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TECHNICAL MEMORANDUM NO. 1199 

COMPRESSION SHOCKS IN TWO-DIMENSIONAL GAS FLOWS* 

By A. Busemann 

The following arguments on the compression shocks in gas flow start 
wi~h a simplified representation of the results of the study made by 
Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemented 
by several amplifications for the application. 

In the treatment of compression shocks, the equation of energy, 
the equation of continuity, the momentum equation, the equation of state 
of the particular gas, as well as the condition of the second law of 
thermodynamics that no decrease of entropy is possible in an isolated 
system, must be taken into consideration. The result is that, in those 
cases whore the sudden change of state according to the second law of 
therD('.c.:ynamics is possible, there always oycurs a compression of the gas 
7hich is uniquely determined by the other conditions. 

First, it wi"ll be shown that the resulting relations can be easily 
expressed if the thermodynamic and the pure dynamic relations have been 
previously transformed so that pure thermodynamics, as well as pure 
dynamics, can be expressed simultaneously in one diagram. Since the 
static pressure p itself represents a state quantity as well as a dynamic 
quantity, one axis of the diagram may represent a p-axis. From the equation 
of energy for steady flow from a tank follows - the heat conduction being 
disregarded - the conventional relation tha,t the kinetic energy of the 

unit mass 1w2 
(w = velocity) is equal to the difference of the heat 

2 
content of the tank 10 and the momentary heat content i. Hence, when 
a w-axis is chosen as the other axis, the lines w = Constant correspond 
to definite heat contents i and the diagram can be used as a distorted 
p,i diagram exactly like any other state diagram utilizing two state­
quantities as axes. The following general relations in this diagram can 
be easily proved for adiabatic flow (fig. 1). For constant entropy, the 
negative differ€lntial quotient -dp/dw represents the rate of flow pw 

() 
-dp 1 2 

p = gas l'ensity , as obtained from Bernoulli's equation: -- = .:::a.w 
p 2 

The slope of the line of constant entroP,y accordingly represents for each 
point the rate of flow, that is, the reciprocal value of the surface 
necessary for the discharge of the unit mass. It immedia.tely follows 

'::> that the tanFent to the entropy line on the IH3-Xis cuts the momentum p + pw-. 

*IIVerdichtungsstosse in ebenen Gasstromungen. II Vortrage aus dem 
Gebiete der Aerodynamik und verwandter Gebiete, Aachen 1929, pp. 162-169. 
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]'rom these simple relations in the p;w diagram, the statement is 
readily proved that normal compression shocks or compression shocks.~n 
one-dimensional flow are possible only between those points which have a 
common tangent on their entropy lines. Such states f'ulfill the equation 
of' state of the particul~ gas, because they are located on its p,i dia­
gram; they comply w-ith the e~uation of energy, because the equation is 
used to identify the y-axis; they satisfy continuity, because their entropy 
lines have the same direction; and they have identical momentum, because 
the tangents baV'e equal intercepts on the p-e.xis (fig. 2). 

The second law of thern1Odynam.ics contributes the fact that the later 
one be the state of greater entropy. Since the cross section necessary 
for the unit mass increases with the speed at supersonic velocity, and 
hence the rate of flbW decreases, the upward concaVe part of the entropy 
lines signifies supersonic velocity, the upwardly convex part subsonic 
velocity. Normal compression shocks have, therefore, supersonic speed 
as initial state and subsonic speed as terminal state. 

Extension of the arguments to include two-dimensi6nal flow simply 
involves the substitution of the w-axis for a u,v or velocity plane, 
against w-hich the pressures p are plotted., the surf'ace of equal entropy 
being Obtained as surface of rotation of the entropy lines of the p,w dia­
gram (fig. 3). In isentropic flow, all states are situated on one single 
surface of constant entropy. As stated elsewhere (reference 1), the gas 
flow is unusually sensitive in cross sections in which a relatively 
maximum rate of flow exists. In one-dimensional flow, the absolute 
maximum rate of flow is through cross sections in which the flow velocity 
equals the sonic velocity. In the p,w diagram, they are represented by 
the point of inflexion of the entropy lines as the point of ;maximum slope 

- of the entropy line ~ In two-dimensional flow, all such cross sections are 
normal to the directions of the curves of the main tangents on the saddle­
like curved region of the entropy surface. Then sensitive cross sections 
wi th the relatively maximum rate of flow appear as steady sound waves in 
two-dimensional supersonic flow, when minor disturbances (such as 
roughening with a file) are applied at the boundary walls of the flow 
(fig •. 4). 

The curves of the main tangents projected on the plane of the velOCity 
then give a network of lines by means of which the supersonic flow in the 
prescribed channels can be pursued (fig. 5). 

If the streamlines in a supersonic flow are deflected at a finite 
angle toward the flow, say, by the boundary wall, for example, no stagnation 
point need occur at this point like in the subsonic flow. The supersonic 
flow can rather achieve the deflection by an oblique compression shock 
(fig. 6), if the angle of deflection does not exceed a certain amount. 
But this is accompanied by an entropy rise without 14hich momentum, energy, 
and continuity theorem cannot be fulfilled. The terminal states after a 
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compression shock are therefore no longer located on the surface of constant 
entropy, but within the pressure dome of constant initial entropy by reason 
of the entropy rise. On assuming the direction of the compression shock, 
or normal to it, the direction of the velocity variation, as given, it 
results in a p,w dia.gra.m above the particular straight line, in which 
the terminal state can be identified as the normal compression shock 
exactly like in figure 2 (fig. 7). 

For a given velocity W'l all terminal states after compression shocks 

lie on the tEj.n.gential plane at the pressure dome in point P:L, Xl (fig. 8). 
In the tangential plane, the t~rminal states appear again as points of 
relatively maximum entropy on all rays through Pl' 'W':l. In the projection 

on the velocity plane, the line connecting all terminal states X2 possible 

from !!l is termed shock polar. The shock polars give the possible 

deflections as well as the position of the shock sur:f'ace perpendicular to 
the velocity difference w;). -.il"e for each deflection. Figure 9 represents 

a shock polar diagraJII. for air with k CI 1.405, showing the shock polars from 
different starting points on the u-e.xis, along with the curves of constant 
entropy of the terminal state and indicated by the pressure ratio plo/po. 

By multiplication with plo/po it affords, for perfect gases, the height of 

the other surfaces of constant entropy from the heights of the initial 
adiabatic surface. 

With these diagrams, it is possible to follow two-dimensional flows 
even in cases where compression shocks occur. For illustration, figure 10 
shows a flat plate with a given angle of attack and figure 11 shows 
a symmetrical flow past a biconvex airfoil, and in figure 12, a schlieren 
record of real flow past such an airfoil. This example demonstrates that 
supersonic flows in which shocks occur, can also be treated graphically 
in close agreement with reality. Minor deflections may be treated by 
the methods of adiabatic flow. 

strong compression shocks present a certain difficulty if neighboring 
streaJII. filaments pass through compression shocks of dissimilar -1p.tensi ty. Such 
flows are no longer irrotational and can then be treated approximately by 
the methods of potential flow only if the vortex strength is concentrated 
in certain streaJII. lines. Each strip between two such stream lines can then 
be treated separately as potential flow and the bordering stream lines 
plotted in such a way that equal pressure and equal velocity direction 
appear in both adjacent strips. In the examples (figs. 10 and 11), the 
departure from potential flow was regarded as disappearingly small • 
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Discussion 

Mr. Burgers, Delft, asked whether it was possible to draw a con­
clusion from the compression shocks about the wave resistance of bodies 
at supersonic speeds. 

Busema.nn: To compute the magnitude of wave resistance it is per­
missible for slender profiles to work with adiabatic compression shocks, 
as given by Riemann (reference 2). The result is then invariably a 
positive pressure on the surfaces which push the flow aside, and negative 
pressure on the surfaces which contribute room. to the flow. From this 
the wave resistance (reference 3) follows immediately. The question of 
where the work of resistance in the gas remains can be answered from the 
compression shocks, even for slender profiles. As figure 11 indicates, com­
pression shocks are obtained, the strength of which abates simultaneously 
with the disappearance of the wave field with increasing distance from 
the profile. By integration with respect to all stream filaments, it 
~an be proved that the heating of the gas on traversing the compression 
shocks precisely represents the work of resistance. The resistance momentum. 
follows likewise as'momentum of the forward movement in the wake produced by 
the shocks. 

Translated by J. Vanier 
National Advisory Committee 
for Aeronautics 
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Figure 1. - Relations in the p ,w diagram. 
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Figure 2.- Normal compression shock in the p,w diagram. 
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Figure 3.- p,u,v diagram for plane flow with constant entropy. 
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Figure 4.- Schlieren photograph of steady sound waves.
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Figure 5. - Graphical representation of flow of figure 4. 

Figure 6. - Compression shock at deflection by a finite- angle. 
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Figure 7. - p ,u,v diagram with entropy rise. 
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Figure 8. - Shock polar in the tangential plane at the p dome. 
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Figure 9.- Shock polar diagram of air (k = 1.405). Shock polars, solid lines; 
POl/PO curves, broken lines. 
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Figure 10. - Flow past a flat plate with angle of attack • 
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Figure 11. - Flow past a biconvex profile. 
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Figure 12.- Schlieren photograph of flow past a biconvex profile.
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