

The equations of S. A. Christianovich for the compressible
fluid may be written in the form

F- =g
(1)

vhere 68, as before, is the angle of inclination of the velocity,

l\]—=%9 1 - MP

ax
S = /\/1- av
v

v

For the supersonic reglon, it is convenient to introduce, as
was done in another report of S. A. Christianovich (reference 2),
the functions X and T from the relations

and

p
r\j—=-p£ Me -1

G= 1 -0 from reference 2.

1257
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and the equations for @ and VY then assume the form

3 _ = d¥
» x5
% (2)

0

The functions K, S, X, endi O depend, in accordance with
‘the Bernoulli law, only on the velccity, end

ne -1
2 .2
:\[E='t hz-'b
ne -1

where
2 k+ 1
B =TT
‘b=‘\‘l-M2
and
2112--1
- [ ne 2
'\[;(,—=t h2+t
h” -1
Eaharctan% - arc ten T
where
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The function AK through the intermedisry of the paremeter +

depends on §; the function ‘\ﬁ(_ through the intermediary of % depends

on 0. In figure 1, the values of S are in the direction of

the positive horizomtal axis and the values of NK along the
positive vertiocel axis; on the negative horizontel axis are the
values of =~ G &and along the negetive vertical exis, -a¥X. As the
velocities increase from 0 (M =0) toax (M= 1), 5§ decreases
from o to 0. The value of '\I-K_ up to very small values of S
will be very near unity end only at S = 0 does ’\/_ rapidly tend
t0 zero., Further, when C increases from zero to its limiting

value equal to g (h-1) +he function ‘\R' will asymptotically tend

g k+1
to infinity (for 0 = - = + + 5 the curve hasg a point of
7 2k \J@ ?

inflection).

When o is eliminated in the subsonic region, the following
equation is eliminated

a% , & 1n A

aez a@z as

Ed .o
%

and In the supersonic region

Ry, P, amfX .,
392 3F i¢ 9J%

On the basis of the behavior of the function '\ff; in equa-
tions (1) ’\/E-: congtant may be set to very small values of s.
The equation of laplece 1s then obtained, which is the first approxi-
mation of S. A. Christianovich (references 1 and 3). In one of his
later papers, Christianovich showed (reference 4) that for the super-
sonic region,_ that is, where equations (2) must be taken, starting
from small ¢ and further on, the function /\])T mey be approximsted
in the form of pieces of curves of the second order (first a para=~
bola and then & hyperbola). Eguations (2) then become the equetion
of Darboux and may be simply integrated to the end.

The analyslis is, however, most difficult of all for the narrow
reglon corresponding to the values of S end O neer zero. This

L
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region is shown to & magnified scale In figure 2. This is the
reglon of transition through the sound velocity, which was pre-
viously discussed. It is first necessary to mention the investi-
getion of F. I. Frankl (references 5, 6), who first for the region
of transition separated out the principal term in the equations
for ® and V and cbtained for the principal term the equetion
of Tricomi,.2 Frankl glives a profound anslysis of the phenomenon
of the transition through the velocity of sound and in particular
investigated the conditlon at which in the Laval nozzle & trans-
ition without the cccurrence of a surface of discontinuity is
possible. Recently his coworker, S. V. Falkovich (references 7
and 8), on the basis of Frankl's work notes the fact that the

function AK ghout S = 0 can be devloped into & series of the
form \[K = by f\’ + +ee , Where b; depends on

( P 3(h2-1)>

assumes near the transition line the following equation for V:

similariy X = by 1/ + «oss Falkovich then

.o

9% 3 1 3
w2 EE ©

Inbroducing in place of € and S plane bipolar coordinates
« and P from the relations

Fa + (S + SO)
N+ 3 - so)?

g =1n

ZSOG

62 + 5% - gut

B_ = src tan

where S, 1s the value of S corresponding to the velocity at the

the point where 6 = O (the velocity &t infinity), Falkovich was
gble t0 comstruct a number of importent particular solutions of

2B‘:x:‘a.nkl introduced as independent verisbles 6 and

n = (.231 5)% - (g 3)%.
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equation (3). Owing to the work of Falkovich, it is possible

to constrmet for the motion near the velocity of sound simple solu-
tions having singularities of the type that arise in an incompres-
g8ible fluid in the problem of the flow with circulation.

The occurrence of a surface of dlscontimuity in the supersonic
region greatly complicates the solution of the problem. After
ressing through the surfece of discontimiity, the motion becomes
rotatlonal - the velocity potential does not spply. Por the
stream function, the following complicated equation is obta.ined.:

v po__lq%;[a 1-M2 %ﬂ}

l+v
f (4)
P01 - M__qg 0
FREE
where J
Neo—t alnd Q)
k-1" ay

where 4, a function only of y (constent in the irrotational
l .

case), is given by the value o= ]-'- p K and the form of this

function depends on the shape of 'bhe surface of disoontinuity,
Po/P &nd M have the previcus values

Vz 3.
2.2 =
k"'l]_..i.vz
hz—-
-1}

SAB in the 1rro~i;ational cage, aj; remains constant.
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In studying the rotationsl motions, 1t would apparently
be more convenient to proceed differently; nemely, to teke as
independent variables one of the coordinates, for example, x
end the stream function VY. By making use of these independent

varisbles and introducing as the required function J;d.x (the

integration is teken for fixed V), & number of particular exact
solutions of the rotationsl problem (reference 9) are obtained.
In perticuler, & solution is constructed with a transition through
the velocity of sound. At the AN SSSR Institute of Mechanics,
investigations are being continued on the transition zone in both
the rotational and lrrotational ocases.

Transleted by S. Relss,
National Adviscry Committee
for Aeronautics.
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