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^^P R E F A C E

The present report of Mr. Dupleich is the summary of a very
extensive experimental study of the well-known mechanical phenomenon:
the rotation in free fall (in air, for instance) of more or less
elongated rectangles cut out of paper or pasteboard. This phenomenon,
the conditions for existence of which depend chiefly on the elongation
of the small plate and its weight per unit area, is essentially an aero-
dynamic phenomenon and as such, raises questions of a certain interest
to our department.

The author has applied himself to this study as one would do in
the case of a physical phenomenon wh} ch analysis has not yet ventured
to penetrate and which would requiro, to begin with, investigation of
its general characteristics. Actually, one had to deal here with a
problem of mechanics, the active forces of which are, on one hand,
the weight of the body, and, on the other, the aerodynamic forces
related to the motion. Thus one is justified in thinking that the
action of the fluid should have been analyzed in order to determine
its mechanism and distribution, for the laws of the motion are only
a consequence of this action, and knowledge of these laws is in
itself only a partial aspect of the problem.

This problem gives rise to certain fundamental questions to which
one would like to see an answer given. Why, for instance, does the

	

o	 plate in its falling motion rotate about itself, thus leading one

	

N	 to assume that, at least under certain conditions, another state of
steady fall would not be possible? How is it that under the same

	

o	 conditions the rotation leads to a steady^	 dy motion, that is to the
existence of a mean equilibrium between the aerodynamic forces and the
weights? And how does this same type of steady motion under different

	

_4 	 become unsteady to give way to other types of fall, now
steady, but which would have been impossible under the previous
conditions? Subjects like these have only been touched on insuffi-
ciently by the author who thought he must limit himself to strictly
experimental study.

Thus, at first sight, this report will perhaps appear to the
specialists as a work lacking in the spirit of aerodynamics.

We believe to have shown elsewhere - and no doubts seem
possible - that the modern concepts of the mechanics of fluids do
not have the range attributed to them, that they have not been more
than attempts (it is true, often successful in very limited problems),
that one has too frequently taken a success as proof, that one has
committed the serious scientific error of drawing very, general
conclusions from a theory verified only under a single one of its
aspects and of believing in them, that one has lightly assumed the
existence of a grandiose theory where there was only systematic, all
too systematic, exploitation of poor mathematical artifices, that, in
a word, the modern theoretical mechanics of fluids is not a coherent
whole.



However, it is certain that it should have penetrated more deeply
into the scientific groups concerned, for the services rendered by the
preliminary investigations it has promoted are too real to be justifiably
ignored, whatever illusions certain aerodynamicists may have entertained
about it. And if a physicist, in dealing with an aerodynamic problem,
shows that he is not familiar with the modern theories or does not
attempt to make use of them, one must have the courage to recognize
that this negligence constitutes a gap.

A gap - but let us not deplore it too much, and not be so narrow-
minded as to stigmatize it. In fact, too many people tend to believe,
once and for all, in the perfection of a theoretical framework and to
forget about both observation of facts and their interpretation as
not to make it desirable to see appear, from time to time, an essentially
experimental study like that of Mr. Dupleich, the merit of which lies
precisely in the objectivity of its abundant documentation.

And this is why - in spite of the reservation that had to be
expressed - the Ministry of Aviation has seen fit to publish in its
collection this report of Mr. Dupleich which owing to its substantial
qualities well deserves this mark of honor.

Pierre Vernotte
Chief Engineer of Aeronautics
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 1201

ROTATION IN FREE FALL OF RECTANGULAR WINGS

OF ELONGATED SHAPE*

By Paul Dupleich

HISTORY AND SUMMARY

The free fall of rotating rectangular wings had been considered by
Maxwell in 1853 (reference 1). In a very brief theoretical study this
author attributed the sustained rotation to the air resistance whose
moment, with respect to the center of gravity, maintains the motion and
varies periodically with the speed of fall. He also showed that the
fall departs from the vertical in a plane normal to the axis of
rotation and in a sense depending on the sign of this rotation.
He adds that, if the axis is inclined with respect to the horizon,
the trajectory is no longer rectilinear but helicoidal, which is
inaccurate, because the axis will always straighten out again and
assume a horizontal position. Lastly, Maxwell mentions the spiral fall
of elongated trapezoids. 	 ti

In 1881 (reference 2) Mouillard gave a sketchy explanation for
the sustained rotating motion of rectangular plates which placed the

t

	

	 center of pressure (which he terse "center of gravity ` ) outside the
geometrical center; without specifying the conditions of their
determination he plotted the trajectories of the vertices of the
rectangle with loops of large area, which in reality appears to be
only a very exceptional case.

In 190+ (reference 3) H. Moedebec studied the problem of Professor
goppen's rotating parachute (1901), a type of which had been exhibited
in Berlin in 1902. At the right and left of the parachute jumper, two
sails of 6 x 19.5 m2 in over-all dimensions revolve in the manner of
rotors with paddles, by autorotation about a horizontal axis, and
impose a trajectory, slightly inclined with respect to the horizon, on
the system. The apparatus was to be transformed into a flying machine
by the addition of a motor which was to have maintained a speed of
rotation sufficient to regulate the slope of the trajectory and even
to make it ascend at will.

The same question has been envisaged theoretically by Joukowsky
(reference !+) in the general framework of autorotation. As application
of his fundamental theory on the lift of surfaces, he shows that the

*"Rotation par Chute Libre des Ailettes Rectangulaires de Forme
Allongee. 11 Publications Scientifiques et Techniques du Secretariat
d'Etat a l'Aviation, No. 176, 1941.
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The scale for the wing itself is given in the position 00'
(fig. 3), perpendicular to the mean inclined plane, or else by a
reference scale of known length placed in the plane of f all.

The time of exposure is inscribed on each negative by the
simultaneous photoL;raph of a black revolving disk, a narrow (30)
sector of which is left white. Actuated by electric motor and
frequently checked, the speed of the disk is one revolution in
loo+ seconds. The angle of the photographed sector is measured with
a Leneveu protractor at close to 2 minutes. The relative error is
always less than 0.0001. The lengths at 1/20 millimeter are
measured on the enlarged positive or on the negative with a microscope.
This accuracy yields a relative error generally less than 0.00 .

The characteristics of a wing of negligible thickness are:

chord 2a

span 2b

wing loading Al

aspect ratio: k = ba

a and b are always expressed in centimeters, and v in grams per dm2.

Platform Launching - Acceleration. of Rotation

The wing is placed on the platform P, its long side parallel to
the edge 0 and normal to the plane of figure 1. The center of gravity G,
being outside of the support, the gravity effects the launching (fall
and rotation) as soon as the opsrator frees the clamp T. By regulating
the inclination of the platform P with respect to the horizon and
lever arm OG = Z, the falling wing is given enough kinetic energy to
speed up the incipient rotation and cause the mean trajectory to be
directed toward the right of the figure. Assuming zero sliding on
edge 0 of platform P, the released wing revolves like a pendulum
about this edge. When it reaches the vertical plane passing through 0,
the launching, characterized by the speed of rotation reached at this
instant, may be considered complete. The calculation of this initial
speed of rotation, without interference of the resisting couple of the
air, is known to give only an approximate indication, by defining an
upper limit that is never reached.

Let m represent the wing mass, I the moment of inertia with
respect to the edge of the platform and wo, the initial speed of

rotation. The kinetic energy theorem gives:
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IW 2
° = mg7,(1 + sin p)
2

where:

I - m (a2 + 3Z2)

3

By putting w o = 27T No (No = revolutions per second)

	

N _ 1	 6g(1 + sin a)Z

°	 27T	 a2 + 3Z2

a value independent of the weight and of the span 2b.

To illustrate: the usual initial speed for a series of homogeneous
rectangles of the same chord of 3.6 centimeters, launched with 2Z = a,
on the horizontal support (p = 0), is 4.8 revolutions per second.

In these conditions of launching, the initial speed of rotation,
generally lower than the speed of steady motiozi, agrees quite well
with experience.

The rotation is accelerated during the fall. A wing launched

practically without initial speed ( = small) quickly assumes a

speed of rotation, which increases at the same time as the speed
of fall. If the wing is light, the acceleration lasts only for
several revolutions, at the end of which the steady motion is
practically attained. In the laboratory the acceleration measurement
is easier with the relativel y heavy rectangles (thick pasteboard),
the speed of rotation for a 155 x 15 millimeter wing, weighing
10.9 grams per decimeter2 , launched with No = 6.9 reaches
48 revolutions per second, after a fall of about 3 meters. A
110 X 15 centimeter plate weighing 550 grams, released on the
special platform, with N o = 3, from the top of the 18 meter tower
reaches the ground at considerable angular speed (the angle of fall
being about 750 ). Plates of iron weighing 1 kilogram attain steady
motion after a fairly long fall, which can be reduced by reason of
an increase of No.

Wings of very small dimensions, such as flakes of graphite, can
also turn in the air. In all those cases if the launching is appropriate,
the steady motion can be realized, giving rise to an infinite motion of
descent, as will be shown hereinafter.
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CHAPTER II

KINEMATICS OF THE AVERAGE MOTION

In steady motion, with a legitimate approximation formulated later
in the analysis, the center of gravity G of the wing MM' describes,
at a constant speed V, a straight line XY inclined at an angle a
with respect to the horizon (fig. 2). Simultaneously the wing MM'
turns at constant speed w about its major horizontal axis of which
G is the trace on the vertical plane which contains XY.

The wing moves as if it were integral with a straight circular
cylinder C. of the same axis and of diameter 2a, sliding and counter-
rolling along the line of greatest slope of the inclined plane WZ.

The instantaneous speed of point A of the cylinder is the resultant
of the rectangular speeds aw and V. The instantaneous center of
rotation G situated on the normal in G to XY, verifies the relation:

CG=AG cot ACG =V
W

With v denoting the speed of sliding motion

V=v+aw

Consequently, the base of the motion is the straight line QR, parallel
to XY, of the ordinate

-v
PC = w

a

The roller is the circle of radius

upper inclined plane.
VY 

rolling without sliding on the

The wing, of span MM' = 2a, is a fraction of a diameter of this
roller; its envelope is identical with the envelope of this diameter,
hence the well-known equations (axes of figs 3, origin 01)

xl = x = V (2cp - sin 2(p)

y - Y- ( 1 - cos 2T)
1 2w
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The curve OlpB represents the part corresponding to the spatial

period — The distance  0 B is termed "span of the arch.^^

The point of contact E, of the diameter, with its envelope is
found immediately by plotting the normal to the trace of the wing
through C. At instant t this point has minimum speed, w CE. More-
over, at the subsequent instant the adjacent points of the wing also
pass at the same point. In consequence, the photograph of the envelope
is very luminous and often alone risible.

To the point of inflection 01, there corresponds an actual
pivoting of the enveloped diameter about one of its ends. But the
arcs of the envelope comprised between the parallels qr and QR,
which are touched only by the geometric extensions of the wing, do
not appear on an exposure at V > wa, which is the most frequent case,
the limit points of real tangency being given by

cos- aw
IP	 T.

They are most often replaced by connecting arcs which outline the
trajectories of the wing tip near the pivoting point 0 1 . The linear
speed of this tip, being thus very small, can produce an image on a
plate almost as much as the points of contact with the envelope.

Study of Negatives

Let M1M2 and M' 1M' 2 represent the positions of MM' at the

start and finish of a photographic exposure. They still correspond
to the tangents to the two tips of the envelope arc fixed on the
negative; hence the rotation (cp2 - CPl ) during the time Lt read on
the chronographs

A mean speed of rotation is deduced. The true angular velocity is
periodic. Consequently, in view of the --valuation in fractions of
revolutions, the mean speed thus computed is not absolutely equal to
the mean speed over a period, especially for the short'and slow falls,
but the large number of negatives obtained assure sufficient accuracy,
since the operation: is always extended over several periods of the
phenomenon. More rigorous values will be deduced later from the
experimental study of the rotation.

.

	

	 The corresponding positions Gl and G2 of the center of the
section are given by the centers of M1M' 1 and M2b" 2 or else by
the extreme positions of the luminous index iwark.
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A mean speed V is thus defined. The remarks made concerning w
remain in force, V being actually periodic.

Quantity a is given either starting from V and from w,	 f

or by	 D , where D is the distance traversed by G during several
2Tma

revolutions n, measured along with a directly on the photograph.

The tangent common to the arcs of the roller or the envelope defines
the angle a (fig. 2) .

The measurement without correction of a requires a fall parallel
to the screen. Moreover, this measurement may be falsified by accidental
rolling and yawing motions of the wing. Having a sufficient namber of
negatives of the same wing available, only those most nearly correct
were utilized. The photograph (fig. 4) represents the trajectory of
the 12 x 2 centimeter2 wing for which L = 1.3 grams per decimeter2.

CHAPTER III

SUSTENTION OF STEADY MOTIO_J OF FALL

Let axis Ox be represented (fig. 5) by the tangent common to the
arches of the envelope, inclined at angle a to the horizontal, 0 coin-
ciding with a contact point; axis Oy is perpendicular. The directions
are positive downward. Let x and y denote the coordinates of the
center of gravity G, i the angle of incidence which Ox forms with
the half-wing whose edge shifts in the sense of the relative wind,	 -
counted positive starting from Ox in the direction of the rotation;
i varies periodically from 0 0 to 1800.

With R as the air resistance (resultant of aerodynamic forces),
as function of i, the moment of this force R is decomposed, with
respect to the large axis of symmetry of the wing, into r , the "static`
moment, which will be the real moment of the aerodynamic forces if
incidence i was constant, and into y, a supplementary couple due
to the wing rotation. Lastly, let I be the moment of inertia of
the wing with respect to the preceding axis.

The air resistance R is assumed normal to the plate at every
instant. In reality, of course, the direction of the air thrust slopes
at a greater or .lesser angle from one side or the other of the normal,
depending on the incidence of the plate. So in the equations the
resistance is introduced as being active only in the rotation. The
tangential component is involved in the forward motion of the plate.
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The equations of motion in the foregoing conditions read:

x" = mg sin a -R sin i

„	 ^l)y =mgcosa - Rcos i

d2i

dt2
I—=t +7	 (2)

These equations themselves disclose that the motion of G like
the motion about G cannot be strictly uniform. But experience indicates
that they are quite often very approximately uniform, the periodic
variations of the speeds being of low amplitude.

Therefore

n

mg sin a.=1
IT

0

n
1mgcosa=–

0

R sin i di = P

R cos i di = Q

according to which angle a satisfies the relation

it

R sin i di

tang= fo n	 (3)
R cos i di

0

The explanation is based on the inertia of the steady motions, the
principle of which is known, but needs further study, since the two terms
have been little associated up to now.

The variations of R sin i and R cos i between 00 and 180 0 can
be represented by the curves of figure 6a, which consist of two unconnected
branches, corresponding to two different aerodynamic conditions. Of
the two values which give the curves for R cos i on abscissa i = 300,
for example, nothing defines beforehand that which should be retained
in a concrete case.
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In the static conditions (i constant) to which the preceding
curves refer, sudden ,jumps occur from one curve to another (from one
steady motion to another) for no apparent reason. The mechanism of this
indecision of the steady motion or of its instability is still too
little known.

In the dynamic conditions, that is, those of the motion in question,
the aerodynamic conditions are entirely different. Around the rotating
wing there are turbulent circulations, the whole of which represents
a complex phenomenon, but which unquestionably seem to belong also to
two different conditions, separated, as in the static conditions, by
a real discontinuity in the neighborhood of the angle i = 300 . This
discontinuity is represented by the vertical ,jump AC on the R cos i
curve in figure 6b. The passage from A to C. i being assumed
increasing, demands substantially less action than in the static
conditionsi the instability of the condition 0A is reduced; the
existing steady motion tends to be prolonged as much as possible; it
is in some manner endowed with inertia.

Figure 7 shows the var

against i. The integral

the motive energy of couple
of couple 7 is very flat;
values. Evidently

cations of the couples P and 7 plotted

In

P di has a positive value; it represents

r during the half revolution. The curve MNP
the maximum and minimum have fairly close

n

(I' +7) di =0

0

The motive energy of r, which is represented by the shaded area in
figure 7, is ab9orbed, in steady motion, by the resisting energy of
couple 7.

The total couple r + 7 cancels out for i = 0 1 and i = p2

(figure 7). In the interval (3 1 < i < 02 , the aerodynamic couple is
motive, for the rest of the period, resisting. In the motive interval,
the wing must therefore store up enough kinetic energy to clear the
second interval. Consequently, the motion cannot be sustained unless
the moment of inertia of the plate is sufficiently high; otherwise the
rotation stops in a position of the wing beginning at which the latter
starts to slide. This explains why the light rectangles of large area
and aspect ratio k near 1, whose steady motion is very slow, turn
irregularly or not at all. The stable rotation of such rectangles is
always obtained by reducing; the chord.

1
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The resistance F. on assuming the speed V of the center of
gravity constant, is approximated at

R = Kisv2,

where S = 4ab is the wing area; Ki a coefficient as function of i

and depending upon the aspect ratio k = a of the wing. Consequently

R sin i = K i sin i SV2

and on putting

n

K=n	 Ki sin idi,

the formula

mg sin m = KSV2

or

sin a = KV2

according to which V is proportional to V_A. This law has been verified
by experience.

The mean value in a quadrant (0 <I <90 0 or 900 <i <180°) of the
component R cos i (lift) is proportional to the corresponding area of
the curve R cos i plotted against i (fig. 6). This area is larger,
in absolute measure, for the first quadrant than for the second, in
spite of the geometric symmetry existing between the two quadrants; if
the continued variation of incidence i had no effect on the distri-
bution -)f the aerodynamic forces, the mean values of R cos i in the
two quadrants are equal and of opposite sign. The mean lift in the
complete period is zero and therefore cannot be opposed to the weight
component mg cos a during the steady motion of the wing. Hence the
existence of a mean thrust at right angles to the inclined trajectory
of the wing.

This conclusion, which can be explained by the phenomenon of
aerodynamic inertia, seems to be in agreement with the general
relation between lift and circulation, which constitutes Joukowsky's
theory (reference 4, p. 54). On admitting, in fact, that the
rotation of the wing sustains by inertia a mean circulation (C)
having the direction of this rotation, (fig. 8), there must

_	 correspond to this circul=i.tion a lift Q which is directed
upward, considering the direction of the relative speed V.
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Inertia of Steady Rotatory Motions and Resonance

The inertia of steady motions is a principle, the justification of
which is found in the closely connected explanation furnished by a large
number of phenomena. Is it possible to obtain a direct check on it in
the case of the aerodynamic resistance for a variable incidence?

To be successful in a static test the incidence variations must,
undoubtedly, be more rapid than those obtainable by stopping the
variation for measuring the effect before producing a new one. While
this may be applicable to rubber under variable tension, it is far
from being the same when aerodynamic actions, such as come into play
in the phenomena in question, are involved. Born of circulation and
vortices which attain their full development in an extremely short
time interval, these actions must be measured at the same instant
the phenomenon of discontinuity involved is reached and this
situation must be encompassed by measurements immediately before
and after in the process of evolution.

The conditions required are therefore practically unattainable.
wren in the case where a record of the phenomenon is possible, it is
never certain that the results agree with reality; having obtained a
large number of graphs representing the studied variation, an average
must be made, which is always of doubtful interpretation.

The phenomena of resonance, easily obtainable for periodic
variations, produce these a4erages automatically. In autorotation, in
a uniform wind, a wing can transmit the variations of periodic efforts
which it experiences to an oscillating dynamometer; degrees of freedom
may be prescribed for the dynamometer in proportion to the forces,
and the maximum and minimum values identified.

The air current being vertical, the wing is made to rotate about
its large horizontal axis, by means of two pins supported on two cup
bearings on a horizontal rectangular frame (fig. 9)o Soldered to the
frame, perpendicular to its plane, is a narrow metal sheet whose axis
extends the line of the bearings of the frame. At its other end, the
sheet is clamped in a solid support; the system is thus able to
oscillate in the horizontal plane by elastic bending.

In the absence of rotation, the action of the wind does not give
rise to oscillation; in steady autorotating motion, the vertical components
of the instantaneous resistances have no effect on the motion of the
system, which can be produced only by the variations of the horizontal
component (normal to the wind) of the aerodynamic resultant.
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But, as it is, the system is too sensitive to give acceptable
results. Without a damping device it may, with 12 centimeters seating,
produce amplitudes of from 5 to 10 millimeters, which disturb the
autorotation considerably to the point of complete cessation. This can
be remedied by dampingi by means of two 2-centimeter2 vertical paddles
dipped in glycerin. This affords a sufficiently stable steady motion
where only the resonance amplitude, less than a millimeter, is perceptible
in the stroboscopic sight.

With a 30 x 40 millim-ter2 wing, rotating at a speed of 6.7 revo-
lutions per second in a uniform air flow of 3 to 4 meters per second
(introduced by a vertical pipe. of 70-millimeter diameter, the orifice
being 50 millimeters below the frame) ' the maximum effort for increasing
incidences was found at an incidence of about 25 0 . This result in
correlation with others was obtained by a different experimental method.

CHAPTER IV

EXPERIMENTAL DETONATION OF THE KLEMENPS OF STEADY MOTION

To a given wing there corresponds a given steady motion, defined

by its three parameters a, cu = N. and V. The experimental study must
2n

furnish these three parameters in form of three more or less complex
functions of a, k, and L. The curves of figures 10 to 13 represent these
functions.

The thickness 2c of the wings, which is assumed negligible
compared to the other two dimensions, does not enter in these formulas.
This assumption is perfectly legitimate for the light paper; thus, the
thickness of the lightest paper utilized (,^s = 0.14 gram per decimeter2)
is equal to 0.005 centimeter for a span of 1.5 centimeters, which

corresponds to e = 0 ° 003. For the large size wings, made of pasteboarda
to insure rigidity, the thickness reached 0.3 centimeter for a span

of 32 centimeters, or approximately -2  0.01.

The amplitude of variation of the parameters is necessarily very
limited. If k is too close to unity, certain wings turn badly or
not at all, simply oscillating about a mean horizontal position. Never-
theless, it was possible to effect measurements for k < 1, over the
several half-revolutions of a fall which is not sustained because it is
unstable. The test points obtained this way are located on a curve
extending the curves of figures 10 to 13 where they are recorded.
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If k ex ceeds an upper limit, the wings b9nd. This limit, which 
increases with the thickness, is rather high for the pasteboards which 
are also very heavy, and which, besides, are diffi cult to put in steady 
motion at the height of fall permitted by the limits of the laboratory. 
The bending is eliminated by fixing on each face of the wing, normal 
to its plane and along the major axis of symmetry, a narrow strip of 
paper folded square, but then the additional resistance introduced 
modifies the phenomenon (in partiCular, it increases angle ~). 

A special chapter is devoted to this particular case, where the 
bending of the wing assumes real importance. The values of wing loading 
~ for which it was p08sib19 to obtain complete measurements at the 
height of fall available" range between 0.14 (ci§arette paper) and 
13.1 grams per decimeter2 • 

Table I gives the test data of which only a few are reproduced in 
figures 10 to 13; E, F, and H represent the three functions of ~,N, 
and V which define the steady motion for a given wing. 

The quanti ties 

E = (2ak3)1/4tan ~ 

2a3/~ -1/3N F 

H = 10-3(2a)~ V2 
sin ~ 

are approximately constants for a given value of ~ (last column of 
table I); ~ is a coeffi cient as function of ~ represented by the 
formula 

~ = 0. 27 ~-1/3(see fig. 14) (1) 

As functions of 6, quantities E, F, and H varJ along the curves 
of figures 15, 16, and 17, which correspond to the following e~uations 
(a in centime t ers, 6 in grams per decimeter2): 

(2ak3 )1/4 ,6-
1/ 5tan ~ = 2.7 

(2a)3/4k- l /3N = 1.8 6 + 9.5 (2) 

10-3(2a)~ V2 = 23 6 + € 
sin ~ 

These relations define the values of the ,steady motion within the 
limits of the zone where the parameter8 a, k, 6 can be practically 
realized. 

, 
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Quantity F cannot be less than 9.5, which forma the lower limit 
of N for any given values of a and ko 

15 

~uantity H is represented as a function of 6 by a straight line 
which does not pass rigorously through the origin; but € is negligible 
-for the usual values of 6; the third equation of (2) becomes then 

10-3(2a)~ V2 = 236 
sin a. 

hence, with S designating the area of the wing, 

10-3 2 2 
bS sin ex. = mg sin ex. = -- (2a)~ SV = KSV 

23 

The coefficient K = 43.5 x 10-6 (2a)~ (a in centimeters) is to be 
compared to the coefficient of resistance o~ a plate normal to the windo 

Through the medium of ~ (equation (1», K is dependent on a and 
6. For high values of 6 the factor (2a)~ tends toward unity, when the 

law ~ = 0.276-1/ 3 is extended. The mean resistance to the translation 

follows then the law 4305 X 10-6 SV2• The wing, whose rate of rotation 
is then considerable, can be likened to a cylinder with a maximum cross 
section S; the coefficient of resistance is, in fact, near the coeff icient 
of the cylinder (reference 6). 

The elimination of a. between E and H leaves 

hence 

or, written explicitly according to equation (2) 

V is given in centimeters per second by this formula. 
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The experimental curves (figs 12) give as function of k, for 2a
and A constant, a hyperbolic variation of V in accord with equation (3)0

The formula giving the ratio V is more complicated. For the
aN

values of this ratio below 6.28, the roller paths of the vertices of the
wing are looped. But it is difficult to obtain such trajectories.,
since bending is most often an obstacle to their formation. (For this
reason the curves of figure 13 are found limited.) However their
existence has been proved with wings corresponding to /L = U grams
per decimeter2 J. 2b = 100 centimeters, and 2a = 20 and 31 centimeters

giving 
V

= 5.7-
aN

To study the variation of V with b constant, 2a in (3) is

replaced by ^' so that

0
V4 = 3 850 x 106	

12/5k2µ	
(4)

(2b)2',[(2b)1/2k + 7.2902/51

If A is constant ., V4 varies as

k2µ
Z =

(2b)1/2k + E2

where E 2 replaces 7.29L^2/5 . The derivative

21 -
 0

4-1 C',E2 + 2b1/2k (2µ - 1)^

(2b l/2k + E2)2

cancels out for the two values of ko

k' = 0

k _
	 2p.E2

2b112 (1 - 24)

For very sma11 values of /^, formula (4) lacks accuracy. For
0 = 0.14 J. in particular, the value of V computed by means of the
expression H is too low. The coefficient µ computed by formu.1 1t (1)
must be replaced by µ' < µ. This gives, within the present experimental
limitations. 1 - 2µ > 0. even for L1 = 0.14, whereas the curve of
figure  14 gives 1 - 2µ = 0.

Quantity V presents a maximum for k = k". For L = 1.3 and

2b = 12, k" = 2.3. Table II ., established experimentally to evidence
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this maximum, affords an interesting verification of the formulas. From
the existence of this maxianzm, the explanation of an unusual singularity
of motion is deduced in chapter XIII.

The contents of table II were used to plot the curve (L = 103
2b = 12) of figure 12i it represents a maximum for k = 2030

The expressions

tan a =	 E
1 1

(2b)Tk2

and

il
N _ Fk12

3

(2b)4
indicate that m decreases and N increases for A and 2b constants

For the same values of k and A, that is, for similar rectangles
having the same wing loading, the constants of the steady motion vary
with the dimensions of the rectangle. These variations are illustrated
by the four curves in figure  18.

CHAPTER V

ACTUAL MOTION OF THE CENTER OF GRAVITY

1. Trajectory

According to equations (1) (chapter III) the movement of the center
of gravity cannot be rectilinear and uniform. It is studied by photo-
graphing its trajectory, the outline of which coincides with that of
the center of the smell side of the wing, obtained by a white round
index ?.ark. The wing is slightly blackened so that the envelope still
reraiins visible on the negative.

The trajectory of G in all photographs, oscillates to both aides
of Ox. These oscillations are not attributable to launching, since they
are well developed from the start. In fact, as soon as the steady motion

of fall is reached, they themyalves are periodic, the period being of a
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half-revolution; after several meters of vertical fall no damping is
observed. The assumption of disturbed trajectory is equally inapplicable,
because the period of the disturbed oscillations is different from a 	 -
half-revolution; besides, such oscillations are damped.

The motion of G comprises thus an oscillation to both sides of
Ox parallel to Oy. The nonsinusoidal oscillation is unsymmetrical
with respect to the position 0 1A of the wing, corresponding to

= 90 0 (figs 5). The trajectory meets this straight line OlA at

point G0, of the negative ordinate yO , which is not a minimmn

(maximum in absolute value); it is considerably incurved up to point
G1 of ordinate yl (minimum of y) and becomes tangent to the envelope

in point G2,, 	 far upward toward the lower vertex 0' of the arch.

From this point of contact, G2 on the curve is very flat on the

envelope; generally, for low values of V the part practically common
to the two curves ceases near 0'; for high speeds V it may extend
beyond 0'. In all cases the maximum ordinate y' 1 (positive) of the
oscillation (point G') is near zero or null.

Owing to the oscillation, the position 0 3 D of the wing, for which

the true angle of attack is equal to 900 , is set with respect to 01A
in the direction of motion.

The oscillation, quite considerable for rectangles of large span
and whore fall and rotation are slow, is slightly perceptible on the
trajectory of the small rectangles in rapid motion.

The displacement of the point of contact over the length of branch
01G2 is equal to ao The motion of the wing with respect to its

envelope is then very nearly a pure rolling motion (minimum sliding).
From G,' up to 0' (trajectory practically identical with the envelope),

the sliding motion increases; it is still considerable on the remaining
branch O'G2 of the arch.

The difference in incidence i, between the two wing positions
corresponding to a maximum and minim:zm oscillation, is around 900;
i being equal to 90 + P at minimum Gl, the approximate equation of
the trajectory is of the form

Y = El + E 2 cos 2 (i - P)
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where C 1 and e 2 are defined by the relations

Cl+C2=y'1

C1-C2=yl

The value of 900 + ,3 is, moreover, poorly defined, since a relative
minimum is involved.

2. Speed

A rather narrow strip of paper is glued to front and rear section
of the wing (blackened pasteboard) so that the motion is not modified.
The light source is an electric arc, fed by 50-cycle a-c giving a
maximum luminous intensity 100 times per second. To each maximum
flash corresponds one instantaneous view of the section. The
trajectory of G is projected on. the space in the middle of the straight
successive images of the section. It can also be obtained with a black
center.

The successive positions cut this trajectory in segments in one-
tenth of a second, the length of which estimates the instantaneous speeds.

The accuracy is satisfactory if, before measuring, the spaces of
maximum luminous impression which correspond to the equidistant exposures
are outlined on the negative.

It seems simpler to photograph the path of the index mark placed in
the center and illuminated alone, by electric arc, but this would require
a powerful illumination. The first method has the advantage of locating
the successive positions of the wing which then permit the variations of
w to be determined.

The minimum speed V1 of G is largely found in G1 (minimum

of y), while the maximum largely corresponds to the maximum of
sliding motion.

The minimum speed is compared to the previously defined mean forward
V -

speed V. The corresponding 	
l

ding variation	 is considerable for large
V

size rectanglesi table III shows various values along with the corresponding
values of yo , yl, and p

s
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From the equation

x"=mg sin a - Rsini

it follows that x' increases for i = 0, x" being positive. For
i = 900, R sin i is approximately maximum. Since its mean value is
equal to mg sin a, the maximum is higher than this value; consequently,
x" is then negative, x' passes through a maximum in the interval. For
i = 1800 x" is positive, x' passes through a minimum in the part of
the trajectory corresponding to G10'.

If the tangential component of the resistance R. disregarded in
the foregoing, is introduced, the results show that the latter favors
the advance for incidences ranging between around 20 0 and 1600 , that
is, for a large portion of the trajectory located entirely above the
plane tangent to the envelope arches; for the rest of the period, on
the other hand, the effect is a resistance to the advance.

3. Angular Speed

The equation

I dam = r+y
dt

defines the variation of the instantaneous angular speed, controllable
on the photograph of the successive positions of the wing section, at
0.01-second intervals.

For symmetrical positions with respect to 01A (fig. 5) the
successive images of the tip are spaced farther apart on the arc 001
of the envelope than on arc 010'. The angular speed w increases

along arc 001 and passes through a maximum at i = P 2. As for the

minimum located near i = 0, it cannot be identified very accurately
on the photographs.

With N2 signifying the maximum speed in revolutions per second,
N the mean speed defined by chronograph, 0 the angle of rotation
described in 0.02 s, table IV gives the results of the effected
measurements.

Quantity r cancels out approximately for i = 0 and i = 900.
Since y is consistently negative, the total couple for these two
values of i is negative, for which w is decreasing. Quantity r
reaches its maximum for a value of i comprised between 0 and 900;
(P + 7), zero for one revolution on the average, is then positive,
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and w increases. In consequence, (r + 7) cancels out for i = R1
and 0 2 (P l < ( 2 ) 1 the angles between 0 0 and 900 , to Which the

minimum and maximum of w correspond.

In reality, r is not canceled for the position 0 1A but for 03 D;
this divergence slightly shifts the maximum of w toward 02B.

An approximate expression of w reads

w = n + (sin 212: 2 
sin 4i 1 Q

according to which w is minimum or maximum for

cos 21 = -1 ^±3
4

To cos 21 = -1 corresponds an inflection of the curve of variation.

The minimum and maximum of w, which occur, according to the above
conditions, for i = ±30 0, are 600 distant, which is not very much
different from -the obtained results.

Quantities 01 and n 2 are determined by writing that the minimum
wl and the maxiaram w2 occur for the indicated values, which gives

^l = 2 (wl + w2)

= 2 (w2 - wl )
2 3 f3

But to place the minimum and maximum at suitable values of i,
it is necessary to shift the curve 60 0 + 2p 1 ; hence the expression
for w reads

w=2 (wl +w2)+ 2	 (w2 -wl )Csin2 (1-300 -^1 )+ 1 sin 4 (1-300-a1)1
34]3	 2

Figure 20 refers to a wing of 37.5 x 15 centimeters 2 , weighing
9.8 grams per decimeter 2i the steady motion corresponds to
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a = 47015'

N = 4.7 revolutions per sec

Nl = 5.1 revolutions per sec

V = 331 cm/sec

The Enveloping Curve

The periodic variation of V and w, assumed constant in chapter II
along with the oscillation of the path of the center of gravity, must,
in reality ., divert the form of the envelope from that of the cycloid.
The real arcs cannot be symmetrical with respect to OJA (fig. 5),

since different quotients 
V

correspond to the two angularly equidistant
ao

positions of the wing ., the quotients which define the curvature radius
of the envelope. In that part of the envelope substantially identical
with the path of G., the mean curvature is much less than in that of the
corresponding part upstream from 0 1A (fig. 21). This asymmetry, which is

appreciable for the large-size wings, at slow rotation and forward speed.,
shifts the point oP the envelope, where the tangent plane is parallel
to the mean inclined plane., toward downstream. The fact is plainly
indicated on the 60 x 32 centimeter wing, of 6.61 grams per decimeter2
weight.

CHAPTER VI

RAPID ROTATIONS

The heavy, long rectangles attain considerable speed of rotation
during falling. Since the height of fall within the confines of the
laboratory is insufficient, the recorded mean values are not, in general,
steady motion values. This drawback is evidenced by the fact that in
the vicinity of the floor the trajectory is still concave upward and
that N still increases. The speed of rotation, comparatively low at
start, increases very rapidly. The contour of the envelopes indicates
that it has no loops.

With NO and H denoting the initial speed of rotation and the

height of launching above the floor ., N the mean speed of rotation
between the approximate height levels H 1 and H2., table V gives the

recorded data. The wings were of heavy pasteboard, did not band ., but

their thickness, compared to the chord, was not negligible.
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The speed of rotation is, at the bottom of the trajectory, sufficient
to produce an audible sound; but it is difficult to derive a measuring
procedure from the angular speed of the wing.

Hence the application of the stroboscopic method and the use of the
alternating arc. The procedure has proved to be very accurate. Its
operating principle is as follows;

The fall being almost vertical at start, the photographic lens is
placed at a distance, obliquely with respect to the plane o° fall, in
such a way as to mak e; the strip of the negative impressed by the moving
wing almost vertical. The photograph (positive) appears in form of
horizontal, white bands of slightly varying width, unevenly spaced,
each corresponding to the lighting received by the wing at the instant
of maximum lighti black covars the position occupied by the wing when
it is in profile view at the instant of maximum.

By way of illustration, assume that N is slightly higher than 50.
A black mark is made which corresponds, by assumption, to one position
of the profile; 0.01 second later the wing has turned at a half-
revel-ition + El., and its actual position corresponds to the first image,

Vaich is a very narrow, white, horizontal band. On the second image, the
wing will have likewise made a half-revolution + E2 starting from the
first image, hence a little wider band. On each image the wing will
have made a half-revolution plus a fraction of a revolution, beginning
from the preceding image. When El F E2 + . . . + Ep 1/4 revolution

is reached, the wing, viewed exactly from the front and with maximum
lighting, will be stereotyped as a rectangle of maximum width.
For el + E 2 + . . + En ' 1/2 revolution the wing appears substantially
parallel to the position corresponding to the first black, hence a second
black. Between the two consecutive blacks, the wing has ode (n + 1)
half-revolutions, within a time interval equal to 0.01 n second.
Tha mean speed of rotation in this time interval is given in revolutions
per second by

N _ 50 n + 1
n

Quantity N' and n' denoting the values corresponding to the subsequent
luminous region, the ratio of the successively recorded speeds of rotation
is expressed by

N n + 1 n'

N' n' + 1 n

The same principle of determination applies to the case where N < 50.
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But the order of magnitude of the mean angular speed which i s not 
arbi trary must be known beforehand. The extension of the method, where 
N approaches a multiple or submultiple of 50, is easily made. The 
condition of luminous beats is almost realized on the 155 X 15 millimeter 
wing . The results are included in table v. 

This alternating arc method gives serviceable records even when the 
foregoing conditions (N near to current frequency, or a multiple or 
submultiple of the latt~r) are not realized. After sufficiently 
accelerated rotation, the envelope becomes discernible on the photographs. 
It is thus frequently possible to locate the positions in which the 
flash has impressed the IoTing on its envel:)pe. The recording of several 
successive positions permits the approximate determination of the speed 
of rotation of the wing in its passage to the mean levels of these 
pOSitions, and to deduce the progressive values of acceleration up to 
where the steady motion is reached. 

The chronograph, photographed simultaneously with the wing, gives 
an over-all check of the fall. The analysis of a negative with alternating 
arc is, moreover, facilitated by the comparison of an exposed negative, 
the con~itions of fall being identical. The photograph (fig. 22) ref ers 
to the 210 x 25 millimeter wing in table V. The upper height level of 
the recorded fall is about 20 centimeters of that of launching, the 
initial speed of rotation being 3 revolut ions per second. The two 
successive half-revolutions, corresponding to the secona and third 
luminous region, fully visible on the photograph, are traversed in 
0.09 and 0.06 second, respectively, hence at a :mean angular speed of 5.6 
and 8.3 revolutions per second. The 2.7 increase in a half-revolution 
corresponds to a substantial acceleration. The total time of fall, 
deduced from the total number of images inclusive of those missing, i9 
0.28 second, the exact time checked by the chronograph. 

CHAPTER VII 

LAUNCRllm 

1. Platform Launching 

The particulars of the launching from the platform, detailed in 
chapter I, are as follows: 

At a specific inclination ~ and lever arm OG = 1, (fig . 23) 
the ini tial rotation, which has its inception in the t endency to draw 
the wing toward the back of the support (toward the right on fig . 23), 
may become null in an azimuth ~' (position 2 in fig. 23), starting at 
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which the wing slides forward. Without changing the inclination ~,but 

by reducing the lever arm l, which at the same time reduces its resistance 
R and its moment with respect to 0, it is generally possible to permit 
the rotation to continue resulting in the previously studied steady motion 
of fall. But the rotation can still be stopped in position 3, by giving 
rise to a slide, this time toward the rear. 

Whether forward or backward, those sliding motions are always of 
limited distance, at the end of which, for any cause, a rotation begins, 
which is accelerated very Quickly at the expense of the speed of the 
center of gravity, and which, with a suitable speed of fall, may be 
sufficient to result in the steady motion that is known. If not, it 
results in a so-called switchback, which Mouillard undoubtedly wanted 
to represent in one of his graphs, where the trajectory of the center 
of gravity is represented with the same curved arches obtained for the 
envelopes of the wing. 

2. Launching by Motor 

Two flexible wires (fig. 24b), the ends of which are wound around the 
ends of the large axis XX!, extended from wing A, and anchored by means 
of a short radial pin, and pass over two fixed pulleys R and are 
stretched at the other end by two eQual weights P. These weights hold 
the axis against angle plates C which act as bushings. A lever L 
immobilizes the wing at the start and is released by means of wire F 
which allows the wing to turn in its bushings up to the instant when 
the wires become unhooked and the wing drops freely (toward the left in 
the figure, if the wire is wound appropriately). 

A few turns of the wire, with weights of several hundreds of grams 
are sufficient to give the wing a much higher initial speed of rotation 
than that of the steady motion. If the speed of rotation has become 
constant before the wire is released, the driving couple, eQual to 
2P X 0.3 gram per centimeter (0.3 centimeter is the radius of the axis) 
is equalized by the resisting couple due to the air and to the friction 
of the axis on the angle plates C. As soon as the weights are released, 
the resisting couple and the reactions of the supports cease suddenly to 
be equalized; the result is an abrupt decrease in the speed of rotation. 
The initial trajectory of G, the slope of which in the origin is that 
of the resultant T! (fig. 24a), is concave d~wnward. The initial motion 
is largely parabolic, so much more curved as the rectangles are heavier 
and the rotation slower .. Th~ lighting of the white section of the wing, 
blackened over the rest of the surface, is secured by the alternating arc. 
The angular speed No is readily obtained by measuring the angular distance 
of two successive images. 
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The following results were obtained:

Rectangle: 33.5 x 19 centimeters

Characteristics: total weight: 50.50 gramsi a = 520 5';
N = 3.0 revolutions per second; V = 3.28 centimeters per second

The sliding motion being negative at start, according to the present
convention, a particularly clear loop is formed, the area of which
increases with the launching couple, but afterward vanished quickly.
With a 600 gram per centimeter couple, it lasts no longer than the second
half-revolition. Here also the trajectory of G (black index mark on
white section) is periodically undulated, the mean trajectory presenting
an inflection point which is so much lower as the launching couple is
greater.

Figure 25 shows the mean trajectories immediately following the
launching for the three motor couples given in table VI. There is no
sign of any incipient stability oscillations of which Joukouwsky
determined the conditions of existence, although the launching by motor
with NO > N seems to be the mode most likely to produce them, if

admitting that they could be produced.

Table VI gives the test data at height level H. measured downward
starting from the horizontal of launching. This table shows that N
passes through a minimum lower than the speed of steady motion, while N0
is considerably higher. The initial rotation cannot be maintained and
dies down very quickly. The translation following the start is, in
fait, insufficient to produce an average motor couple P capable of
equalizing the resisting couple 7 of the air, according to the present
theory. By equatlon

Idt=P+7

(P + 7) is negative immediately after launching, and consequently w
decreases; but, the motion of translation being accelerated under the
action of the gravity, P increases and (P + 7) decreases in absolute
value; 7 varying in the same sense as w, r + 7 are nullifiedi w then
passes through its minimum. At this instant, the steady motion not
being reached, r continues to increase; the total couple becomes a
driving couple, w increases, and, consequently, 7 also, up to the
moment where the speed of translation and of rotation become such that
the mean value of P + 7 in a half-revolution becomes zero; the wing
is then in steady motion.

The curves N = f (H) of figure 26 tak4 the foregoing facts into
consideration. It is seen that N reaches its mean value of steady
motion without oscillations.
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The minimum angular speed increasers with the launching couple. For
very h1gn initial speed, it may be conceded that N reaches the steady
motion by constantly decreasing higher values.

The closely approximated values of table VI indicate that V
aN

increases from the start and for the first two values of the driving
couple, passes through a higher maxim m than at steady motion.

Rectangle: 8.5 x 34 centimeters

.steady motion characteristics: total weight: 33.5 grams; a = 400 45'i
N = 9.5 revolutions per second; V = 376 centimeters per second

With a 300 gram per centimeter launching couple, the initial speed
of rotation is higher than the speed of steady motion. It affords at
start four loops, the area of which decreases from the first to the
fourth. Again N decreases very quickly and passes through a minimum
below that of the steady motion. The results of the measurements are
given in table VII.

The mean path of the center of gravity for an identical launching
couple is shifted considerably upward with respect to the trajectory of
the preceding rectangle. The uneven weights are not the sole cause of
this differences a difference remains even if the lighter of the two
wings is symmetrically overloaded so as to equalize the weights. The
translation subsequent to launching develops a mean lift a which is

r	 particularly important in the second case, where the initial rotation
is greater than In the first case. The effect of this lift is to
deflect the path of the center of gravity above the direction T'
(fig. 24). Herein may be found a simple justification of Koppen's
idea, which, by increasing the speed of rotation of his parachute by
adding a motor, shou-1d, at the same time, reduce the slope of the path
with respect to the horizon, or render it even ascending.

3. Hand Launching

(a) Conventional method.- Mouillard spoke of launching by hand but
failed to give an analysis. To be successful would require heavy, elongated
rectangles. Grasped by the long sides between thumb and the first two
fingers of the right hand, which is moved downward and backward, the wing
is thrown vigorously forward and upward, say, at a 450 angle, for example
(point 0, in fig. 28), it should be given a high speed of rotation about
its large axis held horizontal at the moment of launching. The trajectory,

`	 ascending at first, has the form of an incompletely closed loop
reminiscent of that of a boomerang (fig. 28).
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The initial speed of rotation being such as to direct the mean lift
Q downward (Joukowyky law), the result is that the trajectory curves
downward mach more Quickly than it would in the absence of this effect
of rotation. Beyond the apex H of the trajectory, the motion continues
practically as if it had been launched from a platform in H. Starting
at the most forward point I, the gravity is opposed to the lift Q
and accelerates the rotation, slowed down by the ascent, to the speed
of steady motion.

(b) Other mode of launching.- The method of launching described and
analyzed in the following has not been mentioned elsewhere.

Suppose the sense o--n the initial rotation is changed, that is, from
bottom to top for the forward wing half (fig. 29). For this purpose
the wing is held between thumb and fingers of the right hand as before,
the hand raised above and behind the shoulder; then the wing is vigorously
thrown forward, while releasing the thumb before the two fingers.

The initial lift Q is now directed upward. At sufficient initial
speed of translation and rotation, the resultant of the meafl aerodynamic
resistance R and of the ;weight is an upwardly directed force, hence
an upwardly directed concavity for the trajectory. At point I of the
trajectory, where the tangent is vertical, the conditions are similar
to the initial conditions of launching by the conventional method, with
a vertical speed of projection. The trajectory forme thus a complete
loop, as represented in figure 29. This motion is, of course, possible
only when the wing is given an initial speed high enough to reach
point I. In the contrary case the trajectory is inflected at a point
marked I on the lower curve of Figure 29, the point beyond which the
concavity of the trajectory remains downward.

4. Vertical Launching

The wing is released without speed in its own vertical plane, its
large side being horizontal. The trajectory of the center of gravity
cannot be kept vertical iniefini-toly, even in stilt sirs it curves
inward immediately at the same time as the rotation starts, to be
joined asymptotically to the sloping straight line of the steady motion.

Under -the effect of the quickly attained speed, the least asymmetry
or the least incidence of the wing becomes sufficient to start a rotation
of the wing, which is accelerated under the action of the aerodynamic
couple, and so much more rapidly as the prior vertical fall has been
prolonged. Thus the speed of rotation impressed on the wing can be
high enough to give rise, in the first half-revolution, to loops, which
disappear, in the steady motion, if the latter does not permit it.
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CHAPTER VIII

PADDLE Wl-^=S

The experiments included paddle wheels consisting of identical,
angularly equidistant vanes mounted radially around an axis. The
characteristics are shown in table VIII. The measurement of the angular
differences made successively in the time interval by an index mark
placed on a section indicates that the rotation is speeded up, starting
from the launching on the platform, as in the case of the single wing.

The motion photograph of the steady motion shows an asymmetry in
the half-periods (600), the limits of which correspond to the positions
normal to PQ of one of the vanes (three in the case analyzed). From
H to I (fig. 30) the curvature of the envelope is greater than
from I to J. This asymmetry recurs again at a complete revolution
of the paddle wheel. The translation between A and P is greater
than that between P and Q.

For the first half-period preceding I, the energy of couple P
(theoretical energy of resistance to pure translation) for the blade GA
(from 300 to 90o incidence) is motive energy (area a' a b c d (fig. 31));
the energy for the blade GC is resisting; blade GB is in the slipstream;
hence an excess of motive energy (area a b c e). For the following half-
period the motive energy for blade GA and the resisting energy for
blade GB may be regarded as compensating each other; the resistance
predominates on blade GC; the energy of the latter, first resisting
(area a' e f g o), becomes then motive energy (area o g a a'); there still
is an excess of motive energy (area g a e f). The excess of motive
energy over the whole period is gaged by the shaded area; this energy
of couple P in a complete period corresponds to the upkeep of the
rotation.

The envelope of a paddle of a four-blade paddle wheel is formed by
very incomplete arches by reason of a very substantial sliding motion.
On applying the formula which approximately defines the limit points of

the visible part of the envelope ( cos cp = aw 1, to the 1.90 meter height
V

level, it is found that the arch just about corresponds to a rotation of
the wing of 52 0 only. This result checks with the photographs.

The theoretical energy of the resistance to forward motion for one
period (900 , fig. 34) is motive energy for paddle GA (area o g a b c d,
fig. 31); it is resisting for the paddle GD (area d c e f g o). The
motive energy on paddle GB and the resisting energy on paddle GC may
again be regarded as compensating. The last two paddles being in the
slipstream, the air resistance predominates on the first two, hence the
excess of motive energy represented by the shaded area in figure 31.
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Prisms

Regular prisms, of the characteristics indicated in table IX,
launched from the platform with a low speed of rotation, give rise to the
same primordial phenomena as the single wings and the paddle wheels.

For the equilateral triangular prism, the photograph of the envelope
of a rectilinear index mark disposed according to a height of the principal
section (fig. 35), gives for a 180 0 rotation an incomplete arch with
uneven ends; the long branch corresponds to the displacement of the
characteristic point between center of gravity and apex of the triangle.
The upkeep of the motion is still attributable to the inertia of the
motions.

During a half-period starting from 1, the face AC alone catches
the wind; for 300 the motive energy of the resistance of translation
(area h' h d, fig. 31) is balanced by the resisting energy over the
following thirty degrees (ar„a d h h'). For the other half-period, the
energy corresponding to the same face is resisting (area h' h c f g o);
but the energy on face BC is motive energy (area o g a c h h'). There
is an excess of motive energy, indicated by the shaded area.

For the quadrangular prism, the energy of the resistance over a
period is resisting for the face AB and motive for the face AD. The
shaded area again represents the energy of sustention (figs. 31 and 36).

Case of Circular Cylinder: Special Experiment

A circular cylinder is released with initial rotation, obtained by
previous rolling on an inclined plane. The Magnus effect deflects the
trajectory of the center of gravity downward, which farther on presents
an inflection point, as indicated in figure 37. In this motion the
cylinder counterrolls on a surface which is asymptotic in a vertical
plane; the unsustained rotation tends toward zero.

CHAPTER IX

BENDING

The excessively elongated wings bend during falling; for the light
paper wings, the bending occurs at k > 5 . Torsion may even accompany
bending. A slight initial curvature of the large axis induces bending
which grows progressively with the angular speed.
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The envelopes obtained by camera are difficult to interpret. To
locate the wing at different instants during falling, it is necessary to
blacken it and provide white paper index marks as indicated in figure 38.

The mean trajectory of the center of gravity is always the line of
maximum slope of an inclined plane (fig. 39). In A the small sides of
the wing are normal to the wind, and the concavity of the wing is turned
toward the bottom of the inclined plane. In C, after a rotation of a
half-revolution, the concavity is turned upward. In E, after a rotation
of one revolution, the wing reassumes the same position with respect to
the plane as in A. The wing curvature remains the same. The period is
a complete revolution.

The arches of the envelope corresponding to two consecutive half-
revolutions appear very uneven. In reality, the small forward sides of
the wing, fixed by the photograph, are close together in A and C,
due to the rotation about an axis upstream from A and downstream from C.
Contrariwise, they are farther apart in C and E where the corresponding
axes of rotation are beyond C and upstream from E. The index mark,
placed along the small axis of the wing, encloses a strongly undulated
curve, visible in figure 39•

At incipient bending during falling, the curvature of the wing
increases under the action of the centrifugal forces due to the rotation.
The curvature cannot remain constant at each instant, in steady motion.
Even when assuming V and w constant, the position of the wing with
respect to the wind causes a variation in bending. From A to B.
the resistance R, adding its effect to that of the central centrifugal
force Fl , increases the deflection of the wing; it is the same from

D to E. This effect gives a maximum curvature in A and in E.
From B to D, on the other hand, R being opposed to Fl and increasing
F2 , produces a decrease in bending moment and a correlative decrease in

the wing curvature, which is minimum in C.

After its passage to A, the wing straightens out again; the
section is shifted backward and the trajectory of Gl , deflected suddenly
upward, increases the curvature.

Comparing the wing to a portion of a circular cylinder of radius R,
20 being the angle of the two extreme angles of the directrix, the
distance of center 0 of the wing (of span 2b) to the axis of rotation
is

OG = b (6 - sin 0)

B2

The point 0 passes alternatively and periodically above, then below the
mean inclined plane.
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The photograph in figure 40 refers to a wing provided with the index
marks of figure 38; its general characteristics are: 2a = 9 centimeters,
2b = 44.5 centimeters, and L = 9.92 grams per decimeter 2 . The results
are: AC = 43 centimeters, and CE = 16 centimeters; the deflection in A
being 7..4 centimeters, and in C. 4.4 centimeters.

CHAPTER X

CURVED WINGS

The case involved is that of a wing whose "profile, ` instead of
being straight is now circular (circular arc). The surface of the wing
becomes cylindrical. The curvature of the wing is defined by the rise
of the circular arc. For such wings a steady motion of descent of the
kind discussed in the foregoing is not stable except when the rise is
small. For instance, a 25 X 10 centimeter wing, weighing 2.04 grams
per decimeter2 has no stable steady motion if the depth of camber exceeds
1.7 centimeters.

The period comprises two half-revolutions (fig. 41) which constitutes
an analogy between the envelope arches obtained in the actual case and those
of the deflected wings. From A to D the convex side of the wing faces
the relative wind, from D to E. the concave side. The convex side
again faces the wind from E to C. The arch corresponding to the first
half revolution AB is much longer than the second BC, with a flatter
mean curvature.

For the afore mentioned wing (25 X 10 centimeters), with 0.7 centimeter	 t
depth of camber, the two arches GH and HK have a span of 23.8 centimeters
and 19.8 centimeters, respectively. For the same wing, but flat, the span
of the arches was uniformly 21.5 centimeters. For a 33 X 15 centimeter wing
weighing 7.38 grams per decimeter 2 the span of the arches is 64 centimeters
and 43 centimeters (fig. 42) for 1.9 centimeter height of camber;
40 centimeters for the flat wing.

Along the shortest arch, the curvature of the wing and its envelope
have the same sign and also similar numerical magnitudes. The contact
of the envelope and of the enveloped is of a•high order, particularly in
the neighborhood of E; in consequence the envelope appears as a very
thick black line on the negatives.

The peculiarities of this form of the-envelope can be roughly explained
according to the aerodynamic characteristics of thin, circular-arc airfoils
(reference 6, p. 52).
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At H, the resistance to translation is maximum* applied from H to
E at short distance from the center, this resistance decelerates the
rotation more than it does the translation, hence, the slightly greater
curvature of the arch between H and E than downstream from E. Near
E, the motion appears to approach a pure sliding motion, with a minimum
disturbance of the fluid. As soon as the incidences are clearly negative
(relative wind on the convex face), the resistance approaches the leading
edge of the wing, and its moment with respect to the center of gravity
is greater here than for the positive incidences of the same absolute
value: after that a rapid acceleration of the rotation. Along GD the
rotation is slowed down by a very high moment couple. The deceleration
persists downstream from D as far as point N where the center of
thrust passes to the leading edge (relative wind on the concave face).
The slight curvature of the arc DH is due to the fart that at low
positive incidence the resistance is applied to the rear half of the
surface.

The several negatives obtained gave the same geometric peculiarities
for the two arches of the envelope.

CHAPTER XI

STABILITY

In the steady motion of falling with a wing rotating about one of its
principal axes of inertia Gx and Gy (fig. 43), the equilibrium of the
forces and moments is on an average established in one period. But
for such a steady motion to take place effectively, the stability is a
necessary condition.

Experience indicates that a rotation impressed on a wing about the
mean axis of inertia Gx cannot be maintained in a stable steady motion
of descent; the wing tends to fall quickly with erratic motions. By
averaging enough initial speed of rotation, several half-revolutions
of the wing may be obtained, an unsteady motion of the sort which enabled
the curves of figures 10, 11, and 12 to be plotted corresponding to k < 1;
in no way is it possible to fit it in the scheme of steady motion. On
the contrary, every result based on the preceding studies is proof of the
stability of the steady motion at rotation about axis Gyj a new one can
be produced the following way:

Assume that the wing, placed on the horizontal launching platform,
is given an initial rotation about a straight line of its plane parallel
to the platform rim D and forming an angle u with Gy (fig. 43).
The negatives show that the center of gravity, at the beginning of the
fall, still describes, on the average, a straight line normal to D and
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sloped at an angle a with respect to the horizon. The axis Gy describes
about G a small cone of quasi-uniform motion defining a period of
nutation. This period of nutation, at least when k is great, has a value
several times the period of rotation of the wing. On the negatives the
envelope arches follow along, a wavy line with little difference from the
straight line of the inclination a which remains the mean trajectory
of the center of gravity. But this nutation and these oscillations are
quickly damped, and Gy ultimately resumes a horizontal direction normal
to the mean trajectory with the rotation continuing about this axis until
the normal motion is established.

During the disturbed period of motion, the center of gravity is
always animated by an oscillatory motion analogous to that which it
represents in the established normal motion; as a result, the end of the
great axis which follows the same oscillation fluctuates about its mean
trajectory, itself oscillatory along the mean inclined plane due to the
nutation. Figure 43 represents, at the right, the contour of this
trajectory, plotted according to the photographs.

In this same transitory period, the aerodynamic resultant is no
longer situated in the plane of symmetry Gx of the wing; the resultant
moment with respect to G, which in steady motion is directed along Gy,
has now a component P along Gx. When Gx is parallel to the inclined
plane, the couple P governs the amplitude of the oscillations which may
be called rolling oscillations of the wing (angular oscillations about the
trajectory of the center of gravity; one wing tip rises above the inclined
plane while the other drops below). When Gx is normal to the inclined
plane, P governs the yawing moment of the wing (oscillation about an
axis located in the mean plane of the trajectory of G and normal to it).
Figure 43 represents, at the left, the yawing oscillations (fig. 44).
In all cases, rolling and yawing have small angular amplitudes; to each
angular difference of a specific sign there corresponds, one half-period
later, a difference of the same value and of opposite sign; the
corresponding couples P, equal and of opposite signs, have a zero mean
value.

The preceding action is superposed by a damping effect (an action
roughly proportional to the speeds) which reduces yawing and rolling and
finally stabilizes the motion with the axis Gy horizontal in the inclined
plane.

With HO indicating the height of launching and u the initial
setting, table X gives the number of revolutions n, starting from height
level H, over which an oscillation of Gy is sustained.

Joukowsky, after studying the disturbed motion of the center of
gravity, concluded that the latter approaches the rectilinear trajectory
either asymptotically (a > 700 32 1 ) or by oscillations (a < 700 32').
No trace of such oscillations was found on any of the negatives. The
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only oscillations encountered are those discussed in chapter V. And these,
resulting from the variation of the instantaneous resistance R over the
period of a half-revolution, appear essentially different from those
described by Joukowsky.

CHAPTER XII

ISOSCELES TRAPEZOIDS

The existence of a maximum speed recognized from a study of the normal
motion of fall of rectangles of span 2b led to a summary consideration of
isosceles trapezoids, obtained by a slight reduction of one of the small
sides of the rectangle.

On conceding that each section of the wing, comprised between two
parallels to the bases of the trapezoid, corresponds to part of a rectangle
of the same chord and span 2b, a speed of rotation V near the average
values V1 and V2 characteristic of rectangles of the same span 2b
and respective chord 2A and 2a, measured at the large and small base of

the trapezoid, can be predicted for the trapezoid. We put k = b and
A

K  (g>k).

When the straight line GI, paralle
large axis of inertia (fig. 45), and the
the rotation, the mean trajectory of G
of an inclined plane. This case differs
only by the unevenness of the successive
corresponds to a complete revolution.

1 to the bases, is the principal
launching is suitable for readying
is still the line of maximum slope
from the problem already treated
arches. The period of motion

If, on the other hand, the large principal axis of inertia is the
straight line GO, the trapezoid assumes a steady descending motion, with
rotation about this straight line; but the mean trajectory of G is
then, as a rule, a helix outlined on a cylinder of revolution with vertical
axis D. This vertical axis cannot be registered with precision except
in the case of small trapezoids of light paper; with these it was possible
to effect a sufficient number of revolutions about this axis at the height
of fall at disposal in the laboratory.

The axis 00' turns with, on the average, a constant angular speed u
about D. In this motion the points 0 and 0' projected on the horizontal
plane describe, on the average, two circles centered on D and of radius R
and r. It is natural to admit, to begin with, that R must be greater
than r, or in other words, that the small base is always turned toward the

•	 axis D of the cylinder. The existence and the conditions of maximum
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speed described in chapter IV make the generality of the fact doubtful,
and desirable to predict the conditions for which the orientation of the
trapezoid must be reversed.

Let k' denote the aspect ratio corresponding to the maximum speed
of translation of a family of rectangular wings of common span 2b.
If k' > K > k for the trapezoidal wing in question, it may be asserted
that the speed'of translation is increasing for the corresponding rec-
tangles whose chord decreases from 2A to 2a: in these conditions it
is natural to imagine that the large chord is inside, the small one, out-
side, that is, that R < r.

These precisions have been confirmed by experience, and it was
possible to obtain, in the desired conditions, very stable helicoidal
falls with the large chord of the trapezoid located on the inside.

Helicoidal falls with R < r have been obtained in all cases, on
trapezoids of very dissimilar ratios of k and K but always smaller
than k'. However, if k' is a little greater than unity, stable
rotations are difficult to obtain, which explains the fact that k is
then necessarily small or even less than unity.

Conversely, for k' < k < K, R should be greater than r, the
habitual helicoidal fall, with the small chord of the trapezoid on the
inside. This also has been confirmed by experiment.

Lastly, for k < k' < K, the two previous modes of fall were obtained,
as well as the falls in the inclined plane (R = r = co) which were, more-
over, very stable. The last result, quite unexpected for trapezoids with
uneven chords, is easily explained in the case where the chords differ
only slightly. Table XI gives some numerical results.

The axis of rotation of the wing describes a regular helicoid with
director cone, the directrixes of which are the helix described by G
and the vertical axis of the same helix; the acute angle which with this
axis forms the axis of rotation, is open toward the top. Due to the fact
that this angle is different from 90 0 , the axis of rotation is not
orthogonal to the direction of the speed of G, hence an oblique angle
of attack of the wing with the relative wind, which must have its
reflection in the laws of motion.
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CHAPTER XIII

ROTATION OF GRAPHITE FLAKES IN A VERTICAL ASCENDING WIND

Screened graphite flakes are introduced in a vertical pipe into which
flows the air -from a wind tunnel. The wind discharges into free air
through a vertical cylindrical nozzle of 1.32-centimeter diameter. In
this air current the flakes rise while turning, up to the jet exit, then
fall again. The rotation, which was recorded by camera, is, moreover,
plainly visible to the eye.

Figure 46 shows a vertical plane passing through the axis of the
nozzle, the observation being limited to the flakes whose trajectory
remains approximately in this plane, the only ones whose envelopes are
distinct on the negative. The flakes are seen to turn about the line
of vision, in one or the other direction, at the same time as the visible
effect of a force appears to prevent the flakes from rising vertically
to the pipe outlet.

The determination of the motion elements of the particle with respect
to the air is rendered very difficult in the experimental conditions by
the calibration of the air blast; the effect of rotation of the flake
(deviation of the trajectory with respect to the vertical) is supplemented
by that of the divergence of the streamlines. These two effects are
cumulative on both sides of the axis, where the rotations are of opposite
signs; the rotation at the left of the axis (fig. 46) is clockwise, at
the right, counterclockwise.

The vertical speed V in the air flow decreases when the point moves
away from the orifice and at the same time from the axis of the jet. The
position of the flake, at which this speed V is equal to the vertical
projection v of the speed of the flake with respect to the air, corresponds
to the apex of the trajectory. Above this position, the airspeed becomes
less and less perceptible, the flake assumes a descending motion which
tends toward the stead motion of fall (still air).

The photographs allow for these facts and show the regular succession
of envelope arches which contrl,;.ct toward the apex of the trajectory.

Confetti, 3.9 millimeters in diameter, produces the same results.

To the case of the flakes revolving about an axis normal to the line
of vision, there correspond the records of the trajectories devoid of
luminous periodicity.
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Similar results are obtained by spreading graphite flakes near the
air holes of a lighted Bunsen burner; the flakes are carried off by the
flame in red heat (fig. 47). Every bright line visible on the photograph
represents an arch of the trajectory.

Photographing the trajectories is difficult because the red hot flakes
are blended with the flame which, in spite of all the precautions taken,
remains tinged.. The curvature of the envelopes cannot be discerned here,
nor the sign of the rotations be identified.

Reference is also made to the sparks which fly up in the hot air from
a chimney; their trajectories appear like luminous dashes, explainable
by the rotation.

Lastly, the same phenomena were encountered with mica or aluminum
scale introduced in a vertical air current; but it was not possible to
obtain negatives on which the directions of rotation could be identified.

CHAPTER XIV

FALL IN WATER

The sole purpose, in this concluding chapter, is to demonstrate,
by experiment, the similarity existing between the rotation of wings
in free fall in the air and the analogous phenomenon produced in water,
to end with the general conclusion that the fall of a rectangular wing
in any fluid of low viscosity gives rise to steady motions which are
completely defined for every fluid by the characteristics D, a, k of
the wing. (Throughout this chapter, ,L designates the apparent wing
loading, that is to say, a deduction made from Archimedes' principle.)

These experiments were made in a tank of rectangular section,
200 X 65 X 80 centimeters in size, with the 80 centimeter dimension being
the depth of the water. The temperature of the water was kept constant
at about 13 0 for the comparison of the measurements. The photographs
were taken with the camera set before one of the long sides of the tank
fitted in the center with a glass window 80 x 90 centimeters (14 millimeters
thick). Launching was effected from a completely immersed platform whose
edge is parallel to the small side of the tank. The mean plane of the
trajectories coincides with the large plane of symmetry of the tank, in
which a submerged white reference mark fixes the scale of the lengths,
and a plumb line the vertical. Above the tank and near this plane of
symmetry, a 1-kilowatt lamp provides adequate lighting for the wings)
which are painted white. The chronograph is placed above the tank.

The span 2b of the tested wings is small enough to free the
rotation from any wall interference effect.
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To obtain stable descent in rotation on the inclined plane requires a
relatively high apparent wing loading. For instance, a 30 X 8 centimeter
iron plate of an apparent weight equal to 523 grams (218 grams per decimeter 2)
does not turn; two identical plates, stacked, turn but are at the limit
of stable motion. The motion becomes completely stable with three plates
stacked, (654 grams per decimeter2 ), but the putting in steady motion also
requires more than 80-centimeter depth of water.

This necessity of a value 0 higher than utilized in the air experi-
ments without difficulty arises from the specific weight of the fluid to
which the effects of the resistance are proportional.

In these conditions the thickness 2c of the wings, which may become
true prisms, is, as a rule, no longer negligible relative to the chord;
in point of fact, no sufficiently high value of D is obtainable except
by an increase in thickness. The thickness is equal to 0.67 centimeter
for the 5-centimeter-wide iron plates listed in table XII; it reaches
1.05 centimeters for the lead plates 3.5 centimeters in width. In these

two cases the value for the quotient 2 is, 0.13 and 0.3 respectively.
a

The lever arm should be fairly short at start of launching to insure
a low initial speed of rotation; a few millimeters are sufficient. If Z
is too long, the resistance to launching, which increases with Z, stops
the plate before it has turned 900 , and the plate then slips away at
high speed. This soon results in a curvature of the trajectory, then a
rotation which is continued in to the stable motion if A is sufficient,
whence the mode of launching (forward sliding motion) utilized for the
wing formed by two 30 X 8 centimeter iron plates, cited in the foregoing.

Table XII gives the steady motion characteristics for several iron
and lead plates.

The curves representative of a, N, and V (figs. 48, 49, 50) plotted
against k have the same form as the corresponding curves for the fall
in air.

The unstable motion (k < 1), as in the case of air, lies in the
extension of the characteristic corresponding to the stable motion; but
in consequence of the very substantial sliding, the exact measurements
necessitate a greater depth of water than 80 centimeters.

The search for complete formulas defining the constants of the
steady motion will require long series of experimentation. It is likely
that the thickness will enter the formulas as a new parameter.
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According to table XII, the expressions

are sensibly constant for the tested plates at constant chord and thick-
ness and a specified apparent weight per decimeter2 . These expressions are
of the same form as for air, except that in F, the exponent of k takes

the value -	 in place of - 1
3

In a regular state of motion (fig. 52), the path of the center of
gravity presents oscillations of high amplitude. This amplitude itself
is important for wings of small dimensions. The trajectory is to a
great extent identical with the envelope of the plate from which it does
not break away cleanly except in the region of minimum elongation on
either side of OA (i = 900).

The point Gl of minimum elongation is still shifted considerably
downstream with respect to OA. The asymmetry of the arches with respect
to OA, which in air is appreciable only when the wings are of great
dimensions, appears here for wings of small dimensions (15 x 5 centimeter
wing in the table, for instance). The curvature in E (upstream from OA)
is distinctly greater than that in F (downstream). The point of contact
of the tangent common to the envelope arches has shifted downstream with
respect to the center of the arch.

If the motion of the center of gravity was rectilinear and uniform
and the rotation constant, the looped rolls of the vertexes of the wing

are formed theoretically for V < 6.28.
aN

The envelope arches, for the 15 x 5 centimeters ( —V = 9 . 6) and the
aN

30 X 5 centimeter wing (	 = 6.5)
\ 

in table XII, prese\nt points of
aN

inflection. For the sec\ond wing, the softly rounded region around the point
of inflection is evidence of the presence of a loop, of very small area

it is true, while the ratio 
V

is higher than 6.28.
aN

This premature formation of loops is due to the high amplitude of
oscillation of the trajectory of G and to important variations of V
and N during one period, and which are the result of this severe
oscillation.
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The speed of translation of G is minimum for a position of the
section of the wing near the stationary tangent; it is seen on the
successive images of the section, photographed with the electric arc;
these images are severely contracted in this region, cutting off arcs
of minimum length on the trajectory of G.

Quantity -I- varies considerably throughout the period. Very

much higher than 6.28 along the arcs of light curvature, its value
approaches this limit on the arc of great curvature. In the case of

the 30 x 5 centimeter wing -
V

becomes even less than 6.28 in the
aN

point of inflection. The looping depends on the 
V

value at this
point.

It was stated that the tangent OT to the point of inflection
of the envelope is not perpendicular to the mean inclined plane; it
is shifted downstream at an angle u with respect to the normal. For
the fall in air this displacement does not appear because the envelopes
for the wings employed in the tests present unreal points of inflection
situated in the geometric extension of the part of the arch that is
materially swept- by the wing and recorded by the photograph; nevertheless,
the asymmetry of the arches of the large wings raises suspicions about
this particular geometric peculiarity. For the 15 X 5 centimeter and
30 X 5 centimeter wings, the angle u is equal to 50 and 60 , respectively.

r	 Vertical Launching

As in free air, a steady motion of fall in vertical sliding is im-
possible. After a certain height of fall, starting from vertical launching,
the path of the center of gravity curves inward, slowly at first, then
very rapidly, which corresponds with the incipient rotation of the wing
with the water which it encircles. The angular acceleration can assume
a considerable value, resulting in a second, considerably shortened arch,

with a V substantially below 6.28 and a slowing up of the fall,
aN

which disappears in the following, much longer arch.

If its inertia is inadequate, the wing is unable to perform the
second quarter of the revolution, for which the resisting couple is
maximum. The rotation becomes zero in an azimuth where it ushers in
a new and long slide, which may end in a rotation.

Quadrangular Prisms

The necessity for giving wings sufficient thickness and inertia in
order to obtain regular rotatory falls prompted the tests of square prisms.
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Of the most diverse sizes and materials (brick, iron, lead, for example),
these prisms give rise to perfectly regular steady motions, in water.

Sustained rotation, almost impossible on thin rectangular wings over
the period of a half revolution, is easily secured here over the period
of a quarter revolution. The aerodynamic couple being motive energy four
times per revolution and the inertia considerable, the azimuths, where the
couple is resiQting, are easily passed.

With identical prisms but made of material lighter than water, steady
ascending motions can be obtained, the prism having a counterrolling
motion on an inclined plane located above the envelope.

Oscillating Fall

If L1 is sufficiently small and the dimensions of the plate are
appropriate, the rotation may become impossible. It is then replaced
by a steady motion of oscillation, the laws of which pose a new problem.
The results furnished by several photographs are shown by way of example.

The envelope, viewed in projection on the plane of vision (fig. 53),
is formed by a succession of equal, upwardly concave arcs, each of which
corresponds to a single oscillation. In these oscillations the motion
about the center of gravity is a pitching motion about the long axis
of the wing, which maintains a direction that is largely fixed and
horizontal; the pitching amplitude may become some lo o higher, starting
from the horizontal plane.

The center of gravity, which moves in a vertical plane perpendicular
to the fixed direction of the long axis, is animated by a synchronous
oscillation (Cig. 54). The pitching angle is regarded as positive when
the advancing half wing is situated above the horizontal plane passing
through the long axis. On passing the mean vertical of the fall the
pitching angle of the wing, sliding toward the right, for example, is
negative and increasing. Simultaneously, the angle of attack increases,
which quickly raises the hydrodynamic resistance and results in the
arrest of the rightward displacement of the center of gravity (horizontal
speed nullified); the pitching angle is then positive and reasonably
constant. The fall can but begin again; now it is toward the left,
with a sliding motion which starts in a plane which is largely the plane
of the wing at the preceding arresting moment (plane tangent to the end
of the envelope arch). The angle of pitch is now to be considered as
negative since it is the other half wing that is considered as leading
the motion. The sliding is rapid at first, then, as the pitching angle
increases, the horizontal speed of the center of gravity decreases, and
cancels out in the same conditions as before (most leftward position of
center of gravity).
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The photographs of figures 53 and 54 refer to aluminum wings of
6.5 x 2.5 centimeter and 5 x 3.7 centimeter dimensions (0 = 6.19 grams
per decimeter2 ), the periods of oscillations being 0.9 and 1.23 seconds.

In free air, large and light wings, abandoned in the horizontal
position, give rise to a similar steady motion of fall.

An oscillating fall in which the pitching axis, instead of main-
taining a fixed position as in the foregoing, turns about the mean
vertical of the motion, probably by warping, is easily obtainable in
water with very long plates. For a 12.7 x 1 centimeter aluminum plate,
weighing 0.8 gram, this rotation is effected at the rate of one revolution
for about eight complete oscillations.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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TABLE I

p

g/dm2

g = b
a

2a

cm

2b

cm

M N
revolutions

per sec

O

cm/s
aaNNE F H

deg min

0,14 2,66 1 1 5 4 42 35 9.5 80 11.2 2,14 9 . 79 11.7

---- 3 . 33 ----- 5 38 30 10.2 76 9 . 9 2 . 17 9 . 37 11.4

---- 4.00 ----- 6 34 50 lo-8 73 9 . 0 2.16 9 . 30 u,4

1.3 6.00 2 12 32 5 11.9 106 8.9 2.85 11.1 25.2
---- 3.00 3 9 42 45 7.1 114 10.7 2.75 11.4 25.2

---- 3.33 ----- 10 40 10 7.4 111 10.0 2.75 u.4 25.2
---- 4.00 ----- 12 36 4o 7.9 107 9 . 0 2.81 11.1 25.3
---- 5.00 ----- 15 33 10 8.4 103 8.2 2.86 11.1 25.6
---- 2.50 4 10 45 35 5.3 115 lo-8 2.88 ll.o 26. 1
---- 3.00 ----- 12 41 30 5.6 log 9 . 7 2.86 11.0 25.3
---- 2.30 5.2 12 44 25 4.4 110 9 . 6 2.75 u.4 26.o
---- 2.00 6 12 46 10 3.8 log 9 . 6 2.76 11.5 25.8

---- 2.33 ----- 14 43 10 4.o 1o6 8.8 2.81 11.5 25.8
---- 2.66 ----- 16 39 50 4.2 102 8.1 2.75 11.5 25.4
---- 3.00 ----- 18 37 35 4.3 100 7.8 2.78 u.5 25.8
---- 4.00 ----- 24 32 10 4.7 93 6.6 2.76 1-1.5 25.6

---- 1.50 8 12 50 5 2.7 107 9.9 2. 75 11.1 25.1

2.04 3.00 3.6 lo.8 44 20 7.4 159 11 . 9 3 . 70 13 . 5 47.3
---- 4.00 ----- 14.4 38 50 8.3 153 10 .2 3 . 73 13.7 48.1

---- 5 . 00 ----- 18 33 30 8.6 142 9.4 3.03 13.2 47.1

---- 3.00 5 15 41 50 5.7 152 10.7 3 . 09 13.4 47.8

---- 2.00 6 12 -49 10 4.5 156 u.6 3 . 13 13.5 48.8

---- 2.33 ----- 14 45 30 4.6 150 10.9 3•o6 13.3 47.9

---- 2.66 ----- 16 42 45 4.7 147 lo-4 3 . 05 13.2 48.4

---- 3.00 ----- 18 40 30 4.9 144 9 .8 3 . 07 13.2 48.o

---- 3.00 8 24 39 5 4.1 138 8.4 3.13 13.5 48.3

---- 0.80 to 8 63 50 2.2 162 14.7 3 . 12 13.3 48.5

---- 0.90 ----- 9 61 30 2.3 160 13.9 3.07 13.4 48.3

---- 1.00 ----- 10 59 50 2.4 158 13.2 3.08 13.5 48.o

---- 1.6o ----- 16 49 50 2.8 148 10.6 3 . 05 13 . 5 47.6
---- 2.00 ----- 20 45 20 3.1 142 9.2 3.07 13.4 47.1
---- 2.50 ----- 25 41 00 3.2 138 8.6 3.09 13.3 48.1
---- 3.00 ----- 30 37 30 3.4 133 7.8 3.05 13.3 48.1

2. 57 3 . 00 8.0 24.o 40 15 4.3 147 8.6 3.27 14.2 50.5

5.14 3.00 5.65 16.96 46 50 7.5 249 11 .8 3 . 77 19 . 3 114.3

6.32 3.00 8.0 24.o 45 5 6.3 270 10.7 3 .86 20.8 141.1

7.38 4.10 5.8 23.8 42 10 9.3 307 11.4 4.04 21.6 178.4
---- 3.00 8.0 24.o 46 10 6.9 312 1-1. 3 4.02 22.8 182.3
---- 2.20 15.0 33.0 48 20 3.8 306 10.7 4.04 22.4 184.2
---- 2.35 17 . 0 4o.o 46 to 3.4 298 10.3 4.02 21.4 182.3

7.94 1.76 19 . 0 33 . 5 52 5 3.0 328 11 . 5 4.08 22.6 197.6

8.89 3.00 8.0 24.o 47 15 7.7 350 1-1.4 4.17 25.4 213.6

9.18 1.5o 4.o 6.0 65 25 10.5 398 19 . 0 4.20 25.7 205.7
---- 2.00 3 . 0 6.o 61 55 14.3 401 18.7 4.16 26.0 207.8
---- 1.66 6.c io.o 61 25 8.1 384 1^%8 4.20 26.5 208.2

11 . 59 4.00 8.5 34.o 41 45 9.5 376 9 . 3 4.28 30.4 273.9

13.1 3.00 3.57 10 . 72 54 30 19 468 13.8 4 . 35 31.2 309.5
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TABLE II

L

8/dm2

2b

cm
k = b

a

a N
revolutions

per sec

V

cm/secdegrees min

1.3 12 2.00 46 10 3.8 log

--- -- 2.30 44 25 4.4 110

--- -- 3.00 41 30 5.6 log

--- -- 4.00 36 4o 7.9 107

-- 6.00 32 5 11.9 1o6
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TABLE III

A

gr/dm2

2b x 2a

cm 

a V

cm/

V1

cm/s

V- V1 Yo

cm

Yl

cm

a

degreesdegrees min V

7.38 40	 x 17 46 10 298 236 0.11 0.9 1.1 16

11.8 44.5 x 21 49 20 396 359 0.09 1.0 1.3 23

6.61 6o	 x 32 46 00 258 226 0.12 1.9 2.9 29



48 NACA TM No. 1201 

TABLE IV 

2b X 2a f::" i n N N2 N2 - N N2 - N 
k = 11. 

em2 a g/dri r ev /see rev/sec r ev/sec N 
deg min deg min 

, 

33 x 15 2 . 2 7 · 38 33 10 27 45 3·8 0.4 0 .11 

82 55 30 15 4 . 2 

90 30 26 30 

116 50 26 5 

40 X 17 2 · 35 ----- 52 5 22 0 3 · 4 0 · 5 0.15 

77 25 27 45 3· 9 

103 30 24 30 

127 30 23 25 

44 . 5 x 21 2.12 11.8 36 20 28 5 4. 0 0 . 2 0 . 05 

(fig. 19) 65 35 30 20 4 . 2 

95 15 29 0 

123 10 26 50 

60 x 32 1 . 88 6. 61 42 20 12 15 1·9 0.2 0.11 

55 10 13 25 

ff) 5 14 30 

84 0 15 20 2 .1 

92 20 15 20 

99 15 15 10 

113 0 12 25 

125 0 11 30 
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TABLE V 

I:::. 2b X 2a H No H1 H2 N 
k = :£ 

g/o.m2 mm2 a 
rev Isee rev Isee m m m 

10· 9 155 X 15 10·3 4·75 6·9 2 .25 1. 25 48. 0 

---- -------- ---- 4.00 --- 2· 58 2 .42 25 · 0 

---- -------- ---- ---- --- 2.00 1.82 33·0 

21.6 210 X 25 8.4 4·75 5. 2 2·50 0.20 29·0 

19 · 0 280 X 24 11·7 ---- 5·9 2·30 1·75 20 .8 
• 

---- -_._---- ---- ---- --- 2.10 0.85 26·5 

-- -- -------- --- -- - - --- 2 ·35 0.60 28.8 

---- ----- - -- --- ---- --- 1.65 1.15 30 .0 

---- -------- -- - ---- --- 1.10 1. 00 33·3 
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TABLE VI

COUPLE

g-cm

H

cm

N

rev/sec

V
aN

COUPLE

g -cm

H

cm

N

rev sec

V

aN

120 0 3 600 0 5.8
8 2.5 12 3.8

46 2.4 10.05 33 2. 9 7.54
102 2.6 12.56 76 2.8 10.05
163 2.7 118 2.9

Steady
300 0 4.4 motion 3.0 11.50

9 2.8
43 2.6 9.42

99 2 . 7 11.93
159 2.8
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TABLE VII

H N v_ H N y

cm rev/sec
v aN cm rev/sec

V aN

13 25.0 375 13 . 77 119 9.8 363 8.79

38 16.0 368 5.65 136 9.4

60 12.2 354 6.91 Steady motion 9.5 376 9.31

74 11.3 350 7.54
1



52
	

NACA TM No. 1201

TABLE VIII

Number of

Blades

2b x a

cm2

Total
Weight

g

H

cm

N

rev/sec

V

cm/s

V
aN

a

deg min

3 26 x 5.5 8.62 350(Ho ) 2.3

photo 195 3.6 183 8.79 70 30
(fig.	 32)

130 4.0 211

4 20 x 5 10.28 350(Ho ) 2.0

],90 3.8 271 14.44
photo

(fig.	 33) 140 4.3 84 30

110 4.4 300 13.82
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TABLE II

Number of

Faces

Total
Weight

g

Width
of Face

cm

Span

cm

H

cm

N

rev/sec

V

cm/s
—Y-
aN

a

deg min

3 15.12 14 36 350(Ho) 1.2

210 1.7 260

140 272 71 50

90 2.0

4 15.84 11 36 350(Ho) 1.1

205 1.2 173 18.21
71 20

138 1.6 190 15.07

70 1.8 199 14.44

Radius
CO 4.98 2.85 22.5 260(Ho)

200 2.6 226 30.77

150 2.4 260 3 8. 3 1 80

123 2.3 270 41.45
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TABLE X

A

g/dm2

2b x 2a

cm2

u Ho

cm

H

cm

n

rev/secdeg min

M4 14.4 x 3.6 4 00 250 120 3.0

( photo 44)

----- 18.0 x 3.6 ---- -- --- 16o 4.5

----- 15.0 x 5.0 7 30 --- 175 2.0
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TABLE %I

A

g/dm2

2b

cm

2A

cm

3.8

2a

cm
k =b

A
K =b

a
k' R - r

1.3 4.0 2.5 1.1 1.6 3.9 <0

--- --- 3.4 2.3 1.2 1.7 _-_ <0

--- --- 3.0 2.0 1.3 2.0 ___ <0

--- --- 2.0 1.5 2.0 2.7 ___ <0

--- --- 0.9 0.5 4.4 8.0 ___ >0

--- --- 0.8 0.5 5.0 8.0 ___ >0

--- 12 9.0 6.0 1.3 2.0 2.3 <0

--- --- 8.0 7.0 1.5 1.7 --- <0

--- --- 8.0 6.o 1.5 2.0 _-_ <0

--- --- 6.0 4.0 2.0 3.0 ___ Plan

--- --- 5.7 4.5 2.1 2.7 _-- Plan

--- --- 4.0 2.0 3.0 6.o ___ >0

_-- _-_ 3.0 2.0 4.o 6.o ___ >0
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TABLE XII

A

9/dm2

b
k	

a

2a

cm

2b

cm

2c

cm

a N

rev/sec

V

cm/s

V
E F H

deg min

429 8.57 3.5 30.0 o.67 21 30 4.6 53 6.6 1.97 3.01 7.7

iron 1.50 5.0 7.5 0.67 51 20 2.4 75 12.5 1.70 2.22 7.2

3.00 --- 15.0 ---- 36 00 2.7 65 9.6 1.67 2.18 7.2

6.00 --- 30.0 ---- 24 20 3.4 55 6.5 1.73 2.24 7.3

387 1.42 3.5 5.0 1.05 57 55 5.4 130 13.8 2.08 5.05 20.0

lead 2.85 --- 10.0 ---- 42 55 6.2 118 10.9 2.04 5.04 20.4

5.71 --- 20.0 ---- 29 25 7.0 100 8.2 2.o9 4.96 20.4

8.57 --- 30.0 ---- 22 00 7.6 87 6.5 2.02 4.97 20.2
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Figure 6a.
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Figure 8.
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Figure 9.



64
	

N ;CA `I'M No. 1201

co

i

20
0
	

1	 2	 3	 4	 5	 6

Figure 10.

60

50

40

30



10

5

NACA TM No. 1201
	

65

•	 C U

0
	 1	 2	 3	 4	 5	 6

Figure 11.

V
a^
h

E

A=2,04	 2a=10

150

A. 2,04	 2a-6

A.=1,3	 2a•3

A l ,3 2b=12
100

6 . 1,5	 2a=6

	501	 k
	0 	 1	 2	 3	 4	 5	 6

Figure 12.



15

io

5

0,50

0,40

0,30

0,20

0,10

0

66
	

NACA TM No. 1201

p	 1	 2	 3	 4	 5	 6

Figure 13.

5	 10

Figure 14.



2

i

40

30

20

io

NACA TM No. 1201
	

67

5

3

io	 15

Figure lb.

5	 10

Figure 16.



300

250

200

150

100

50

OL V
deg I a N cm/sec I N

r. P. s.

150 1 10

10015

40110

3015

V

V

68
	

NACA TM No. 1201

350

0
	

5	 10	 15

Figure 17.

	

25 1 	 2a cm -A 0

	

0	 5	 10

Figure 18.



Figure 19.

NACA TM No. 1201
	

69

Figure 20.
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Figure 40.

Figure 41.
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Figure 42.
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Figure 43.
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Figure 44.

Figure 45.
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Figure 46.	 Figure 47.
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Figure 50.
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Figure 52.
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Figure 53.

Figure 54.




