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COMPRESSION SHOCKS IN TWO-DIMENSIONAL GAS FLOWS™

By A. Busemann

The following arguments on the compression shocks in gas flow start
with a gimplified representation of the results of the study made by
Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemsnted
by several amplifications for the appllication.

In the treatment of compression shocks, the equation of ensrgy,
the equation of continuity, the momentum equation, the equation of state
of the particular gas, as well as the condition of the second law of
thermodynamics that no decrease of entropy i1s possible in an isolated
system, must be taken into conslderatlon. The result 1s that, in those
cazes where the sudden change of state according to the second law of
therncéynamics 1s possible, there always occurs & compression of the gas
which is uniquely determined by the other conditions.

First, 1t wlll be shown that the resulting relations can be easily
expressed 1f the thermodynamic and the pure dynamic relations have been
previcusly transformed so that pure thermodynamics, as well as pure
dynamics, can be expressed simultaneously in one dlagram. Since the
static pressure p i1tself represents a state quantity as well as a dynamic
quantity, ons axis of the dlagrem may represent a p-axls. From the equation
of energy for steady flow from & tank follows — the heat conduction being
disregarded — the conventional relatlon that the kinetic energy of thse

2
unit mass %w (w = velocity) 1is equal to the difference of the heat

content of the tank 1, and the momentary heat content 1. Hence, when

a w—axls is chosen as the other axis, the llnes w = Constant correspond
to definite heat contents 1 and the dlagram can be used as a distorted
p,1 diagram exactly like any other state dlagram utllizing two state—
gquantities as axes. The followlng general relations in thils dilagram can
be easily proved for adiabatic flow (fig. 1). For constant entropy, the
negative differentlal quotient —dp/dw represents the rate of flow pw

- —a 2
(p = gas censity), as obtained from Bernoulli's equation: e %dw .

The slope of the line of constant entropy accordingly represents for each
point the rate of flow, that 1s, the reciprocal value of the surface
necessary for the dilscharge of the unit mass. Tt immedlately follows

that the tangent to the entropy line on the p-axis cuts the momentum p + pW“.

*“VbrdichtungsstBSSe in ebenen GasstrBmungen." Vortrdge aus dem
Geblete der Aerodynamik und verwendter Gebiete, Aachen 1929, vpp. 162-169.
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From these simple relations in the p,w dlagram, the statement is
readlly proved that normal compression shocks or compression shocks,in
one—-dimensional flow are possible only between those points which have a
common tangent on thelr entropy lines. Such states fulfill the equation
of state of the particular gas, because they are located on its p,1 dla—
gram; they comply with the eguation of energy, because the equation 1s
uged to identify the w—exis; they satisfy continuity, because thelr entropy
lines have the same direction; and they have identical momentum, because
the tangents have equal intercepts on the p-axis (fig. 2).

The gecond law of thermodynsmice contributes the fact that the later
one be the state of greater entropy. Since the cross section necessary
for the unit mass Increases with the speed at supersonlc velocity, and
hence the rate of flow decreases, the upward concave pert of the entropy
lines signifies supersonic veloclty, the upwardly ¢onvex pert subsonic
veloclty. Normal compression shocks have, therefore, supersonlc speed
as inltial state and subsonic speed as terminal state.

Extension of the arguments to include two—dimensitnsl flow simply
involves the substitution of the w—exis for a u,v or veloclty plane,
against which the pressures p are plotted, the surface of equal entropy
being obtained as surface of rotation of the entropy lines of the p,v dla—
gram (fig. 3). In isentropic flow, all states are situated on one single
surface of constant emtropy. As stated elsewhere (reference 1), the gas
flow is unusually sensitive in cross sections in which a relatively
maximum rate of flow exists. In one—dimensional flow, the absolute
maximum rate of flow 1ls through cross sectlions in which the flow velocity
equals the sonic velocity. In the p,w dlagrem, they are represented by
the point of inflexion of the entropy lines as the point of maximum slope

. of the entropy line. In two—dilmensional flow, all such cross sectlions are
normel to the dlrections of the curves of the main tangents on the saddle—
like curved reglon of the entropy surface. Then sensitlve cross sections
wlth the relatlvely maximum rate of flow appear ag steady sound waves in
two—dimensional supersonic flow, when minor disturbances (such as
€ough92§ng with a file) are applied at the boundary walls of the flow

fig.-4).

The curves of the main tangents projected on the plane of the velocity
then glve a network of lines by means of which the supersonic flow in the
prescribed channels can be pursued (fig. 5).

If the streamlines in a supersonic flow are deflected at a finilte
angle toward the flow, say, by the boundary wall, for example, no stagnation
polnt need occur at this polnt like in the subsonic flow. The supersonic
flow can rather achleve the deflection by an oblique compression shock
(fig. 6), 1if the angle of deflection does not exceed a certain amount.
But this is accompanied by an entropy rise without which momentum, energy,
and continuity theorem camnot be fulfilled. The terminal states after a

a
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compression shock are therefore no longer located on the surface of constant
entropy, but within the pressure dome of constant initlal entropy by reason
of the entropy rise. On assuming the direction of the compresslon shock,

or normael to 1it, the dlrection of the veloclty variation, as given, it
results in a p,wv diagram sbove the partliculier straight line, in which

the terminal state can be ldentified as the normal compression shock
exactly like in figure 2 (fig. 7).

For a given velocity w; all terminal states after compression shocks
lie on the tangentisl plane at the Pressure dome In polnt 1, w3 (rig. 8).

In the tangential plane, the termlnal states appear again as polnts of
relatively maximum entropy on all rays through Pys M. In the projection

on the veloclty plane, the line conmecting all terminal states Eé possible

from wy 1s termed shock polar. The shock polars give the posslble

deflections as well as the position of the shock surface perpendicular to
the velocity difference ¥; — ¥p for each deflection. Figure 9 represents

e shock polar diagram for air with k = 1.405, showlng the shock polars from
different starting points on the uw—exis, along with the curves of constant
entropy of the terminal stete and indicated by the pressure ratlo p'o/po.

By multiplication with p'o/p0 it affords, for perfect gases, the helght of

the other surfaces of constant entropy from the helghts of the initial
adlabatic surface.

With these diagrams, it is posslble to follow two-dimensional flows
even in cases where compression shocks occur. For illustration, figure 10
shows a flat plate with a given angle of attack and flgure 11 shows
a symmetricel flow past & biconvex airfoil, and in figure 12, a schlieren
record of real flow past such an ajirfoil. This example demonstrates that
supersonic flows In whlch shocks occur, can also be treated graphically
in close agreement wilth reallty. Minor deflections may be treated by
the msthods of adlabatic flow.

Strong compression shocks present a certain difficulty if nelghboring
stream filaments pass through compression shocks of dissimilar intensity. Such
flows are no longer irrotational and can then be treated approximately by
the methods of potentiael flow only 1f the vortex strength ls concentrated
in certaln stream llnes. Xach strlp between two such stream lines can then
be treated separately as potentlal flow and the bordering stream lines
Plotted 1in such a way that equal pressure and equal velocity direction
appear in both adjacent strips. In the examples (figs. 10 and 11), the
departure from potential flow was regarded as dilsappearingly small.



b _ ' NACA TM No. 1199

Discussion

Mr. Burgers, Delft, asked whether it was posgible to draw a con—
clusion from the compression shocks about the wave reslstance of bodles
at supersonlc speeds.

Busemann: To compute the magnitude of weve resistance 1t is per—
migsible for slender profiles to work with adlabatic compression shocks,
as glven by Rlemann (reference 2). The result is then invariably a
posltive pressure on the surfaces which push the flow aside, and negative
rressure on the surfaces which contribute room to the flow. From this
the wave resistance (reference 3) follows immedlately. The question of
where the work of reslistance in the gass remalns can be answered from the
compression shocks, even for slender profiles. As figure 11 1ndicates, com—
prossion shocks are obtalmed, the strength of which abates simultansously
wilth the disappearance of the wave fleld with Increasing distance from
the profile. By integratlion with respect to all stream filaments, it
can be proved that the heatlng of the gas on traversing the compression
shocks precisely represents the work of resistance, The resistance momentum
follows likewise as' momentum of the forward movement in the wake produced by
the shocks.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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Figure 1.- Relations in the p,w diagram,
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S=const

Pigure 2.- Normal compression shock in the p,w diagram,
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Figure 3.~ p,u,v dlagram for plane flow with constant entropy.






NACA TM No. 1199

Figure 4.-

Schlieren photograph of steady sound waves.
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Figure 5.-

Graphical representation of flow of figure 4,
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Figure 6.~ Compression shock at deflection by a finite angle.
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Figure 7.- p,u,v diagram with entropy rise,
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Figure 8.- Shock polar in the tangential plane at the p dome,
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Figure 9,- Shock polar diagram of air (k = 1,405). Shock polars, solid lines;
Po'/Pg curves, broken lines,
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Flow past a flat plate with angle of attack,

Figure 10,~

Flow past a biconvex profile,

Figure 11,-
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Figure 12,- Schlieren photograph of flow past a biconvex profile,

NACA - Langley Field, Va.
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